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Abstract
We investigate the behavior of various measures of quantum coherence and quantum correlation in the spin-1/2 Heisenberg 
XYZ model with added Dzyaloshinsky-Moriya (DM) and Kaplan–Shekhtman–Entin-Wohlman–Aharony (KSEA) interac-
tions at a thermal regime described by a Gibbs density operator. We aim to understand the restricted hierarchical classifica-
tion of different quantum resources, where Bell nonlocality ⊆ quantum steering ⊆ quantum entanglement ⊆ quantum discord 
⊆ quantum coherence. This hierarchy highlights the increasingly stringent conditions required as we move from quantum 
coherence to more specific quantum phenomena. In order to enhance quantum coherence, quantum correlation, and fidelity 
of teleportation, our analysis encompasses the effects of independently provided sinusoidal magnetic field control as well as 
DM and KSEA interactions on the considered system. The results reveal that enhancing the entanglement or quantum cor-
relation of the channel does not always guarantee successful teleportation or even an improvement in teleportation fidelity. 
Thus, the relationship between teleportation fidelity and the channel’s underlying quantum properties is intricate. Our study 
provides valuable insights into the complex interplay of quantum coherence and correlation hierarchy, offering potential 
applications for quantum communication and information processing technologies.

1  Introduction

Quantum coherence (QC) is a broad concept that encom-
passes all kinds of superpositions within both single and 
multipartite quantum systems [1, 2]. When the off-diagonal 
elements of a density matrix are nonzero, it indicates the 
presence of QC. Baumgratz et al. [2] introduced a quan-
tum resource theory of QC, where the l1-norm of coherence 
effectively quantifies the degree of QC. In the context of 
multipartite systems, QC can arise from various forms of 

separable and nonseparable correlations, such as entangle-
ment and quantum discord (QD) [3–7]. Even within these 
separable and nonseparable correlations, there are additional 
types of correlations based on their operational interpreta-
tion, including Bell nonlocality (BNL) and quantum steering 
(QS). Together, these different notions form a hierarchy of 
correlations that are essential for understanding the nature of 
different types of quantum resources in quantum information 
and processing.

Figure 1 illustrates the hierarchy of quantum correlations, 
where each layer represents a subset of the one encompass-
ing it, with QC being the largest and most inclusive, and 
BNL being the most specific and restrictive. This hierarchi-
cal structure visually represents how each type of quantum 
correlations may build upon the previous ones, showcasing 
their interrelations and dependencies [8–10].

Entanglement refers to the remarkable nonseparable 
quantum correlations between particles, where the state of 
one particle instantaneously influences the state of another, 
regardless of distance [11–13]. QD extends beyond entan-
glement, encompassing some quantum correlations residing 
in both separable and nonseparable states shared between 
subsystems of a quantum system [5–7]. However, in general, 
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it has been shown that quantum correlations may be detected 
even in the absence of both entanglement and QD [14]. For 
pure nonseparable states, QD and entanglement are equiva-
lent [6, 7], but this is not the case for mixed states.

QS [15–18] represents a unique form of quantum cor-
relations. In a scenario where two distant observers share 
an entangled quantum state, QS describes the ability of one 
observer to remotely influence the state of the other observ-
er’s system. While entanglement entails quantum correla-
tions between quantum particles regardless of distance, QS 
introduces an asymmetry in the observer’s roles. In a QS 
scenario, one observer can manipulate the state of the other 
observer’s system, but the reverse may not always hold. This 
fundamental asymmetry sets QS apart and raises intriguing 
questions about the relationship between QS, entanglement, 
and BNL.

BNL is a concept that arises from the violation of cer-
tain inequalities known as Bell inequalities [19, 20]. These 
inequalities describe limits on quantum correlations that 
can occur between distant systems within a classical frame-
work. When these inequalities are violated, it implies that 
the quantum correlations between the systems cannot be 
explained by local hidden variables (underlying properties 
or information that determine the outcome of measurements)
and suggests a form of BNL in quantum mechanics. From 
Bell inequalities, we now understand that entanglement and 
BNL are synonymous in a pure state, meaning that entangle-
ment implies BNL and vice versa. However, the situation 
is not clear and simple for mixed states, even in two-qubit 
systems [21–24].

The measures of BNL, entanglement, QD, and QS are 
intricately connected, making it difficult to clearly differ-
entiate them, even in systems with two or three qubits. The 
complexity is underscored by the requirement of 15 inde-
pendent parameters to fully characterize a density matrix, 
even for two-qubit mixed state systems, highlighting the 

intricate nature of quantum correlations. While entangle-
ment is a cornerstone of quantum information theory, it does 
not fully encapsulate the correlations present in mixed states. 
The lack of a straightforward mathematical relationship 
among these measures, combined with the challenges of dis-
tinguishing separable states from entangled ones, indicates 
that enhancing one type of correlation does not necessarily 
lead to improvements in others. This complexity necessi-
tates the assessment of multiple metrics, as different quan-
tum resources may become more significant under varying 
conditions. This study qualitatively explores the trends and 
hierarchy of these correlations within a two-qubit Heisen-
berg model, providing insights into their interrelations and 
the circumstances under which each type of correlation may 
dominate.

A one-dimensional Heisenberg spin chain is a theoreti-
cal model generally used in condensed matter physics to 
describe a linear array of interacting quantum spins [25–32]. 
Each spin interacts with its nearest neighbors, exhibiting 
phenomena such as quantum phase transitions and quan-
tum correlations. In quantum technologies, Heisenberg spin 
chains offer potential for quantum simulation [33, 34], com-
puting [35, 36], metrology and sensing [37–39], quantum 
criticality and multipartite entanglement [40], and commu-
nication [41, 42]. Entanglement properties of spin chains can 
be harnessed for quantum communication protocols, where 
one can use spin chains as quantum channels to transfer 
quantum states between distant parties securely and with 
higher fidelity compared to classical communication chan-
nels [43].

In this work, we take the most general two-qubit Heisen-
berg XYZ model under a sinusoidally controlled magnetic 
field applied to an individual spin site with asymmetric 
spin–orbit coupling interaction called Dzyaloshinsky-
Moriya (DM) interaction and symmetric exchange coupling 
known as Kaplan–Shekhtman–Entin-Wohlman–Aharony 
(KSEA) interaction, and study the behavior of all the afore-
mentioned quantifiers with changes in the model parameters.

To elucidate the occurrence of weak ferromagnetism 
observed in certain rhombohedral antiferromagnets, 
Dzyaloshinsky [44–46] developed a phenomenological 
approach grounded in the Landau theory of second-order 
phase transitions. This approach highlighted that the 
appearance of a nonzero net magnetization in the system 
is attributed to the antisymmetric mixed term in the expan-
sion of the thermodynamic potential. Additionally, Dzya-
loshinsky noticed that in antiferromagnetic crystals with 
tetragonal lattices, weak ferromagnetism can be induced 
by the symmetric mixed term in the corresponding ther-
modynamic potential. In 1960, Moriya [47] improved 
the understanding by formulating a microscopic theory 
of anisotropic superexchange interaction, extending the 
Anderson theory of superexchange to include spin–orbit 
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Fig. 1   Conventional hierarchy breakdown of quantum coherence and 
correlations, i.e., BNL ⊆ QS ⊆ quantum entanglement ⊆ QD ⊆ QC
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coupling. Through perturbation theory, Moriya identi-
fied the primary anisotropy contribution to the interaction 
between neighboring spins as the DM interaction. Moriya 
also revealed a second-order correction term involving a 
symmetric traceless tensor. While historically considered 
negligible, Kaplan and subsequently Shekhtman et  al. 
[47–49] argued for the significance of the symmetric term. 
This term, called KSEA interaction as mentioned before, 
can restore the O(3) invariance of the isotropic Heisen-
berg system, a property disrupted by the DM term. This 
reevaluation of the interaction emphasizes its importance 
in understanding weak ferromagnetism in antiferromag-
netic systems.

Finally, we also consider a teleportation protocol by 
employing the two-qubit Heisenberg spin chain as a chan-
nel to study how the channel parameters can impact the 
fidelity of the teleported state. Heisenberg XYZ model has 
already been experimentally studied, such as in Rydberg 
or dipolar atoms, through a combination of dipole inter-
actions with engineered optical pumping [50]. Floquet-
engineered XXZ spin coupling in bulk systems and opti-
cal tweezer arrays have been demonstrated in [51, 52]. 
Similarly, this model has been recently realized in multiple 
experiments, notably in dipolar-octupolar (DO) Kramers 
compounds Ce2(Sn, Zr)2O7 and Nd2Zr2O7 [53–55]. Moreo-
ver, the XYZ model has been realized in Weyl-Heisenberg 
ferromagnets [56].

1.1 � Motivation and contribution of this study

This study aims to enhance our understanding of various 
quantum resources in quantum information processing, 
particularly in quantum teleportation. While entangle-
ment is vital for teleportation, the complexities of mixed 
states affected by thermal and quantum noise necessitate 
the consideration of additional quantum correlations, such 
as BNL, QS, QD, and l1-norm of QC. Utilizing the Heisen-
berg XYZ spin model, we explore how the Gibbs thermal 
state acts as a mixed state channel for teleportation, incor-
porating various control parameters like magnetic fields 
and interactions such as DM and KSEA. This approach 
allows us to investigate how these factors influence the 
different coherence and correlation measures constituting 
the hierarchy of quantum resources and the fidelity of tel-
eportation. Our contribution lies in systematically quanti-
fying these quantum resources and analyzing their collec-
tive impact on teleportation fidelity. We also examine the 
robustness of these resources under varying temperature 
conditions, providing insights into optimizing quantum 
communication protocols.

1.2 � Organization

The scheme of this paper is as follows: in Sect. 2, we define 
and explain the different notions of QC and quantum correla-
tion measures. In Sect. 3, we briefly introduce the spin-1/2 
Heisenberg XYZ model, diagonalize the system, and come 
up with the thermal state of the model. In Sect. 4, we pre-
sent a simple teleportation scheme based on the considered 
model to be implemented. Section 5 presents the results and 
discussion, and finally, Sect. 6 concludes this paper.

2 � Quantum resources

2.1 � l
1
‑norm quantum coherence

QC is a fundamental concept that arises from the superposi-
tion principle in quantum mechanics. A rigorous framework 
to quantify coherence as a resource, known as the resource 
theory of QC, has been previously developed [1, 2]. This 
theory identifies the set of incoherent states I  which are 
diagonal in a reference basis {�i⟩}:

The free operations are the incoherent operations that map 
incoherent states to incoherent states. Revealing and quan-
tifying QC is essential to enable quantum correlations and 
information processing.

Accordingly, Baumgratz et al. [2] proposed the l1-norm 
of quantum coherence as a quantifier of coherence, given by

where � is the density operator of the considered system.

2.2 � Quantum discord

QD measures nonclassical correlations between subsystems 
in a quantum system, capturing quantumness not explained 
by classical means. QD quantifies differences between quan-
tum and classical mutual information.

QD indicates the difference between total and classical 
correlation for a two-qubit system [5–7, 57]. That is, QD for 
a bipartite quantum X state, �X is expressed as

where

(1)� ∈ I ⟺ � =
�
i

�i�i⟩⟨i�.

(2)Q(�) =
�
i≠j

�⟨i���j⟩� = �
i,j

��ij� −
�
i

��ii�,

(3)D(�X) = min{q1, q2},
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here, �i ’s represent the eigenvalues of density matrix �X , and

with

and

2.3 � Concurrence

Concurrence is an entanglement monotone used to quan-
tify the degree of entanglement in arbitrary two-qubit 
states [4, 58]. For a given density matrix � , concurrence 
C(�) of two qubits is defined as follows

where �i ’s are the square roots of the eigenvalues of the 
matrix (non-Hermitian) 𝜌(𝜎y ⊗ 𝜎y)𝜌

∗(𝜎y ⊗ 𝜎y) in decreas-
ing order. As before, �y represents the y-component of Pauli 
matrices, and �∗ denotes the complex conjugate of � . Note 
that the measure (9) takes values between 0 and 1, indicating 
the absence of entanglement when C(�) = 0 and maximal 
entanglement when C(�) = 1.

2.4 � Quantum steering

Erwin Schrödinger proposed steering as an extension of 
the Einstein-Podolsky-Rosen paradox [15]. Though ini-
tially overlooked as nonlocal correlations, it later sparked 
significant advancements. Steerable states exhibit quantum 
advantages in device-independent quantum cryptography 
[59], secure teleportation [60], randomness generation 
[61], and subchannel discrimination [62]. The three-
setting linear steering inequality [63, 64] is based on the 
assumption that either Alice or Bob are allowed three 
measurement observables on their respective subsystems. 
It is a crucial tool for detecting and quantifying steering 
in a state, particularly in a two-qubit system which reads

(4)qj = H(�11 + �33) +

4∑
i=1

�i log2 �i + wj,

(5)w1 =H(�),

(6)w2 = −
∑
i

�ii log2 �ii − H(�11 + �33),

(7)H(�) = −� log2 � − (1 − �) log2(1 − �),

(8)

� =
1

2

{
1 +

√
[1 − 2(�33 + �44)]

2 + 4(|�14| + |�23|)2
}
.

(9)C(�) = max{0, �1 − �2 − �3 − �4}.

where Ai = ai ⋅ � and Bi = bi ⋅ � are Hermitian operators 
acting on qubits A and B, respectively. Here, ai, bi ∈ ℝ

3 are 
two unit vectors with {b1, b2, b3} being orthogonal to each 
other, and Pauli matrices � = (�1 = �x, �2 = �y, �3 = �z) . 
Any violation of the inequality (10) implies that � is steer-
able, and the maximal violation gives a measure of steering 
[64]. Explicitly,

represents the maximum violation of the three-setting linear 
steering inequality.

2.5 � Bell nonlocality

In order to quantify BNL and enable a more thorough com-
parison of quantum correlations, one can use the Bell ine-
quality violation. The normalized form of BNL measure can 
be written as [65–69]

where 0 ≤ B(�) ≤ 1 since BCHSH ≤ Bmax = 2
√
2 for a two-

qubit system � . Notice, BCHSH is the maximum violation of 
Bell Clauser–Horne–Shimony–Holt (CHSH) inequality, 
which for an X-shaped density matrix is given by [68–70]:

 with � = �11 − �22 − �33 + �44.

3 � Heisenberg XYZ model

The Hamiltonian describing a general Heisenberg XYZ 
model under the influence of an inhomogeneous magnetic 
field, including DM and KSEA interactions, is given by

The initial term ĤH accounts for Heisenberg spin exchange 
interactions, with ĤB as the Zeeman Hamiltonian represent-
ing the influence of the inhomogeneous external magnetic 
field on the system. Additionally, ĤDM and ĤKSEA represent 
the DM interaction and KSEA interaction, respectively. This 
total Hamiltonian (14) can be explicitly written as [71, 72]

(10)
1√
3

3�
i=1

Tr(Ai ⊗ Bi𝜌) ≤ 1,

(11)S(𝜌) = max
{Ai,Bi}

�
1√
3

3�
i=1

Tr(Ai ⊗ Bi𝜌)

�

(12)B(�) = max

{
0,

BCHSH − 2

Bmax − 2

}
,

(13)
BCHSH = 2max

{
2

√
2|�14|2 + 2|�23|2,

√
4(|�14| + |�23|)2 + �2

}
,

(14)ĤN = ĤH + ĤB + ĤDM + ĤKSEA,
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here,

The interaction between neighboring spin sites is determined 
by the real spin–spin coupling coefficients along the x, y, and 
z directions, denoted as Jk for k = x, y, z . Antiferromagnetic 
coupling is indicated by positive values of Jk , while nega-
tive values represent ferromagnetic coupling. The standard 
Pauli spin operators, denoted as 𝜎̂k

i
 , define the spin vector on 

the ith site as �⃗�i = (𝜎̂x
i
, 𝜎̂

y

i
, 𝜎̂z

i
) . Moreover, ��⃗Bi = (Bx

i
,B

y

i
,Bz

i
) 

represents the magnetic flux density contributing to Zeeman 
splitting at the ith spin site. The DM interaction vector is 
defined by ��⃗D = (Dx,Dy,Dz) and serves as the anti-symmet-
ric exchange coupling responsible for spin–orbit coupling 
in specific materials. Note that the KSEA interaction ( Γ ) 
introduces an anisotropic symmetric interaction [71–74].

To simplify our analysis, we focus on a bipartite Heisen-
berg XYZ model restricted to interactions between two spe-
cific spin sites. This model is limited to a two-spin system 
and does not consider interactions between arbitrary pairs 
within a longer chain or under periodic boundary conditions. 
For this two-spin model, we further simplify by assuming 
that ��⃗B1 = (0, 0,B cos 𝜃) , ��⃗B2 = (0, 0,B sin 𝜃) , ��⃗D = (0, 0,Dz) , 
and specifying that Γx = Γy = 0 while Γz ≠ 0 . Consequently, 
the Hamiltonian in Eq. (15) with these assumptions can be 
explicitly written as

As we know, this Hamiltonian (17) has a standard X-struc-
tured matrix form. Using the standard computational basis 
{�00⟩, �01⟩, �10⟩, �11⟩} , it can be expressed in a simplified 
form

(15)

ĤN =

N−1∑
i=1

{
Jx𝜎̂

x
i
⊗ 𝜎̂

x
i+1

+ Jy𝜎̂
y

i
⊗ 𝜎̂

y

i+1
+ Jz𝜎̂

z

i
⊗ 𝜎̂

z

i+1

+ ��⃗Bi ⋅ ( �⃗𝜎i ⊗ �2) +
��⃗Bi+1 ⋅ (�2 ⊗ �⃗𝜎i+1)

+ ��⃗D ⋅ ( �⃗�i × �⃗𝜎i+1) + �⃗𝜎i ⋅ Γ ⋅ �⃗𝜎i+1

}
,

(16)Γ =

⎛
⎜⎜⎝

0 Γz Γy

Γz 0 Γx

Γy Γx 0

⎞
⎟⎟⎠
.

(17)

Ĥ =Jx 𝜎̂
x
1
⊗ 𝜎̂

x
2
+ Jy 𝜎̂

y

1
⊗ 𝜎̂

y

2
+ Jz 𝜎̂

z

1
⊗ 𝜎̂

z

2

+ B [cos 𝜃(𝜎̂z

1
⊗ �2) + sin 𝜃(�2 ⊗ 𝜎̂

z

2
)]

+Dz (𝜎̂
x
1
⊗ 𝜎̂

y

2
− 𝜎̂

y

1
⊗ 𝜎̂

x
2
)

+ Γz (𝜎̂
x
1
⊗ 𝜎̂

y

2
+ 𝜎̂

y

1
⊗ 𝜎̂

x
2
).

(18)Ĥ =

⎛⎜⎜⎜⎝

Jz + B(cos 𝜃 + sin 𝜃) 0 0 − 2iΓz + Jx − Jy
0 − Jz + B(cos 𝜃 − sin 𝜃) 2iDz + Jx + Jy 0

0 − 2iDz + Jx + Jy − Jz − B(cos 𝜃 − sin 𝜃) 0

2iΓz + Jx − Jy 0 0 Jz − B(cos 𝜃 + sin 𝜃)

⎞⎟⎟⎟⎠
.

The diagonalization of Ĥ (18) results in four eigenvalues, 
given by

with expressions

and

where

The state of a system in the thermal equilibrium with the 
absolute temperature T is described by the Gibbs density 
operator

where Z = Tr[exp(−Ĥ∕𝜅T] is partition function with the 
Boltzmann constant � (considered as � = 1 for simplifica-
tion purpose).

Using now Hamiltonian (18) and density operator 
(20), we obtain the following density matrix at thermal 
equilibrium

where the nonzero elements read

(19)E1,2 = ±K1 + Jz, E3,4 = ±K2 − Jz,

K1 =

√
k2
1
+ B2(cos � + sin �)2

K2 =

√
k2
2
+ B2(cos � − sin �)2,

k1 =

√(
Jx − Jy

)2
+ 4Γ2

z
,

k2 =

√(
Jx + Jy

)2
+ 4D2

z
.

(20)𝜌T =
1

Z
e−Ĥ∕𝜅T ,

(21)�T =

⎛⎜⎜⎜⎝

a− 0 0 c

0 b− d 0

0 d∗ b+ 0

c∗ 0 0 a+

⎞⎟⎟⎟⎠
,
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where Θ(1)2 = sinh
(
K(1)2∕T

)
 , and

The state presented in Eq. (21) has an X structure. Thus, 
the explicit expressions of the aforementioned quanti-
fiers based on thermal state elements (22) can be derived 
straightforwardly.

For example, the l1-norm of quantum coherence (2) can 
be obtained as

Moreover, the analytical expression of QD for our ther-
mal state (21) would be given by Eq. (3) with considering 
�11 = a− , �22 = b− , �33 = b+ , �44 = a+ , �14 = c , and �23 = d.

Regarding the analytical form of QS (11), one needs to 
simply obtain Tr(Ai ⊗ Bi𝜌T ) . Explicitly, we have

Besides, the concurrence (9) can be derived as

where t1 = �d� −√
a−a+ and t2 = �c� −√

b−b+.
Finally, the normalized form of BNL function (12) is 

found to be

where m1 =
√
4(�c� + �d�)2 + (a− − b− − b+ + a+)2  and 

m2 =
√
8(�c�2 + �d�2).

4 � Quantum teleportation

In this section, we examine the teleportation protocol, con-
sidering �T as the quantum channel state, assuming the input 
state is an arbitrary unknown pure state consisting of two 
qubits such as

(22)

a± =
e−Jz∕T

Z

{
cosh

(
K1∕T

)
±
[
B(cos � + sin �)∕K1

]
Θ1

}
,

b± =
eJz∕T

Z

{
cosh

(
K2∕T

)
±
[
B(cos � − sin �)∕K2

]
Θ2

}
,

c = −
e−Jz∕T

Z

[(
−2iΓz + Jx − Jy

)
∕K1

]
Θ1,

d = −
eJz∕T

Z

[(
2iDz + Jx + Jy

)
∕K2

]
Θ2,

(23)Z = 2
[
e−Jz∕T cosh

(
K1∕T

)
+ eJz∕T cosh

(
K2∕T

)]
,

(24)Q(�T ) = |c| + |c∗| + |d| + |d∗|.

(25)
S(�T ) =

{
8(cc∗ + dd∗) − 4a−(b− + b+)

− 4a+(b− − b+) + 1
}1∕2

.

(26)C(�T ) = 2max
{
0, t1, t2

}
,

(27)B(�T ) = max
�
0, (2max{m1,m2} − 2)∕(2

√
2 − 2)

�
,

(28)��in⟩ = cos(�∕2)�10⟩ + ei� sin(�∕2)�01⟩,

where � and � represent the amplitude and phase of the tar-
get state to be teleported, respectively. The quantum chan-
nel is known as a completely positive and trace-preserving 
operator. Through this process, an input state is mapped to 
an output state.

When a quantum state is teleported via the mixed chan-
nel �ch , the resulting output replica state �out is achieved by 
performing joint measurements and local unitary transfor-
mations on the input state �in = ��in⟩⟨�in�

where �0 = �2 , and pi = Tr
(
qi� ch

)
 satisfies the con-

dition 
∑

i pi = 1 . Moreover, we have q0 = �Ψ−⟩⟨Ψ−� , 
q1 = �Φ−⟩⟨Φ−� , q2 = �Ψ+⟩⟨Ψ+� , and q3 = �Φ+⟩⟨Φ+� in which 
�Ψ±⟩ and �Φ±⟩ are four Bell states. Here, let us suppose that 
the quantum channel is a thermal state (21), i.e. �ch = �T.

The quality of the teleported state is determined by the 
criterion of fidelity F(�in, �out) , defined as

Based on the above definition, the average fidelity of telepor-
tation F  is given by

The maximum classical average fidelity threshold is 
observed at F = 2∕3 . Beyond this point, we transition into 
the quantum average fidelity regime. The proximity of the 
quantum average fidelity to unity signifies reduced infor-
mation leakage, indicating optimal conditions for quantum 
teleportation.

In our case (density matrix (21)), the analytical form of 
average fidelity is derived by

5 � Results and discussion

In this investigation, our objective is to analyze vari-
ous quantum coherence and correlation measures within 
the Heisenberg XYZ model, using it as a quantum 
resource channel for teleporting a target quantum state 
��in⟩ = cos(�∕2)�10⟩ + ei� sin(�∕2)�01⟩ . The goal is to 
enhance average quantum teleportation fidelity beyond 2/3 
by adjusting parameters such as magnetic field, bath tem-
perature, and DM and KSEA interactions, thereby enhanc-
ing the channel’s quantum resources. We consider an 

(29)𝜌 out =
∑

i,j∈{0,x,y,z}

pipj
(
𝜎
i
⊗ 𝜎

j
)
𝜌 in

(
𝜎
i
⊗ 𝜎

j
)
,

(30)F(�in, �out) =

�
Tr

�√
�in�out

√
�in

�2

.

(31)F =
1

4� ∫
2�

0

d�∫
�

0

d�F(�in, �out) sin �.

(32)F(�T ) =
2

3
(b− + b+)2 +

1

3
(a− + a+)2 +

1

3
(d + d∗)2.
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antiferromagnetic spin chain characterized by anisotropic 
spin–spin coupling constants (a random case): Jx = 0.8 , 
Jy = 0.5 , and Jz = 0.3.

5.1 � Impact of magnetic field

First, our focus is on the impact of applying a magnetic 
field to either one spin ( � = 0 or � = �∕2 ) or to both spins 
( � = �∕4 ) with B = 1 on quantum resources and teleporta-
tion fidelity in the absence of DM and KSEA interactions. 
Figure 2 illustrates the variations of quantum resources and 
teleportation fidelity with temperature under zero DM and 
KSEA interactions, comparing two distinct fixed magnetic 
field values.

In Fig. 2a, b, the l1 norm of quantum coherence and QD 
are shown as functions of temperature. At low tempera-
tures, peak values are higher when the same magnetic field 
is applied to both spins (dashed blue curve) compared to 
when it is applied to just one spin (solid green curve). Both 
measures decrease with increasing temperature. This result 
does not surprise us because the temperature can diminish 
the QC and correlation due to thermal fluctuations in the 
system.

Figure  2c–e depict the behaviors of concurrence, 
QS, and BNL versus T, respectively. The entanglement 
captured by concurrence disappears after T ≈ 1.9 . Note 
that at low temperatures, peak values of concurrence are 
greater when the same magnetic field is applied to both 
spins (dashed blue curve). Our findings show that for 
0.7 ≤ T ≤ 0.9 , the channel state is steerable without BNL, 
as S(𝜌T ) > 1 in Fig. 2d. Between T ≈ 0.7 and T ≈ 1.9 , the 

channel state remains entangled (see Fig. 2c) but without 
BNL (see Fig. 2e). More precisely, BNL decreases to zero 
before concurrence and discord as the channel becomes 
thermally mixed. Notice, Q(�T ) and D(�T ) show more 
robustness compared to C(�T ) , S(�T ) , and B(�T ) . Thus, 
the mixed entangled states can exist without violating 
Bell inequalities or exhibiting BNL. These highlight the 
hierarchical relationship between the mentioned quantum 
resources.

Our results in Fig. 2 indicate that applying the same 
magnetic field to both qubits significantly enhances aver-
age teleportation fidelity (see Fig. 2f), QC, and correla-
tions at low temperatures. These enhancements diminish at 
higher temperatures due to thermal effects [75, 76]. How-
ever, fidelity remains above the classical limit F(�T ) = 2∕3 
at low temperatures for both � = 0 and � = �∕4 , with max-
imum fidelity achieved for � = �∕4.

From Fig. 2, we conclude that applying the same mag-
netic field to both qubits enhances teleportation fidelity 
and quantum correlations more significantly across dif-
ferent temperatures compared to applying it to just one 
qubit. The hierarchy of quantum resources, i.e., BNL ⊆ QS 
⊆ quantum entanglement ⊆ QD ⊆ QC depicted in Figs. 1 
and 2, demonstrates that the BNL function is the weakest 
measure, while the l1-norm of coherence is the strongest 
indicator of nonclassical characteristics.

Given that using the same magnetic field control for 
both spins enhances QC and correlations as well as aver-
age teleportation fidelity at low temperatures, we will 
adopt � = �∕4 as the standard setting and explore other 

Fig. 2   The variations of l1-norm quantum coherence (a), QD (b), con-
currence (c), QS (d), BNL (e), and average fidelity (f) as a function 
of temperature T at Jx = 0.8 , Jy = 0.5 , Jz = 0.3 , Dz = 0 , Γz = 0 when 

the magnetic field is applied to single spin ( � = 0 ), and when a same 
magnetic field is applied to both spins ( � = �∕4 ). Black horizontal 
lines show S(�T ) = 1 in d and F(�T ) = 2∕3 in f 
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model parameters to improve these measures against the 
increasing of temperature.

5.2 � Impact of DM interaction

Next, we examine the impact of different fixed values of DM 
interaction, without introducing KSEA interaction, on the 
quantum resources and the average fidelity of teleportation. 
This analysis is presented in Fig. 3 where the considered 
functions are evaluated against temperature T for various 
fixed values of DM interaction: Dz = 0.5 (dashed black), 
Dz = 1.0 (solid red), Dz = 1.5 (dashed green), and Dz = 2.0 
(solid blue).

We observe that although DM interaction does not 
increase the peak values of these functions, it aids in main-
taining high peak values of quantum resources even at sig-
nificantly higher temperatures (compare with Fig 2 when 
Dz = 0 ). Thus, we can consider its effect as a positive 
influence on all QC and correlations of the quantum chan-
nel. For instance, when Dz = 0.5 , BNL diminishes to zero 
around T ≈ 0.9 , whereas for Dz = 2.0 , it decreases to zero 
at T ≈ 2.5 , marking more than a five-fold improvement in 
the sustainability of BNL. A similar trend is observed for 
QD and concurrence, with even higher T values. Notably, 
among all quantum resources, BNL is the most delicate, 
followed by QS.

Despite achieving maximal entanglement at near-zero 
temperatures, the average teleportation fidelity remains 
greater than the classical limit of 2/3, indicating success-
ful but not maximal teleportation. At low temperatures, the 

value of teleportation fidelity slightly decreases with larger 
DM interactions. However, this underscores that the maxi-
mal entanglement in a mixed-state situation does not always 
guarantee ideally successful teleportation, even at the low-
est T values. Thus, increasing the DM interaction decreases 
the peak value of the average fidelity of teleportation while 
making it stable at higher temperatures. Nevertheless, this 
shows that maintaining the nonclassical characteristics at 
higher temperatures with increased DM interaction does not 
guarantee enhanced values of average teleportation fidelity.

In summary, increasing DM interaction generally 
enhances all the quantum correlations and coherence in our 
work but does not significantly increase the peak value of 
average teleportation fidelity, although it helps maintain 
these values at higher T. Again, the hierarchy of quantum 
resources, as depicted in Fig. 1, is held.

5.3 � Impact of KSEA interaction

Finally, we explore the impact of various fixed values of 
KSEA interaction, without introducing DM interaction, 
on quantum resources and the average fidelity of telepor-
tation. This analysis is illustrated in Fig. 4 when we have 
plotted all functions against T for different fixed values 
of KSEA interaction: Γz = 0.5 (dashed black), Γz = 1.0 
(solid red), Γz = 1.5 (dashed green), and Γz = 2.0 (solid 
blue) with zero value of Dz . One can observe that, unlike 
DM interaction, KSEA interaction increases the peak val-
ues of these measures [compare with Fig 3 when Γz = 0 ]. 
Besides, it helps to maintain high peak values of QC and 

Fig. 3   The behaviors of l1-norm quantum coherence (a), QD (b), concurrence (c), QS (d), BNL (e), and average fidelity (f) versus temperature T 
at Jx = 0.8 , Jy = 0.5 , Jz = 0.3 , � = �∕4 , and Γz = 0 for different fixed values of Dz
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quantum correlations even at significantly higher tem-
peratures. In general, its effect is positive on all quantum 
resources of the quantum channel. For instance, when 
Γz = 0.5 , BNL diminishes to zero around T ≈ 0.2 , whereas 
for Γz = 2.0 , it decreases to zero at T ≈ 1.8 , marking a 
more than nine-fold improvement in the sustainability of 
BNL. A similar trend is observed for QD and concurrence. 
Again, among all quantum resources, BNL remains the 
most delicate, followed by QS.

Despite achieving maximal entanglement at very low 
temperatures, the average teleportation fidelity only 
remains greater than the classical limit (2/3) when KSEA 
interaction is very small (look at Fig.  4f). Namely, at 
Γz = 0.5 , the average fidelity of teleportation is greater 
than 2/3 at near-zero temperatures, whereas increas-
ing KSEA interaction does not help in achieving fidel-
ity greater than 2/3 even at low temperatures. This shows 
that increasing the KSEA interaction does not enhance 
teleportation fidelity and can not guarantee successful tel-
eportation. This observation aligns with findings in other 
studies, such as [77], which indicates that teleportation 
fidelity is not solely determined by entanglement measures 
such as concurrence and purity. Specifically, even states 
with higher concurrence and purity may exhibit lower tel-
eportation fidelity due to the influence of other nonlocal 
properties that are not captured by these traditional met-
rics. Therefore, our results further emphasize that increas-
ing KSEA interaction, despite enhancing entanglement, 
does not guarantee successful teleportation, as the fidelity 
is also influenced by additional state parameters beyond 
concurrence and purity.

Although a large value of KSEA interaction does not 
enhance the average fidelity of teleportation, it is beneficial 
for enhancing QC and correlations (quantum resources). 
Therefore, increasing KSEA interaction enhances all the 
correlations and coherence but does not increase the peak 
value of average teleportation fidelity. While it helps main-
tain these values at higher T. Overall, the impact of KSEA 
interaction on teleportation fidelity is negative.

Achieving a quantum advantage for teleportation is 
unsuccessful across all temperatures with different fixed 
KSEA interaction values. Although QC and correlations 
generally persist at nonzero levels for even higher tempera-
tures, indicating the presence of BNL, entanglement, dis-
cord, and steering, successful quantum teleportation (greater 
than F(�T ) = 2∕3 ) is not achieved in this scenario. Addition-
ally, we find that the channel state exhibits BNL and steer-
ability, as well as entanglement, yet teleportation remains 
unachievable.

6 � Conclusion and outlook

In this study, we conducted a comprehensive comparative 
analysis of various coherence and correlation measures, 
including Bell nonlocality, quantum steering, quantum 
entanglement, quantum discord, and l1 norm of quantum 
coherence, within the context of a two-qubit Heisenberg 
XYZ model under the Dzyaloshinsky-Moriya (DM) and 
Kaplan-Shekhtman-Entin-Wohlman-Aharony (KSEA) 
interactions with variable Zeeman splitting. We treated the 
Gibbs thermal state of this model as a quantum channel for 

Fig. 4   The behaviors of l1-norm quantum coherence (a), QD (b), concurrence (c), QS (d), BNL (e), and average fidelity (f) versus temperature T 
at Jx = 0.8 , Jy = 0.5 , Jz = 0.3 , � = �∕4 , and Dz = 0 for different fixed values of Γz
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teleportation, evaluating the average teleportation fidel-
ity. These coherence and correlation measures, along with 
average teleportation fidelity, were systematically exam-
ined as functions of temperature while varying key channel 
parameters such as the Zeeman splitting, KSEA interac-
tion, and DM interaction.

Our findings indicate that the presence of entanglement 
in the context of the Heisenberg spin channel does not 
inherently guarantee successful teleportation, particularly 
in mixed-state scenarios. This conclusion not only aligns 
with but also extends the insights from previous works, 
including the study by Nandi et  al. [77] on two-qubit 
X-states. There are other proposals that somehow patron-
ize our study by Adhikari et al. [78]. We have shown that 
applying a magnetic field to both spins instead of one spin 
significantly enhances quantum coherence and teleporta-
tion fidelity. However, these enhancements deteriorate 
with increasing temperature due to thermal fluctuations, 
underscoring the critical role of temperature in degrading 
quantum properties.

Moreover, our results indicate that while increasing the 
DM interaction maintains higher peak values of quantum 
resources at elevated temperatures, it does not significantly 
boost the average teleportation fidelity, which remains above 
the classical threshold of 2∕3 . This finding underscores that 
maximal entanglement in mixed states does not guarantee 
successful teleportation, corroborating Nandi et al.’s [77] 
conclusions that entanglement alone cannot ensure telepor-
tation success. Similarly, while both DM and KSEA inter-
actions generally increase the strength of all coherence and 
correlations, they fail to provide significant support for the 
teleportation process. Also, our analysis reveals that increas-
ing KSEA interaction fails to improve teleportation fidelity, 
echoing Nandi et al.’s [77] assertion that higher concurrence 
and purity do not always translate into improved teleporta-
tion fidelity. Besides, Nandi et al. [77] emphasized the det-
rimental effects of noise and decoherence on teleportation 
fidelity in two-qubit X-states, highlighting that even with 
maximal entanglement, the fidelity is compromised by the 
mixed nature of the states involved. Our study aligns with 
this perspective, demonstrating that despite the presence of 
maximal entanglement, the mixed-state nature impairs tel-
eportation fidelity.

We also scrutinized various quantum resources within 
the traditional hierarchy of quantum resources and found 
that this hierarchy remains valid in our model. Specifi-
cally, Bell nonlocality emerges as the most fragile correla-
tion, while the l1-norm of coherence stands out as the most 
robust indicator, capable of capturing all forms of quan-
tum coherence. This refined understanding of quantum 
resources provides a more comprehensive framework for 
analyzing teleportation fidelity in mixed-state scenarios.
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