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polypropylene (PP) and polystyrene (PS) have been found 
to be a major source of plastic and microplastic pollutants 
within the western Mediterranean Sea [2]. Microplastics 
can cause severe problems to ecosystems [3], and their exis-
tence into the food chain, sometimes ending with human 
consumption, can also pose significant concerns for human 
health. This issue has motivated researchers to examine 
accurate and compact methods for the detection and iden-
tification of plastics, usually present in the form of micro-
plastics [4–7].

Manual counting of microplastics by optical microscopy, 
scanning electron microscopy (SEM), transmission electron 
microscopy (TEM) and atomic force microscopy (AFM) 
have been extensively applied to detect microplastics, com-
bined with spectroscopic techniques in order to characterize 
the chemical composition of the materials [8–10]. Spectro-
scopic methods, such as Fourier transform infrared spec-
troscopy (FTIR), Raman spectroscopy, and hyperspectral 
imaging have been recently applied for the identification of 
the material type [9]. Other analytical techniques that are 
accurate in identifying microplastics, such as pyrolysis/gas 
chromatography and mass spectrometry, are either inva-
sive or costly and time-consuming [10]. However, most 
of the characterization methods need expensive apparatus, 
expert operators, time-consuming preprocessing processes, 
and sophisticated data analysis. In addition, plastics can be 

1 Introduction

Anthropogenic waste has been recognized as a significant 
ocean pollution environmental problem, with the expand-
ing presence of plastic and oil pollutants into the oceans 
around the world arising big concerns about their effects in 
the environment and marine life and consequently to human 
health. Oil contamination, which is caused by wastewater 
discharged from industrial facilities or offshore oil leakage, 
has been recently accurately detected using fluorescence 
spectroscopy and pattern recognition algorithms [1]. Human 
negligence has resulted in the accumulation of plastic mate-
rials in the oceans, where they typically remain near the sur-
face. Over time, these plastics undergo degradation through 
various physical processes and fragment into microplas-
tics (< 5 mm particles). Polymers like polyethylene (PE), 
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Abstract
Identifying the types of materials such as plastics, microplastics, and oil pollutants is essential for understanding their 
effects on marine life. We propose a new methodology for the real-time detection and identification of microplastics in 
aquatic environments. Our experiments are based on a compact Laser Induced Fluorescence (LIF) device, with machine 
learning techniques applied to classify the materials. A 405 nm CW laser excitation source effectively induces fluorescence 
spectra in the visible spectrum from material samples that are either floating or submerged in water. We examine known 
plastic pollutants in seawater, including polyethylene (PE), polypropylene (PP), polystyrene (PS) and polyethylene tere-
phthalate (PET), as well as maritime fuels, lubricating oils, and other organic substances that are abundant in the marine 
environment. Our two-step identification process first employs machine learning algorithms to distinguish microplastics 
from other organic materials with a high degree of accuracy (97.6%). Subsequently, the type of plastic is determined with 
an accuracy of 88.3% in a second application of machine learning techniques.
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easily degraded in the environment and become more haz-
ardous, thus making imperative the development of a rapid 
and real-time screening method for the timely identification 
of plastic pollutants in the aquatic environment.

Spectroscopy, as an analytical technique, relies on the 
interaction between matter and light, such as absorption, 
emission and scattering. Specifically, fluorescence spectros-
copy arises from the emission of radiation by a target fol-
lowing its excitation due to light absorption. The molecular 
target emits photons with lower energy than those absorbed, 
attributable to energy loss through non-radiative or radiative 
decay. Excitation can be achieved using a lamp, a Light-
Emitting Diode (LED) or a laser source. When excitation is 
performed with a laser beam, the resulting fluorescence is 
termed Laser Induced Fluorescence (LIF). LIF radiation can 
be collected at various angles relative to the incident laser 
beam, because it is incoherent and is emitted in all direc-
tions. The LIF spectra reveal information about the transi-
tions from the excited state to various lower energy levels of 
the target molecules, and the delay between excitation and 
detection signals further elucidate the physical processes 
involved (time-resolved LIF).

Photoluminescence spectroscopy and LIF have been pro-
posed as cost effective alternatives for monitoring micro-
plastics, due to the simplicity of their experimental setups, 
which are feasible for integration on unmanned aerial vehi-
cles (UAVs), unmanned surface vehicles (USVs), or other 
vehicles to assess water pollutants [11–13]. A comprehen-
sive review of various techniques and optical methods for 
the in situ detection of microplastics in water is detailed in 
the work by Asamoah et al. [14]. Recently, principal com-
ponent analysis (PCA) and LIF have been proved capable 
of identifying pure microplastic samples [15]. Furthermore, 
the study of the component ratio in mixed seawater samples 
revealed a linear dependency between the first two princi-
pal components [15]. However, their microplastic samples, 
whether pure or mixed, were meticulously prepared in glass 
containers devoid of any impurities or common marine sub-
stances such as oils, organic matter, seaweed, etc., ensuring 
that the laser beam fully encompassed the sample surface. 
Consequently, this method is only effective after the separa-
tion of microplastics from other marine substances and is 
not suitable for real-time measurements.

While traditional spectroscopic techniques have enabled 
precise material identification, the increasing complexity of 
the data sets that are being analyzed necessitates the devel-
opment of more accurate, faster and automated analysis 
techniques. This has resulted in the incorporation of super-
vised machine learning (ML) algorithms into material clas-
sification tasks. Supervised learning methods utilize a set 
of labeled data for training and include algorithms such as 
decision trees, support vector machines (SVM), k-nearest 

neighbors (KNN), random forests, and neural networks. 
These algorithms categorize spectral data into predefined 
classes, identifying materials based on their spectral sig-
natures. KNN identify the data points most similar to new 
inputs, while decision trees and random forests create 
models predicting target values by learning decision rules. 
SVM finds optimal hyperplanes separating different classes, 
while neural networks, particularly deep learning models, 
automatically extract pertinent features and process intricate 
data relationships. The efficacy of these techniques, such as 
SVM, is contingent upon the nature of the data. SVM is 
particularly effective for two-class classification problems, 
as it identifies the optimal hyperplane that separates the 
classes with the maximum margin. In multiclass classifica-
tion cases, where multiple materials need to be identified, 
random forests and neural networks are typically the most 
effective due to their capacity to handle complex relation-
ships and interactions within the data. PCA is often used 
in conjunction with these algorithms to reduce data dimen-
sionality, preserving essential features while facilitating 
more efficient analysis and enhancing the performance of 
the classification models. The integration of these super-
vised algorithms enhances accuracy, speed, and the ability 
to manage large datasets.

In the present study, we assess the capability of the 
compact LIF apparatus proposed in [11] and [12] for the 
real-time and in situ detection of plastic pollutants and 
microplastics in water. The experimental setup employs a 
focused laser beam. This will be advantageous in a future 
application of the methodology in real-time measurements 
in the sea, as it allows for the adequate detection of small 
particles from different materials in mixed samples by their 
spatial separation through the use of a small focal point. Oil 
contaminants from the maritime industry such as fuel and 
lubricating oils and organic substances prevalent in marine 
environments are also examined. A two-step methodology is 
proposed for the evaluation of the apparatus’ suitability for 
real-time measurements. Initially, we employ PCA and ML 
algorithms to differentiate between plastic and other organic 
materials. In a second step, we apply the PCA technique, as 
proposed in [15], in combination with ML analysis, solely 
to the verified plastic samples, in order to evaluate the suc-
cess rate for the correct characterization of the microplastic 
type. The ultimate objective is to develop an LIF system 
for the in situ identification of marine pollutants from an 
unmanned surface vehicle (USV) in real-time.
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2 Methods and experimental setup

Figure 1 illustrates the simplified experimental setup, which 
is similar to the apparatus described by Drakaki et al. [12]. 
We used a low-cost continuous wave (CW) laser diode sys-
tem emitting at 405 nm, as our excitation laser source, with 
a maximum output power of 100 mW. To avoid intensity 
saturation of the recorded spectra, we adjusted the power 
output with neutral density (ND) filters as needed. A band-
pass filter at 405 nm was utilized to filter the laser beam 
from possible amplified spontaneous emissions. The filtered 
laser light was reflected to a lens (L1) by a long-pass filter 
with a cut-on wavelength of 420 nm. The asymmetric diode 
laser beam profile was estimated using beam-scanning tech-
niques [16]. The full angle beam divergence was approxi-
mately 1.5 mrad/3 mrad (horizontal/vertical), resulting in a 
focal spot diameter of approximately 60 μm × 120 μm. The 
water surface of the cuvettes enclosing the floating or sub-
merged microplastics or other materials was positioned on 
or close to the focal plane of the lens L1. The generated LIF 
signal from the samples was collimated by passing from the 
same lens L1. The long-pass filter also provided filtering of 
any laser radiation reflected by the samples. The filtered sig-
nal was coupled into a multimode optical fiber by a second 
40 mm lens (L2) and a compact spectrometer recorded the 
spectra (Ocean Optics S2000 from Ocean Insights, ∼ 2 nm 
resolution).

The samples (water/contaminants mixtures) were gen-
erated in the laboratory by placing tiny amounts (∼ 0.3 g) 

of the contaminants in 40 ml of water within an open top 
glass cuvette. Industrial grade plastics and retail product 
plastics were both used to form the samples. Uncolored 
plastics were mainly used for the calibration measurements 
(training and evaluation of the machine learning models). 
Microplastics were produced by breaking down the plastic 
materials into particles of different geometries and sizes of 
less than 2 mm. To simulate actual marine conditions, the 
samples were stirred before each measurement to slightly 
homogenize the composition and elevate materials that are 
submerged at the bottom of the cuvettes, although perfect 
homogenization inside the cuvettes and at the surface of 
the water was not desired. In the majority of the cases, the 
concentration of pollutants is higher near the water surface 
or at the bottom of the cuvettes, depending on the material 
density. Sixty (60) measurements were recorded for every 
sample in order to examine different conditions of particles 
concentration and size, as well as different laser intensities 
exciting the particles (since particles are not always placed 
at the surface of the water where laser is focused and the 
laser intensity is maximum). In addition, cuvettes could 
be shifted in all three directions to get measurements from 
various locations inside the sample. Every measurement 
recorded is the average of ten spectra taken over a 50 ms 
integration period of the spectrometer.

Substances that may be present in the marine environ-
ment were examined in this study, as shown in Table 1. A 
comparative analysis was conducted on a range of natural 
materials, including wood, olive oil, and seaweed (Posido-
nia Oceanica), as well as oils, fuels and paints derived 
from the maritime industry. The research includes olive oil 
as an indicative example of natural oils, as well as due to 
the possibility that the coastal zone may be impacted by 
the discharge of olive oil mills wastewater into waterways. 

Table 1 The natural materials, maritime pollutants (lubricants-oils, 
fuels and paints) and plastics included in this work. Most plastic mate-
rials used were uncolored, with the exception of the Bakelite and PVC 
(black)
Material Origin Material Origin
Poly(methyl methacry-
late) (PMMA)

Industry Naval oil SAE 40 Shipping 
industry

Polyethylene (PE) Industry & 
retail

Fuel oil VLSFO Shipping 
industry

Polypropylene (PP) Industry Fuel oil HSFO Shipping 
industry

Polystyrene (PS) Industry & 
retail

Paint SKF9005 Shipping 
industry

Polyethylene tere-
phthalate (PET)

retail Bakelite retail

Polyurethane (PUR) retail Wood (Palm tree) Natural
Polyvinyl chloride 
(PVC)

retail Olive Oil Natural

Polycarbonate (PC) retail Posidonia 
Oceanica

Natural

Fig. 1 The LIF experimental apparatus. ND stands for neutral density 
filters of various densities; BP is a bandpass filter (center wavelength 
405, Edmund Optics); LP is a long-pass filter with a cut-on wavelength 
of 420 nm (Edmund Optics). L1 and L2 are lenses with 40 mm focal 
length (25 mm diameter)
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3 Experimental results

LIF spectra were recorded after background emission, with 
the laser deactivated, was subtracted from the fluorescence 
signal. Figure 2 depicts representative LIF spectra of plastic 
materials and Fig. 3 shows similar spectra of some mari-
time oils, fuels and natural materials. All spectra have been 

Furthermore, chlorophyll fluorescence present in olive oil 
represents a significant emission that we have considered in 
our analysis, given that it is also anticipated in other marine 
organic materials (e.g., phytoplankton).

Fig. 3 Normalized and smoothed fluorescence spectra of naval oil (SAE40), naval fuel (VLSFO), wood (Palm Tree) and seaweed (Posidonia-
Oceanica). Multiple (60) spectra are shown for each material

 

Fig. 2 Normalized and smoothed fluorescence spectra of PVC, PC, PE and PP. Multiple (60) spectra are shown for each material
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materials under different experimental conditions (excita-
tion intensity), thus requiring the use of machine learning 
techniques with a broader set of classifiers for proper char-
acterization [13]. However, the results presented in [13] are 
not suitable for the real-time classification of the pollutants, 
since some classification parameters were included in their 
research in a non-automatic way (for example the color of 
the samples). In addition, maritime oils, which may be pres-
ent in real seawater measurements and add complexity to 
the identification process, were not considered in [11] and 
[13].

In accordance with the proposed indicators presented in 
[12], a thorough inspection of the spectra can reveal a vari-
ety of spectral characteristics. An important characteristic 
of LIF emissions from plastics is the shape of the spectral 
region above 500 nm. As observed in [12], uncolored plas-
tic materials exhibited an exponential decrease in intensity 
variation for wavelengths λ after the peak at 500 nm, which 
was different to that of other materials studied. However, 
the observed differences among plastic materials appeared 
to be negligible. To improve the analytical method outlined 
in [12], the number of collected spectra was augmented 
from 20 to 60. This characteristic of exponential decline is 
also discernible in the 60 spectra shown in Fig. 2. Nonethe-
less, it is not distinctly observable in other materials, such 
as VLSFO oil and wood in Fig. 3. The exponential fit coeffi-
cient b and the coefficient of determination R2 are estimated 
by the exponential fit of the spectral intensity versus wave-
length λ:

I (λ) = Imax · eb·λ  (1)

To evaluate whether b and R2 are useful indicators for 
plastics materials, box plots are shown in Figs. 4 and 5, 
respectively. As illustrated in Fig. 5, all the examined plas-
tics exhibit an excellent exponential fit (median of R2 very 
close to 1). Naval oil SAE40 also follows an exponential 
fit well enough, but other materials display more spectral 
features, leading to median R2 values as low as 0.6 and 0.1 
for olive oil and maritime fuels, respectively. Consequently, 
the median value of the parameter b seems to vary between 
plastics and other materials. However, this parameter, when 
used alone, is not efficient to discriminate between different 
types of plastics.

In addition, the 3D plot of the parameter b versus R2 
and P2 (Raman peak at ∼ 462 nm) is shown in Fig. 6. It is 
clear that non-plastic materials are already easily classified, 
although differentiating between plastic types is difficult.

Summarizing the characteristics of the recorded spec-
tra, we observe the following: (a) a broad fluorescence 
emission around 500 nm, with peak wavelengths that vary 
slightly depending on the type of material (such as plastics, 

smoothed with a Savitzky–Golay filter function of order 2 
with a frame length of 27 in order to minimize the relatively 
high noise for materials with low fluorescence signal. Spec-
tra with signal-to-noise ratio less than 5 were discarded. 
Multiple measurements (60) were taken for each sample, 
for different laser intensities and material densities, since, 
in most cases, the studied materials and microplastics are 
outside the exact focal point of the laser beam.

Our methodology emphasizes in the high variability of 
the parameters during the measurements for each sample, in 
order to simulate in the laboratory field measurements in the 
sea (in situ), where material density, laser intensity and focal 
spot at different depths are highly fluctuating parameters. 
Therefore, the fluctuating LIF spectra are normalized, as 
shown in Figs. 2 and 3. The small intensity peak at 405 nm 
seen in some of the spectra is due to some residual laser 
intensity after the dichroic mirror (LP), which is visible only 
in the case of low signal spectra.

A fluorescence peak is observed around 500 nm for all 
plastics, as well as for other materials, such as wood, sea-
weed and marine oils. In addition, Raman emissions are also 
observed at 427 nm and 462 nm in the case of plastics in 
Fig. 2, comparable to the spectra recorded in [11]. These 
emissions are generated by nonlinear Raman mechanisms, 
and they have different excitation intensity dependence from 
the rest of the emission spectra, as shown in Fig. 2 by the 
highly variable shape between measurements. For example, 
in the case of PE, several spectra appear to be less broad 
than the rest, due to the fact that the excitation intensity was 
higher, making Raman emissions dominant.

To add to the complexity of the observed spectra, Posido-
nia Oceanica (shown in Fig. 3) and olive oil also show a 
strong peak near 680 nm. The complexity of the spectra 
observed from natural materials is expected due to the com-
plex structure of natural organic materials consisting of dif-
ferent chromophores. For the intensities used in our study no 
spectral peaks are observed in the red or infrared region of 
the spectrum for the uncolored plastic samples used. How-
ever, some dyed plastic samples (which are unfortunately 
abundant in the environment) may produce more complex 
spectra, which will be discussed in the next section.

Although there may be some discrepancies between our 
spectra and those reported in [11, 12] and [13], mainly due 
to the lack of established standards for both the measure-
ment of plastic samples and the construction of a fluores-
cence setup [13], it is evident that each material’s spectrum 
can yield unique and distinct spectral characteristics. The 
ability to discriminate between plastic and non-plastic mate-
rials was proposed in [11] using two classifiers, namely the 
ratio of the intensity at 427 nm and 462 nm to the intensity 
observed at 550 nm (named parameters P1 and P2). Peaks P1 
and P2 are not sufficient to identify different types of plastic 
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of chlorophyll-a and chromophoric dissolved organic mat-
ter (CDOM) under 405 nm excitation [17]. The emission 
around 500 nm is a prominent characteristic of LIF under 
405 nm excitation in organic materials, e.g. in the case of 
CDOM in water [18]. This emission is recorded in every 
material used in our study. For the laser intensities used in 

maritime lubricants-oils, and natural organic materials). (b) 
pronounced nonlinear emissions (e.g. Raman scattering) 
that become stronger at higher intensities; (c) a secondary 
broad emission region around 680 nm that is present in nat-
ural organic materials spectra (explained by the chlorophyll 
emission), as has also been recorded in field measurements 

Fig. 5 Boxplot of the coefficient of determination R2 versus the material type. The central red mark indicates the median, and the bottom and top 
edges of the box indicate the 25th and 75th percentiles, respectively

 

Fig. 4 Boxplot of the exponential fitting parameter b versus the material type. The central red mark indicates the median, and the bottom and top 
edges of the box indicate the 25th and 75th percentiles, respectively
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discovery of new materials with specific properties. The 
integration of machine learning in material identification not 
only enhances efficiency but also opens avenues for break-
throughs in fields like chemistry, physics, and engineering, 
where precise categorization of materials is paramount for 
advancements and innovations.

In principle, it is easy to implement machine learning 
classification methods directly on the raw spectral data 
(after smoothing), since it contains all available informa-
tion. However, the training process is time consuming and 
the testing is also complicated due to the large number of 
input parameters. In addition, it is evident from the recorded 
spectra that many of the spectral features are in fact depen-
dent. For this reason, a preprocessing of the raw spectral 
data using PCA is chosen as an effective way to reduce the 
dimensionality of the problem and improve the training 
process of the machine learning techniques evaluated. This 
preprocessing methodology will be also helpful for future 
works and implementations of the proposed methodology, 
where the number of materials studied may be much higher 
than the 16 materials in this work.

4.1 Identification of microplastics from other non-
plastic organic materials

We posit that the differentiation of plastics from other 
organic materials is pivotal as an initial step. This is not 
only vital for environmental surveys, particularly in real-
time measurements, but it also simplifies subsequent plastic 
type characterization. Our study encompassed 16 distinct 
materials, of which nine were plastics and seven were rep-
resentative natural or synthetic materials (refer to Table 1). 
Our dataset consists of 540 microplastic samples and 420 
other organic material samples, totaling 960 spectra. Each 

our experiments, emissions at wavelengths above 716 nm 
and near infrared are extremely low or absent and are not 
taken into account in this study.

It is also clear that there are no other distinctive spectral 
peaks observed that would facilitate the classification of the 
materials. Typically, the broadband nature of plastic fluo-
rescence makes the analysis of the obtained spectra difficult 
since the spectra of distinct chromophores may significantly 
overlap. However, the shape of the recorded wideband spec-
tra varies slightly for each material, which means that the 
excitation energy is distributed differently in each spectral 
region, depending on the material type. In the next sec-
tion, we propose a two-step identification process: initially, 
we employ the most promising ML models to distinguish 
plastic samples from other materials, and subsequently, we 
develop distinct ML models to characterize the types of 
plastics in the identified microplastics.

4 Machine learning classification method 
evaluation and discussion

Machine learning for classification tasks plays a crucial role 
in the realm of material identification, where the goal is to 
automatically categorize substances based on their unique 
properties and characteristics. In material science, the vast 
array of compounds and materials requires sophisticated 
methods to discern and classify them accurately. Machine 
learning models, ranging from traditional algorithms to 
advanced deep learning approaches, are employed to ana-
lyze various data sources such as spectroscopic data, chemi-
cal compositions, and structural information. This enables 
the automatic identification of materials, revolutionizing 
processes like quality control, forensic analysis, and the 

Fig. 6 3D plot of the exponential parameter b versus R2 and versus P2
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approximately 2000 obs/s, which is very important for the 
application of the method in real-time measurements. The 
training time is also adequately low, which will be essential 
for applying the method to a larger number of materials.

Figure 7 depicts the validation (Fig. 7a) and test (Fig. 7b) 
confusion matrices for the most efficient model (SVM with 
cubic kernel function), which exhibits a validation accu-
racy of 99.1% and a test accuracy of 97.6%. The diagonal 
cells indicate materials that have been correctly classified, 
whereas the off-diagonal cells denote those that have been 
incorrectly classified. It is evident that plastics are accu-
rately distinguished from non-plastic organic materials with 
a very high efficiency.

4.2 Identification of different types of microplastics

The second step of our identification process is aimed at 
characterizing the chemical types of the microplastics iden-
tified in the first step. The previous analysis has shown 
accurate differentiation of plastic materials from non-plas-
tics, prompting the use of the full dataset of microplastic 
materials studied, comprising 540 samples. PCA was also 
employed as a preprocessing method for the 878 predictors, 
resulting in 6 components that explain 99% of the data vari-
ance, with the first six components accounting for 64.5%, 
26.9%, 4.4%, 2.1%, 0.8% and 0.4% of the variance, respec-
tively. For the classification task, these six PCA components 
were used as predictors in various machine learning mod-
els. Similar to the first step, we conducted cross-validation 
(5-fold) and reserved 30% of the measurements (162 out 
of 540 samples) as a test dataset. Table 3 presents a sum-
mary of the most accurate models for predicting one of the 
nine different types of microplastic materials utilized in this 
study.

Figures 8 and 9 display the validation and test confusion 
matrices for the most efficient model, which is the SVM 

spectrum includes 878 spectral channels (smoothed and 
normalized spectra from 420 nm to 716 nm), serving as 
predictors, despite a degree of interdependence among 
channels. PCA was applied to these predictors, yielding 
five components that collectively account for at least 99% 
of the data variance. Specifically, the first five components 
explained 51.6%, 37.7%, 5.7%, 2.9% and 1.1% of the vari-
ance, respectively. The classification task then utilized these 
five PCA components as predictors in various machine 
learning models. We set aside as a test dataset the 30% of 
the measurements (288 out of 960 samples). In addition, we 
implemented cross-validation (cross-validation folds was 
set to 5). Specifically, we divided the data into five sub-
sets, selected at random (5 folds), each approximately the 
same size. The model is then trained on four of these sub-
sets, while the fifth serves as the validation set. This method 
is carried out five times, rotating the validation set so that 
each of the five subsets is used for validation exactly once. 
Table 2 details the most precise models for distinguishing 
plastics from non-plastics.

Test results are similar to validation results, verifying 
the prediction accuracy of the methodology. Moreover, 
due to the PCA preprocessing, the prediction speed is 

Table 2 Classification results of machine learning models tested to 
identify plastics from non-plastics, shown with descending test accu-
racy
Model type Validation

accuracy
Test
accuracy

SVM (Cubic) 99.1% 97.6%
kNN (k = 1) 98.7% 97.2%
Neural Networks (two fully connected layers) 98.4% 96.9%
Ensemble (bagged trees) 98.1% 96.2%
Logistic regression (kernel) 96.9% 94.4%
Naïve Bayes (kernel) 92.4% 92.3%
Decision tree 92.9% 89.9%
Discriminant (linear) 86.0% 85.8%

Fig. 7 Neural Network model: (a) validation confusion matrix, (b) test confusion matrix. The rows correspond to the true materials and the col-
umns signify the predicted ones
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expectation is supported by the findings in reference [11], 
which demonstrate that the spectral signatures of these 
organic materials (specifically from cuttlefish bone, sea 
snail shells, sea urchin skeletons, and black mussel shells) 
are distinct from those of plastics.

In addition, the fluorescence of pigments in phytoplankton 
(e.g., cyanobacteria and microalgae), which may form biofilms 
on the surface of microplastics, presents a significant challenge 
for microplastics real-time identification in situ. Biofilms are 
expected to exhibit strong fluorescence peaks at longer wave-
lengths, for example LIF using either 405–532 nm excitation 
show biofilm emission peaks at 680 nm [19, 20]. As a result, 
their spectra may resemble those of organic materials as sea-
weed and olive oil (see Fig. 3), which are included in our study 
and exhibit similar peaks due to chlorophyll fluorescence. 
These materials will be correctly identified as such if they form 
biofilms on microplastics. This effect complicates the correct 
identification of the plastic material and poses a significant 
problem for the real-time application of the method. However, 
this problem may be mitigated by conducting multiple suc-
cessive LIF measurements. The photoablation induced by the 
focused laser beam on the biofilm could eventually expose the 
underlying plastic material, enabling its correct identification 
as plastic in subsequent measurements.

In the case of colored plastics, pigments are utilized not only 
to enhance aesthetic appeal but also to fulfill the intended pur-
pose of the product. Pigments can also operate as light-shielding 

with cubic kernel function. This model achieves a validation 
accuracy of 91.8% and a test accuracy of 88.3%. The results 
clearly indicate that ML models can also adequately char-
acterize different types of microplastics, as demonstrated 
by the analysis of the nine plastic materials included in this 
study.

This analysis should be considered a proof of concept, 
especially since the plastics used were predominantly 
uncolored. Future studies should investigate a broader range 
of materials, including non-plastic natural substances found 
in seawater, such as chitin. Nevertheless, it is anticipated 
that the presence of such materials will not significantly 
affect the efficiency of the machine learning models. This 

Table 3 Classification results of the machine learning models tested 
for the prediction of the type of microplastic, shown in descending 
order of test accuracy
Model type Validation

accuracy
Test 
accuracy

SVM (Cubic) 91.8% 88.3%
Discriminant (Quadratic discriminant) 87.3% 87.0%
kNN (k = 1) 88.6% 85.8%
Neural Networks (one fully connected 
layer)

89.2% 84.6%

Ensemble (bagged trees) 86.2% 80.9%
Naïve Bayes (Gaussian kernel) 76.7% 76.4%
Decision tree 78.3% 75.9%
Efficient Logistic Regression 72.2% 69.1%

Fig. 8 Cubic SVM model valida-
tion confusion matrix of the 
microplastics type. The rows cor-
respond to the true materials and 
the columns signify the predicted 
ones. TPR is the True Positive 
Rate and FNR is the False Nega-
tive Rate respectively
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5 Conclusions

This study demonstrates that a comprehensive analysis of LIF 
spectra, generated by 405 nm CW laser excitation, can yield 
a select set of predictors. These predictors are derived from 
Principal Component Analysis and are effective for train-
ing machine learning models using a two-step approach. The 
potential of these predictors to differentiate microplastics from 
other organic materials, such as maritime oils, fuels, paints, and 
natural organic substances found in water bodies, is significant 
(accuracy 97.6%). In a second step, the accuracy of identify-
ing different types of the microplastics studied can reach up 
to 88.3%. Looking forward, the application of the proposed 
methodology in future research involving a larger variety of 
materials could establish the foundation for developing an 
affordable pollution monitoring device. We suggest this meth-
odology, which employs the principles of LIF spectroscopy 
and machine learning, for the implementation of sensors capa-
ble of real-time measurement and detection of microplastics in 
seawater by an Unmanned Surface Vehicle (USV). This could 
significantly contribute to environmental conservation efforts.
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agents, absorbing a portion of ultraviolet radiation, which 
helps prevent or delay photodegradation, thereby extending 
the operational lifespan of plastic items. In general, the most 
abundant colors are white and transparent/translucent (47%), 
similar to the plastics used in our study, with yellow/brown 
and blue plastics comprising the 26% and 9% correspondingly 
[21]. Certain black colored polymer types, such as PVC in our 
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cases. Nonetheless, certain colored samples, particularly red 
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characterization accuracies presented in Tables 2 and 3 were 
lower for these samples. Despite this, the method effectively 
distinguished plastics from non-plastics in over 80% of the col-
ored materials tested.

Fig. 9 SVM (with cubic kernel) 
model test confusion matrix of 
the microplastics type. The rows 
correspond to the true materi-
als and the columns signify the 
predicted ones. TPR is the True 
Positive Rate and FNR is the 
False Negative Rate respectively
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