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Abstract
In this paper, we investigate the dynamics of quantum correlation using a Heisenberg spin system in the presence of the 
Dzyaloshinskii–Moriya interaction (DM) and an external magnetic field. Indeed, quantum discord and its geometrical aspects, 
namely the trace and Hellinger distances, have been exploited in order to study quantum correlation evolution using the 
Lindblad master equation. A substantial enhancement in geometric quantum discord (GQD) is observed when the values of 
DM increase. Moreover, our results show that the geometric quantum discord undergoes a decrease in function of the external 
magnetic field; except for the small values, its maximum is reached. However, we find that strong values of the temperature 
have a destructive effect on the behavior of GQD.

1 Introduction

Quantum information processing is a recent field that deals 
with exploiting the axioms of physics and computer science 
to explore the new possibilities offered by quantum physics. 
Furthermore, the primary focus of this theory is to investi-
gate various physical systems for communicating and trans-
ferring information over long distances, without cloning the 
shared information between a sender and a receiver. Inter-
estingly enough, the quantum computing aims to broaden 
the restricted field of classical computer science, which has 
been always limited to study quantum correlations and inter-
actions between physical systems and their environments 
[1–7]. Indeed, it has been shown that finite-dimensional 
quantum correlations have been proven to be widely useful 
for developing quantum protocols with respect to their clas-
sical analogies [8]. However, from an experimental point of 

view, it has been shown that the effects of decoherence phe-
nomenon resulting from the system–environment interaction 
have a destructive influence on studying non-classical corre-
lations [9]. In this regards, several techniques and developed 
methods have been proposed to limit the interference of an 
open system with its surroundings during their interaction 
with each other [10].

In addition, many efforts have been made to highlight 
the dominant features in distinguishing between classical 
and non-classical correlations; including those carried out to 
quantify quantum correlations contained in quantum systems 
comprising at least two qubits. For example, Ollivier and 
Zurek showed that it is possible to quantify the non-classical 
correlations that originated from the discrepancy between 
the classical and quantum information of the studied system 
[11, 12]. Unfortunately, the development of quantum discord 
requires essentially some optimization mechanisms that still 
simple for X-type states, but extremely difficult for other 
types of states. Hence, these complexities helped Dakic et al. 
to improve another measure called Geometric Quantum Dis-
cord (GQD) which represents a successful measure of non-
classical correlations [13].

Over the past decade, the delicate relationship between 
entanglement and quantum correlation has been consid-
ered as one of the most prominent subjects in quantum 
information theory [14–16]. It has been demonstrated, in 
particular, that quantum correlations can be generated in 
many-body systems while accounting for quantum phase 
transitions [17–19]. Indeed, N-body system characteristics 
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are significantly impacted by shifts in quantum correlations. 
Intriguing results were found when the relationship between 
pairwise entanglement and quantum phase transitions in 
quantum spin chains was examined [20–25]. Additionally, 
even in the absence of entanglement, pairwise quantum dis-
cord has been evaluated to be more effective in revealing 
quantum phase transitions in such systems [26, 27]. These 
quantum particles, which were initially developed to tran-
scend entanglement, were added because of their robustness, 
which is primarily to blame for this. In the recent studies, 
the interaction of quantum correlations and phase transitions 
at low temperatures has been considered (see, for instance, 
[28, 29]).

Quantum correlations and entanglement inherent in a 
quantum state that described spin systems have been exten-
sively studied. Particularly, the works of Leonardo S. Lima 
demonstrated the significant impact of DM interaction and 
external magnetic fields on entanglement in various Heisen-
berg models; including one and two dimensions [30–32]. 
Precisely, He studied the impact of DM interaction and other 
parameters of the spin-1/2 one-dimensional Heisenberg 
antiferromagnetic model on the dynamics of von-Neumann 
entropy [30]. Interestingly enough, He investigated entan-
glement entropy of quantum one-dimensional integer spin 
Heisenberg antiferromagnetic model, demonstrating the 
influence of quantum phase transition on the behavior of 
entanglement entropy [31]. However, Werlang and Rigolin 
explored thermal and magnetic quantum discord in Heisen-
berg models. Indeed, they showed that quantum discord 
can increase with temperature even if the entanglement 
decreases, highlighting the robustness of quantum correla-
tions against classical correlations [33].

The quantum Hellinger distance and trace distance are 
frequently employed to study the differences between quan-
tum states. These two separate quantifiers are commonly 
utilized to avoid the more sophisticated minimization 
approaches found in the literature [28, 29]. However, it is 
critical to investigate the physical implications of Hellinger 
and trace distances for GQD. Indeed, the Hellinger distance 
quantifies the similarity of two quantum states using meas-
urement probabilities. While the trace distance represents 
the structural differences between the density matrices asso-
ciated with these states. Typically, both distances provide a 
complementary viewpoints on quantum correlations, where 
the Hellinger distance focusing on probabilistic similarities 
and the trace distance on structural differences. As a result, 
understanding these distances is critical for examining the 
dynamics of GQD in our work.

As emerges from the above paragraph, the most remark-
able properties of the geometric discord are its simple com-
putability and straightness. The main purpose of this paper 
is to investigate the dynamics of geometric quantum discord 
using trace distance ( DT ) and Hellinger distance ( DH ) for a 

two-spin Heisenberg XX chain via considering the effect 
of DM interaction and external magnetic field, namely B 
[34–42]. In fact, we study the influence of varying different 
parameters encoded in the XX-Heisenberg density operator 
on the behavior of GQD. Our findings show that maximizing 
the values of DM interactions and minimizing the values of 
B enhance the GQD. Moreover, we find that strong values 
of the temperature have a destructive effect on the behavior 
of GQD.

The present paper is structured as follows: in the next sec-
tion, we give the necessary preliminaries used to understand 
the GQD. In Sect. 3, we describe the XX-Heisenberg model. 
Section 4 includes the numerical results and discussions. 
Finally, we conclude with conclusions and some future per-
spectives in Sect. 5.

2  Formalism of geometric quantum discord

In this section, we recall some preliminary aspects of GQD 
by means of trace distance and Hellinger distance. Indeed, 
the distance between a quantum state � describing a bipartite 
system AB and its nearest classical state is given as follows 
[43]:

where the minimum is taking over the set of zero-discord 
states � and the distance is the square norm in the Hil-
b e r t – S ch m i d t  s p a c e .  I t  i s  c a l c u l a t e d  a s : 

‖� − �‖1 = Tr

�
(� − �)†(� − �) . When the measurements 

are taken using the subsystem A, then, the zero-discord state 
� is revealed to be [13]:

where 
{
Pk

}
 is the probability distribution, ΠA

k
 is the orthogo-

nal projector associated to subsystem A and �B
k
 is the den-

sity operator of subsystem B. Based on this, the analytical 
expression of trace distance, namely DT for any two-qubit 
density operator, namely �X is given as [44, 45]:

w h e r e  �1 = 2(�23 + �14) , �2 = 2(�23 − �14)

, �3 = 1 − 2(�22 + �33)  ,  x = 2(�11 + �22) − 1  , 
a = max(�2

3
, �2

2
+ x2) and b = min(�2

3
, �2

1
) . On the other 

hand, the Hellinger distance can be considered as one of the 
most successful measures of GQD. In fact, it is expressed in 
terms of the square root of the density operator � as:

(1)QT (�) = min ‖� − �‖1,

(2)𝜒 =
∑
k

PkΠ
A
k
⊗ 𝜌B

k
,

(3)DT (�) =

√√√√ a�2

1
− b�2

2

a − b + �2

1
− �2

2

,
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The minimum is taken from the complete set of the von-
N e u m a n n  m e a s u r e m e n t s  ΠA =

{
ΠA

k

}
 ,  w h e r e 

ΠA(
√
�) =

∑
k

ΠA
k

√
�ΠA

k
 , while ‖X‖2 =

√
TrX+X denotes the 

Hilbert–Schmidt distance. In general, the Hellinger distance 
is still difficult to be computed. Particularly, in the case of 
the ( 2 × n ) system, the Hellinger distance is framed by the 
following expression [46]:

where �max designs the minimum eigenvalue of ( 3 × 3 ) 
matrix MAB, of the following elements:

where �i
A
 ( i = x, y, z ) being the Pauli matrices and In ( n × n ) 

denotes the identity operator.

3  System model

3.1  XX Heisenberg model with DM interaction

In this part, we aim to investigate the interaction between two 
spins, namely the two-qubit Heisenberg model. Besides, we 
take into account the effect of Dzyaloshinskii–Moriya (DM) 
interaction. Indeed, the corresponding Hamiltonian of the XX-
Heisenberg model with DM interaction is explicitly given as 
[47]:

where ��
n
(� = x, y, z) denotes the Pauli operators acting in 

the nth spin, while J is the coupling between the two spins. 
Moreover, the parameters B and D describe the strengths 
of the magnetic field and DM interaction in z-component, 
respectively. However, for sake of simplicity, we suppose 
that ℏ = 1 . Furthermore, one can examine the GQD by 
means of the trace and Hellinger distances of the above 
model using the thermal equilibrium state.

From the physical model described in Eq. (7), the eigen-
values and eigenvectors of ĤS can be derived analytically as:

and

 where � =
√
J2 + D2 , and � = arctan(D∕J).

(4)DH(�) = 2min
ΠA

���
√
� − ΠA(

√
�)
���
2

2
.

(5)DH(�) = 1 − �max

{
MAB

}
,

(6)
�
MAB

�
ij
= Tr{

√
𝜌(𝜎i

A
⊗ In)

√
𝜌(𝜎i

A
⊗ In)},

(7)
ĤS = J

(
𝜎x
1
𝜎x
2
+ 𝜎

y

1
𝜎
y

2

)
+ B

(
𝜎z

1
+ 𝜎z

2

)
+ D

(
𝜎x
1
𝜎
y

2
− 𝜎

y

1
𝜎x
2

)
,

(8)�1,2 = ±�, �3,4 = ±2B,

(9)
�Ψ1,2⟩ = 1√

2

(�10⟩ ± ei��01⟩),

�Ψ3⟩ = �00⟩, �Ψ4⟩ = �11⟩,

In our case, the proposed initial state is expressed in terms 
of the temperature T, as Gibbs operator of the following 
form:

with � = (kBT)
−1 , such that kB is the Boltzmann constant, 

while T denotes the absolute temperature of the environ-
ment. Moreover, ��Ψi⟩ ( i = 1,… , 4 ) are the eigenvectors 
defined in Eq. (9) and Z = Tr(e−𝛽Ĥ) designs the partition 
function of the following expression :

Consequently, the density matrix is obtained using in the 
standard basis {∣ 11⟩, ∣ 10⟩, ∣ 01⟩, ∣ 00⟩} as:

3.2  Evolution of reduced density operator

In this part, we shall investigate the non-classical correlation 
for the joint spin–spin Heisenberg system in the presence 
of an external magnetic field and DM interaction. Indeed, 
the qubit–qubit system represents the open system of the 
reduced density operator �S(t) (see Fig. 1). Indeed, the Ham-
iltonian of the total system is given as:

where HS denotes the free Hamiltonian of the two-qubit 
system given in Eq. (7). Moreover, these two qubits (open 

(10)�(0) = Z−1

4�
i=1

e−��i ��Ψi⟩⟨Ψi
��,

(11)Z = 2(cosh(2��) + cosh(2�B)).

(12)

�(0) =
1

Z

⎛⎜⎜⎜⎝

e−2�B 0 0 0

0 cosh(2��) −ei� sinh(2��) 0

0 −e−i� sinh(2��) cosh(2��) 0

0 0 0 e2�B

⎞⎟⎟⎟⎠
.

(13)H = HS + HR + HI,

Fig. 1  Schematic illustration of the suggested model in which two 
qubits A and B are coupled to each other via the strength coupling 
J. Each qubit is coupled to its own surroundings, namely reservoir A 
( R

A
 ) and reservoir B ( R

B
 ), respectively
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system) are interacted with their bosonic reservoirs, namely 
reservoir A ( RA ) and B ( RB ) (environment), respectively of 
the following Hamiltonian:

 where bj and b†
j
 (j = A,B) denote the annihilation and crea-

tion operators of the bosonic reservoirs RA and RB (see 
Fig. 1). Besides, �A(�B) is the frequency of the electromag-
netic field inside the reservoir RA(RB) . However, 
ĤI =

∑
𝛼 g𝛼X𝛼 ⊗ Y𝛼 describes the interaction between the 

open system and the environment, where X†
�
= X� and 

Y†
�
= Y� refer to the operators describing the freedom degrees 

of the open system and reservoir, respectively .
Now, to derive the reduced density operator �S of the 

open system (two qubits), we solve the Lindblad master 
equation of the following form [48]:

where ⟨bb†⟩ = Tr(bb†𝜌th) = n̄ + 1 , ⟨b†b⟩ = Tr(b†b𝜌th) = n̄ 
and �th = e−�HR∕Tr(e−�HR) is the thermal Gibbs state. 
Besides, n̄ = 1∕(e𝛽�𝜔0 − 1) is the thermal mean photon num-
ber of the reservoir at temperature T. In addition, we suppose 
that �A = �B = �0 is the reservoir’s frequency and � is the 
strength of damping rate. Moreover, �± =

1

2
(�x ± i�y) are the 

system raising and lowering operators of the spin. Further-
more, the first and second parts of the right-hand side of 
Eq. (12) represent the decay rates of de-excitation and exci-
tation of the reservoir, respectively. Mathematically, the 
relationship between them is given as �1

�2
= e−��0 by the 

Kubo–Martin–Schwinger relation [44]. Finally, using the 
initial state in Eq. (12) of X-state form, one can straightfor-
wardly obtain the state �S(t) in the standard basis 
B = {�11⟩, �10⟩, �01⟩, �00⟩} of an “X” structure. In fact, the 
evolution of a two-qubit density can be expressed in the fol-
lowing form [49]:

The time-dependent elements of the reduced density matrix 
�S(t) of both qubits after embedding through the independent 
thermal reservoir are given for the initial state introduced in 
Eq. (12) as:

(14)
ĤR =ĤRA

+ ĤRB

=�𝜔AbA†bA + �𝜔BbB†bB,

(15)

d𝜌S

dt
=

𝛾⟨bb†⟩
2

(2𝜎−�̂�
S𝜎+ − 𝜎+𝜎−�̂�

S − �̂�S𝜎+𝜎−)

+
𝛾⟨b†b⟩

2
(2𝜎+�̂�

S𝜎− − 𝜎−𝜎+�̂�
S − �̂�S𝜎−𝜎+),

(16)�S(t) =

⎛
⎜⎜⎜⎝

�S
11
(t) 0 0 �S

14
(t)

0 �S
22
(t) �S

23
(t) 0

0 �S
32
(t) �S

33
(t) 0

�S
41
(t) 0 0 �S

44
(t)

⎞⎟⎟⎟⎠
.

while, the non-diagonal elements are:

where �S
ij
(t) = �S∗

ji
(t) , and the analytical expressions of the 

functions uS
t
, vS

t
, zS

t
, (S = A,B) are given by [49]:

The quantities uS
t
, vS

t
 and zS

t
 are time-dependent functions 

of the studied model. Moreover, S = A,B are related to the 
qubits in such a way the evolution is characterized by differ-
ent values of the functions uS

t
, vS

t
 and zS

t
.

These expressions allow us to evaluate the dynamics of 
the geometric quantum discord of the Heisenberg XX model 
with the DM interaction described by the initial state �S(0) . 
Furthermore, we shall show how the GQD evolution is influ-
enced by changing the physical parameters of the system. 
In fact, in the section that follows, we will plot the GQD 
using trace and Hellinger distances against the dimension-
less parameter, �t , as well as the magnetic field and DM 
parameters B and D respectively.

3.3  Quantum correlations dynamics with DM 
interaction

The main subject of this part is to investigate the time-
dependence of Hellinger and trace distances using the solu-
tions given in Eqs. (17) and (18) using the results given in 
previous section. For sake of simplicity, we shall restrain 

(17)

�S
11
(t) =uA

t
uB
t
�S
11
(0) + uA

t
vB
t
(t)�S

22
(0) + vA

t
uB
t
�S
33
(0)

+ vA
t
vB
t
�S
44
(0),

�S
22
(t) =uA

t
(1 − uB

t
)�S

11
(0) + uA

t
(1 − vB

t
)�S

22
(0) + vA

t
(1 − uB

t
)�S

33
(0)

+ vA
t
(1 − vB

t
)�S

44
(0),

�S
33
(t) =uB

t
(1 − uA

t
)�S

11
(0) + vB

t
(1 − uA

t
)�S

22
(0)

+ uB
t
(1 − vA

t
)�S

33
(0) + vB

t
(1 − vA

t
)�S

44
(0),

�S
44
(t) =(1 − uB

t
)(1 − uA

t
)�S

11
(0)

+ (1 − vB
t
)(1 − uA

t
)�S

22
(0) + (1 − uB

t
)(1 − vA

t
)�S

33
(0)

+ (1 − vB
t
)(1 − vA

t
)�S

44
(0),

(18)�S
12
(t) = uA

t
zB
t
�S
12
(0) + vA

t
zB
t
�S
34
(0),

(19)

�S
13
(t) = zA

t
uB
t
�S
13
(0) + vB

t
zA
t
�S
34
(0),

�S
14
(t) = zA

t
zB
t
�S
14
(0), �S

23
(t) = zA

t
zB∗
t
�S
23
(0),

�S
24
(t) = zA

t
(1 − uB

t
)�S

13
(0) + zA

t
(1 − vB

t
)�S

24
(0),

�S
34
(t) = zB

t
(1 − uA

t
)�S

12
(0) + zB

t
(1 − vA

t
)�S

34
(0),

(20)

uS
t
=
n̄ + (n̄ + 1)

(
zS
t

)2
2n̄ + 1

,

vS
t
=
n̄(1 −

(
zS
t

)2
)

2n̄ + 1
,

zS
t
=e

−(2n̄+1)𝛾t

2 .
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our investigation to the case of two identical qubits locally 
interacting with identical environments. This means that 
the functions uS

t
, vS

t
, zS

t
 (S = A,B) introduced in Eq. (20) are 

the same for both qubits, namely zA
t
= zB

t
= e

−(2n̄+1)𝛾t

2  , where 
�A = �B = � . Consequently, one can find that uA

t
= uB

t
 and 

vA
t
= vB

t
 . Therefore, by considering these approximations, 

the time-dependent matrix elements of the reduced density 
operator, namely �S(t) of the Heisenberg XX model in the 
presence of DM interaction, as follows:

and

Finally, the obtained solution allows to examine the geomet-
ric non-classical correlation. First, let’s start by evaluating 
the dynamics of trace distance. Indeed, we have:

where

Hence, the trace distance is obtained from the density matrix 
�S(t) of the pair qubits as the following form:

To give an analytical expression of Hellinger distance, we 
must first calculate the square root of the density operator 
�S(t) . Indeed, it is computed as [50]:

(21)

�S11(t) =
1
Z

[

(

uAt
)2e−2�B + 2uAt v

A
t (t) cosh 2�� +

(

vAt
)2e2�B

]

,

�S22(t) =�
S
33(t) =

1
Z
[uAt (1 − uAt )e

−2�B

+
(

uAt + vAt − 2uAt v
A
t
)

cosh 2�� + vAt (1 − vAt )e
2�B],

�S44(t) =
1
Z
[

(1 − uAt )(1 − uAt )e
−2�B + 2(1 − vAt )(1 − uAt ) cosh 2��

+(1 − vAt )(1 − vAt )e
2�B],

(22)
�S
12
(t) =�S

13
(t) = �S

14
(t) = �S

24
(t) = �S

34
(t) = 0,

�S
23
(t) =

zA
t
zB∗
t
ei(�+�) sinh 2��

Z
.

(23)DT (�
S) =

√
a(t)�2

1
(t) − b(t)�2

2
(t)

a(t) − b(t) + �1(t)
2 − �2(t)

2
,

(24)

�1(t) =�2(t) =
2zAt (1 − uB∗t )ei(�+�) sinh 2��

Z
,

�3(t) =1 −
4
Z
[uAt (1 − uAt )e

−2�B +
(

uAt + vAt − 2uAt v
A
t

)

cosh 2��

+ vAt (1 − vAt )e
2�B],

x(t) = 2
Z
[

uAt e
−2�B +

(

uAt + vAt
)

cosh 2�� + vAt e
2�B] − 1,

a(t) =max
(

�3(t)2, �2(t)2 + x(t)2
)

,

b(t) =min
(

�3(t)2, �2(t)2
)

.

(25)DT (�) =
2e−(2n+1)�t sinh(2��)

Z
.

where

Hence, one can derive the Hellinger distance analytically 
as bellow:

where

In the next section, we move from the analytical results to 
the process of developing substantive discussions within the 
Heisenberg model for different parameters.

4  Numerical results and discussion

This section is dedicated to analyzing the effects of DM inter-
action, external magnetic fields B and reservoir temperature 
T on the dynamics of GQD, trace and Hellinger distances. 
Indeed, the quantities DT and DH given in Eqs. (25) and (28) 
are plotted versus the dimensionless parameter �t for some 
fixed values of J, D and T. From Fig. 2, it is clear that both 
measures of non-classical correlation are initially maximized, 
that is:

On the other hand, the figure shows that strong external 
magnetic fields have a destructive effect on the nonclassical 

(26)
√
�S(t) =

⎛⎜⎜⎜⎝

�11(t) 0 0 0

0 �22(t) �23(t) 0

0 �32(t) �33(t) 0

0 0 0 �44(t)

⎞⎟⎟⎟⎠
,

(27)

�11(t) =
�S11(t) +

√

�S11(t)�
S
44(t)

√

�S11(t) + �S44(t) + 2
√

�S11(t)�
S
44(t)

,

�22(t) =
�S22(t) +

√

�S22(t)�
S
33(t) − (�S32(t))2

√

�S22(t) + �S33(t) + 2
√

�S22(t)�
S
33(t) − (�S32(t))2

,

�33(t) =
�S33(t) +

√

�S22(t)�
S
33(t) − (�S32(t))2

√

�S22(t) + �S33(t) + 2
√

�S22(t)�
S
33(t) − (�S32(t))2

,

�44(t) =
�S44(t) +

√

�S11(t)�
S
44(t)

√

�S11(t) + �S44(t) + 2
√

�S11(t)�
S
44(t)

,

�23(t) =
�S23(t)

√

�S22(t) + �S33(t) + 2
√

�S22(t)�
S
33(t) − (�S32(t))2

,

�32(t) =
�S32(t)

√

�S22(t) + �S33(t) + 2
√

�S22(t)�
S
33(t) − (�S32(t))2

.

(28)DH(�) = 1 −max{W1, W2},

(29)
W1(t) =2(�11(t)�22(t) + �33(t)�44(t)),

W2(t) =�
2

11
(t) + �2

22
(t) + �2

33
(t) + �2

44
(t) − 2�2

32
(t).

(30)DT (�) = DH(�) = 1.



 R. Ben hammou et al.160 Page 6 of 9

correlation of the system. Additionally, as the value of �t 
increases significantly, both DT  and DH are completely 
diminish.

In Fig. 3, we display the dynamics of non-classical corre-
lation by means of trace and Hellinger distances against the 
external magnetic field parameter B for various values of �t . 
For the fixed values of J, D and T, the results show that the 
trace distance initially takes the maximum value, which is 
one, while the Hellinger distance is almost one. However, as 
t increases, both measures of quantum correlation decrease 
asymptotically until they reach minimum bounds, resulting 
in separability between the pair qubits.

From Figs. 2 and 3, one can conclude that it is possible 
to generate quantum correlation between the pair of qubits, 
which are proposed as an open quantum system interacting 
with the surrounding environment. Both figures show that 
the qubits are initially correlated. As, t increases, they are 
still coupled, but according to the decoherence phenom-
enon, the qubits become weakly coupled to each other. 

Moreover, significant values of �t and B give rise to small 
bounds on the amounts of DT (�) and DH(�).

Now, consider the dynamics of non-classical correla-
tion against �t while accounting for various values of the 
DM parameter, namely D. Indeed, Fig. 4a and b exhibit 
the time-dependent trace and Hellinger distances, respec-
tively. The plot shows that for an initial interval, namely 
�t ∈ [0, 1] the qubits are correlated to each other. Further-
more, the DT  and DH of the pair qubit reach an asymp-
totic regime without disappearing, indicating that DH is 
more resistant to the thermal effect than DT . On the other 
hand, our results show that the amounts of trace and Hell-
inger distances are also influenced by changing the DM 
parameter in such a way both measures increase as the 
DM parameter takes strong values. Again, it is obvious 
that the trace distance exceeds the Hellinger distance for 
some regions, but they represent approximately the same 
behavior, which indicates that both measures represent the 

Fig. 2  Dynamics of trace distance D
T
(�) (a), and Hellinger distance D

H
(�) (b) versus �t for different values of external magnetic field B, where 

J = D = 1 and T = 0.7

Fig. 3  Dynamics of a trace distance D
T
(�) and b Hellinger distance D

H
(�) versus external magnetic field B for different values of �t, where 

J = 1 , D = 1.5 and T = 0.7
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same information about the separability between the qubits 
coupled to their surrounding environment.

We examine the GQD against the scaled parameter �t by 
varying the temperature parameter T, where we considered 
the same initial settings of J and D as in Fig. 5. First, we 
clearly see from the plots that the trace distance is greater 
than the Hellinger distance for a certain region of �t . Second, 
the temperature has a clear impact on the quantification and 
enhancement of GQD. In fact, for small values of T, trace 
and Hellinger distances gradually increase to their maxi-
mum bounds, and this is for small values of �t . In general, 
the crossing-points, namely the intersection between the 
curves, mean that the behavior is independent of B (Fig. 2) 
and independent of �t (Fig. 3). However, the change-points 
in the behaviors in Figs. 2 and 4 indicate a significant shift 
or transition in the dynamics of quantum correlations. This 
transition is due to the interactions with the environment, 
namely changes in the system’s environment.

Now, let us investigate the impact of varying simultane-
ously the parameters B and D. As illustrated in all previous 

figures, an asymptotic behavior is obtained again here, 
which indicates that the dynamics is Markovian. Indeed, the 
master equation in Eq. (15) indicates that the damping rate 
parameter is time-independent, which explains and proves 
the obtained results. Moreover, for all proposed cases, one 
can conclude that the trace distance is more robust than the 
Hellinger distance for certain regions, which is again proved 
in Fig. 6.

Finally, one can mention that the DT (�) and DH(�) may 
impose the same orderings of quantum states. In fact, one 
can see that both DT (�) and DH(�) decrease monotonously 
with respect to �t and B. While, they increase monotonously 
versus D in the same way. For sake of comparison, one can 
also mention that a similar phenomenon for GQD by means 
of Hilbert–Schmidt distance is reported in [51, 52]. Moreo-
ver, note that a recent experimental study [53] showed that 
the properties of two quantum spin chain materials have been 
studied using various experimental techniques. Importantly, 
they showed that their proposed materials represent feature 
substantial DM interactions that are uniform within spin 

Fig. 4  Dynamics of a trace distance D
T
(�) and b Hellinger distance D

H
(�) versus �t for different values of D, by considering J = 1 , B = 1 and 

T = 0.7

Fig. 5  Dynamics of a trace distance D
T
(�) and b Hellinger distance D

H
(�) versus �t ( J = 1 , D = 1.5 and B = 1.5 ), for different values of T 
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chain. Again, this prove as in our investigation the impact 
of DM on the dynamics of these kind of spin-Heisenberg 
systems. Roughly speaking, the DM interaction plays a sig-
nificant role in the dynamics of quantum spin chains, where 
as in our theoretical results, the experimental observations 
support this result [54].

5  Conclusion

In this work, we explored the dynamics of non-classical 
correlation using trace and Hellinger distances, which are 
considered as a good metrics of geometric quantum discord. 
Indeed, we have examined the quantum correlations inher-
ent in the two-spin system in its thermal equilibrium. This 
physical system is classified as a Heisenberg XX model, 
with the DM interaction induced via spin–orbit couplings. 
Furthermore, an external magnetic field is also involved in 
this study. By analyzing the dependence of the density oper-
ator on the system parameters, we found that the evolution 
dynamics and the external magnetic fields always degrade 
the trace and the Hellinger distances. However, for low val-
ues of �t , they measure consistently increase. Finally, we 
showed that for strong values of �t and weak DM interac-
tion, the quantum correlation is also enhanced in the weak 
magnetic field region.

The possibility to generalize our study into a system of 
more than two qubits still important. Indeed, it has been 
shown that one can generate quantum correlations for a 
Heisenberg system composed of four spins [55], providing a 
way maximize the quantum correlations via controlling tem-
perature, Heisenberg exchange interaction, DM interaction, 
and decoherence parameters. Hence, another perspective can 
be considering through a generalization of this model for N 
spins.
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