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Abstract
This research investigates the interplay between coherence and skew information correlations in the Ising-XYZ diamond 
chain, which includes both Ising and Heisenberg spin particles in the presence of an external magnetic field. The initial 
step involves determining the reduced density matrix using the transfer matrix approach (TMA). Following this, quantum 
correlations and coherence in the Ising-XYZ diamond chain are quantified using uncertainty-induced nonlocality (UIN), 
local quantum uncertainty (LQU), and the �

1
 norm of coherence ( C

�
1

 ). The study examines the impact of thermal noise 
and various system parameters, such as the xy-anisotropy � , Heisenberg interaction Γ among interstitial sites, Ising spin 
exchange J

1
 , and magnetic field strength, on the dynamics of quantum resources within the system. The results indicate that 

both temperature and magnetic field negatively affect these quantum properties. Conversely, values of the xy-anisotropy 
parameter enhance quantum correlation and coherence, mitigating the detrimental impact of absolute temperature. This 
research offers significant insights into the behavior of quantum resources in this specific system.

1  Introduction

Quantum resource theories offer a robust framework for 
studying a wide range of phenomena in quantum phys-
ics. They allow us to quantify desirable quantum effects, 
develop novel detection protocols, and identify processes 
that optimize their utilization across diverse applications 
[1]. Within this framework, resources like quantum coher-
ence and quantum correlations play a crucial role in quan-
tum technologies, such as quantum information processing, 
quantum computation, and quantum communication [2–8]. 
One of the most fascinating forms of quantum correlation is 
quantum entanglement. It is essential in numerous applica-
tions in quantum computing and nanotechnology, such as 

quantum teleportation [9, 10], quantum sensing [11], quan-
tum dense coding [12], quantum cryptography [13, 14], and 
quantum secret sharing [15]. Furthermore, several measures 
have been proposed to quantify entanglement, including 
concurrence [16] and negativity [17]. The study of entangle-
ment has been extensively investigated in numerous research 
projects [18–22]. To quantify quantum correlation, we can 
use some quantum estimators, such as uncertainty induced 
nonlocality (UIN) and quantum uncertainty (LQU). These 
estimators provide a more comprehensive understanding of 
the quantum correlations in many systems [23–27].

Additionally, quantum coherence, which arises from the 
principle of superposition of quantum states, is a crucial 
quantum feature to manage and preserve. It plays a pivotal 
role in various fields such as quantum information processing 
[28], quantum thermodynamics [29], and quantum metrol-
ogy. In these fields, quantum coherence has been shown to 
be essential for surpassing classical limitations in measure-
ment accuracy [30]. Moreover, quantum coherence has gar-
nered increasing attention for its involvement in biological 
processes, including photosynthesis [31] and bird navigation 
[32]. Various quantifiers, such as the �1 norm of coherence, 
the relative entropy of coherence [33], and intrinsic random-
ness [34], have been used to characterize quantum coherence 
in quantum systems.
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In recent years, the study of the quantum characteristics 
of low-dimensional spin systems has received considerable 
attention in condensed matter physics [35]. These systems are 
considered promising options for quantum communication and 
information processing. In particular, the Ising-Heisenberg dia-
mond chain is a theoretical model used to investigate the behav-
ior of interacting spins and capture the characteristics of real 
magnetic materials like azurite ( Cu3(CO3)2(OH)2 ) [36, 37]. 
Azurite can be considered one of the first experimental realiza-
tions of the 1D distorted diamond chain model. To study the 
Ising-Heisenberg diamond chain model, various mathematical 
methods can be used, such as the transfer matrix technique [38] 
and the cluster-variation approach [39]. Our research is moti-
vated by recent studies in this field, particularly the analysis of 
thermal entanglement properties of both the Ising-XXZ [40] 
and the Ising-XYZ models on a diamond chain [41], the quan-
tum correlations for the Ising-XYZ diamond chain structure 
using quantum discord [42] and quantum Fisher information 
[43]. In addition, quantum teleportation via a pair of Ising-XXZ 
diamond chains [44–46] has also been highlighted in recent 
reports. The Ising-XYZ diamond chains serve as ideal sys-
tems to explore the effects of anisotropic spin interactions and 
external magnetic fields on quantum properties. Therefore, it is 
essential to explore quantum correlations and quantum coher-
ence within the Ising-XYZ model of a diamond chain.

The main goal of this research is to study how thermal vari-
ation affects skew information correlation and quantum coher-
ence in the Ising-XYZ diamond chain. We will examine how 
thermal noise, the anisotropy parameter, and the magnetic field 
affect quantum coherence and skew information correlations. 
To achieve this, we will employ two measures to assess skew 
information correlations in the system: uncertainty-induced 
nonlocality (UIN) to analyze non-classical correlations, and 
local quantum uncertainty (LQU) to assess uncertainty in a 
quantum state. Additionally, we will quantify quantum coher-
ence using the �1 norm.

The document is structured as follows: Section 2 presents 
the explicit formulas for the three quantifiers used to describe 
skew information correlations and quantum coherence. In 
Sect. 3, we will introduce the Ising-XYZ diamond chain and 
derive the reduced density operator using the transfer matrix 
approach. Section 4 discusses our results, providing an over-
view of the thermal dynamics of UIN, LQU, and the C

�1
 , and 

analyzing the dynamics of these three estimators. Finally, our 
concluding remarks can be found in Sect. 5.

2 � Measures of quantum correlation 
and coherence

This section presents the explicit formulas for the three 
quantifiers used to describe skew information correlations 
and quantum coherence within the context of the Ising-XYZ 
diamond chain subjected to an external magnetic field.

2.1 � The �
1
 norm of coherence

The �1 norm of coherence introduced by Baumgratz et al. 
[33] is a commonly used coherence measure. It is defined 
as follows

here, ℑ represents a set of incoherent states, i.e., states with 
vanished coherence ( C

�1
(�) = 0 ). Analytically, the �1 norm 

of coherence related to a quantum state � can be explicitly 
derived in terms of the magnitudes of its non-diagonal 
entries ( �ij ) as

2.2 � Local quantum uncertainty

To define local quantum uncertainty (LQU), we first need to 
take a look at the Wigner-Yanase skew information (WYSI). 
This measure is mainly proposed to quantify the information 
content in a quantum bipartite state � . It is mathematically 
defined by [47]

Where K
A
⊗ �

B
 stands for the tensor product of the local 

observable K
A
 acting on subsystem A and the identity 

operator �B acting on subsystem B. The LQU related to the 
bipartite density matrix � , with respect to subsystem A, is 
defined as [48]

Where the minimization procedure in Eq. (4) was performed 
over all local observables acting on qubit A. LQU, as a 
reliable quantum correlation measure, provides a tool to 
quantify discord-type correlations without requiring a 
complex computation procedure. For a qubit-qubit system, 
the LQU for subsystem A can be computed by [48]

(1)C
�1
(�) = min

�∈ℑ

|� − �|,

(2)C
�1
(�) =

∑
i≠j

|�ij|.

(3)I(𝜚,K
A
⊗ �

B
) = −

1

2
Tr
(
[𝜚

1

2 ,K
A
⊗ �

B
]
2
)
.

(4)U(𝜚) = min
K
A

I(𝜚,K
A
⊗ �

B
).

(5)U(�) = 1 − �max(W),
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where �max(W) represents the maximal eigenvalues of the 
symmetric matrix W3×3 with entries

where 
{
�
i(j)

A

}i(j)=x,y,z

 are the Pauli operators acting on part A.

2.3 � Uncertainty‑induced non‑locality

Uncertainty-induced non-locality (UIN) serves as a 
genuine quantifier for the non-local quantum correlations in 
multipartite systems [49]. It is considered an updated version 
of measurement-induced quantum non locality introduced 
by Luo [50]. For a two-party quantum state � , UIN, when 
party A is driven by a local commuting observable K′

A
 , is 

expressed in terms of the WYSI (3) as [49]

where the maximization is performed over all local 
maximally informative commuting observables K′

A
 . For any 

bipartite (2⊗ d)-dimensional quantum state, UIN can be 
found as follows [50]

vvvT is the transpose of the Bloch vector vvv with norm |vvv| and 
�min(W) denotes the minimal eigenvalue of matrix W3×3 
defined in Eq. (6).

Each quantum estimator utilized in this study is based on 
distinct formulas and serves a specific role in characterizing 
quantum correlation and coherence. LQU is derived from 
minimal skew information and is specifically designed 
to assess the quantum uncertainty in nonclassical states. 
In contrast, UIN is determined by the maximum skew 
information that can be obtained from bipartite quantum 
states and local observables. It serves as a measure of the 

(6)
(
W

)
ij
= Tr

(
𝜚
1∕2

(
𝜏
i
A
⊗ �2

)
𝜚
1∕2

(
𝜏
j

A
⊗ �2

))
,

(7)Uc(𝜚) = max
K�

A

I(𝜚,K�

A
⊗ �B),

(8)Uc(�) =

{
1 − �min(W), vvv = 000

1 −
1

|vvv|2 vvvWvvvT , vvv ≠ 000.

degree of non-locality in the state under consideration. 
Lastly, the �1 norm coherence ( C

�1 ) quantifies quantum 
coherence and offers insights into the superposition among 
constituent quantum states.

3 � Model and thermalization

In this study, we deal with a system of Ising-XYZ diamond 
chain structure subjected to an external magnetic field. We 
will focus on key aspects such as the Hamiltonian of the 
system, the energy properties, and the thermal state derived 
using the transfer matrix approach (TMA). Notably, prior 
work has already explored pairwise thermal entanglement 
within this framework [41]. To ensure a comprehensive 
understanding, we begin with an overview of the Ising-XYZ 
diamond chain structure. This structure is governed by the 
Ising-XYZ Hamiltonian, originally formulated in Ref. [41]. 
This Hamiltonian encapsulates the system’s dynamics and 
serves as a foundational element for our investigation.

3.1 � Ising‑XYZ model

As previously mentioned, we focus on the characterization 
of nonclassical correlations captured by the WYSI-derived 
quantifiers and the coherence in the Ising-XYZ diamond 
chain exposed to an external magnetic field. The consid-
ered chain is constituted from the interstitial Heisenberg 
spin along with the nodal Ising spins with different types 
of exchange interaction. An explanatory scheme is given 
in Fig. 1.

The collective Hamiltonian describing the investigated 
system subject to the interplay of a longitudinal external 
magnetic field b0 , which influences the Heisenberg spins, 
and a magnetic field b affecting the Ising spins, can be 
written as the sum of the block Hamiltonian Hk as [51]

Fig. 1   Schematic illustration of 
Ising-XYZ chain on a diamond 
structure. Heisenberg spins are 
denoted by � i,k and � j,k , while 
Ising spins are represented by �

k
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where the kth block Hamiltonian is expressed by [41]

In the context of a spin-1
2
 system, the operators � i(j) denote 

the Pauli spin operators acting on the interstitial sites, where 
� represents the xy-anisotropy parameter. The interactions 
within the system are governed by the coupling constants J 
and Γ , which describe Heisenberg-type interactions between 
interstitial sites. Additionally, there are Ising-type exchanges 
denoted by J1 , corresponding to interactions between inter-
stitial and nodal sites.

It is crucial to note that throughout our analysis, we 
maintain the condition b0 = b . In this context, the matrix 
form of the block Hamiltonian Hk , in the computational 
basis {�00⟩, �01⟩, �10⟩, �11⟩} , reads as

By diagonalizing the above block Hamiltonian (11), we find 
the following eigenvalues

with corresponding eigenvectors

(9)H =

N∑
k=1

Hk,

(10)

Hk = − J(1 + �)�
x
i,k
�
x
j,k
− J(1 − �)�

y

i,k
�
y

j,k

− Γ�
z

i,k
�
z

j,k
− J1

(
�
z

i,k
+ �

z

j,k

)(
�k + �k+1

)

− b0

(
�
z

i,k
+ �

z

j,k

)
−

b

2

(
�k + �k+1

)
.

(11)Hk =

⎡⎢⎢⎢⎢⎢⎢⎣

−

�
Γ

4
+

b�

2

�
−
�
J1� + b

�
0 0 −

J�

2

0

�
Γ

4
−

b�

2

�
−

J

2
0

0 −
J

2

�
Γ

4
−

b�

2

�
0

−
J�

2
0 0 −

�
Γ

4
+

b�

2

�
+
�
J1� + b

�

⎤⎥⎥⎥⎥⎥⎥⎦

.

(12)
E1,4 = −

(
Γ

4
+

b�

2

)
± Δ(�),

E2,3 = −
b�

2
+

Γ

4
∓

J

2

(13)��1⟩ =a+
�
d
+
�00⟩ + �11⟩�,

(14)��2⟩ = 1√
2

(�01⟩ + �10⟩),

(15)��3⟩ = 1√
2

(�01⟩ − �10⟩),

(16)��4⟩ =a−
�
d
−
�00⟩ + �11⟩�,

where � =
(
�k + �k+1

)
 ,  Δ(�) =

√(
b + J1�

)2
+

1

4
J2�2  , 

a
±
=

1√
1+d2

±

 and d
±
=

−J�

2b+2J1�±2Δ(�)
.

3.2 � Transfer matrix approach

To study the skew information correlations and coherence 
within the Ising-XYZ diamond chain, it is necessary to 
derive the reduced density operator using the TMA [40]. 
This procedure aims to specify the system density operator 
depending only on the Ising spin particles �k and �k+1 . It 
is defined in terms of the block Hamiltonian Hk , which 
pertains to the neighboring Ising spins �k and �k+1 , as

In this case, the quantity � = 1∕(kBT) , where kB represents 
the Boltzmann constant and T represents the absolute 
temperature. For later convenience, we will set kB = 1 . 
By utilizing the spectral decomposition of the block 
Hamiltonian Hk (Eq. (11)), we can rewrite the two-qubit 

operator (17) as

El denotes the energy associated with the kth state and ���l⟩ 
represents the corresponding eigenvector. To calculate the 
Boltzmann factor, denoted as �

(
�k, �k+1

)
 , we trace over the 

operator of the two-qubits, resulting in

In the context of our system, the canonical partition function 
ZN  can be formulated by considering the associated 
Boltzmann factors

Using the transfer matrix, ZN , for the spin-1/2 Ising-XYZ 
diamond chain, is described by ZN = Tr(TN

) , here T is 
formulated as follows

(17)�

(
�k, �k+1

)
=

4∑
l=1

e−�Hk .

(18)�

�
�k, �k+1

�
=

4�
l=1

e−�El ���l⟩⟨�l
��,

(19)Ω
(
�k, �k+1

)
= Tr

[
�(�k, �k+1)

]
=

4∑
l=1

e−�El .

(20)ZN =

∑
�

Ω
(
�1, �2

)
....Ω

(
�N , �1

)
.
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Here, the elements of the matrix depend solely on the 
collective spin state of the two Ising spins, given by

w i t h  Ω(1) ≡ Ω

(
1

2
,
1

2

)
 ,  Ω(0) ≡ Ω

(
1

2
,−

1

2

)
 ,  a n d 

Ω(−1) ≡ Ω

(
−

1

2
,−

1

2

)
.

The eigenvalues of T are then given by

with A =

√
(Ω(1) − Ω(−1))2 + 4Ω(0)2 . It follows that ZN 

(Eq. (20)) can be rewritten as a function of the quantities 
�
±
 as

which simplifies to ZN = �
N
+

 in the thermodynamic limit 
constrained by N → ∞ . It is worth mentioning to notice that 
the TMA as a substantial procedure has been widely used 
(for more details see the references [52–56]).

The reduced-density operator of the diamond structure 
can be given as follows

which has an X form. The elements of the density matrix 
(25) are specified in Appendix (A).

Now we have all the necessary ingredients to compute 
the quantum coherence C

�1
(�) as well as the WYSI derived 

quantifiers LQU ( U(�) ) and UIN ( Uc(�) ). By considering 
the definition (2) and the density matrix (25), the quantum 
coherence is given by

To compute LQU and UIN, it is important to specify the 
proper value of the matrix W . Regarding the reduced state 
(25) and Eq. (6), one finds [59]

(21)T =

⎛
⎜⎜⎝
Ω

�
1

2
,
1

2

�
Ω

�
1

2
,−

1

2

�

Ω

�
−

1

2
,
1

2

�
Ω

�
−

1

2
,−

1

2

�
.

⎞
⎟⎟⎠

(22)Ω(�) = 2e
��b

2

[
e
−

�Γ

4 cosh

(
�J

2

)
+ e

�Γ

4 cosh (�Δ(�))

]

(23)�
±
=

Ω(1) + Ω(−1) ±A

2

(24)ZN = �
N
+
+ �

N
−

(25)� =

⎛⎜⎜⎜⎝

�11 0 0 �14

0 �22 �23 0

0 �
∗

23
�33 0

�
∗

14
0 0 �44

⎞⎟⎟⎟⎠
,

(26)

C
�1
(�) =

2e
Γ

4T �J

�
+
A

(e b

2T (−Ω(−1) +A + Ω(1)) sinh(
Δ(1)

2T
)

Δ(1)

+

e
−

b

2T (Ω(−1) +A − Ω(1)) sinh(
Δ(−1)

2T
)

Δ(−1)

+

4Ω(0) sinh(
Δ(0)

2T
)

Δ(0)

)
.

where �
±
 and � �

±
 are the eigenvalues value of the reduced 

density matrix � given by

with t1 = �11 + �44 , t2 = �22 + �33 , d1 = �11�44 −
||�14||2 and 

d2 = �22�33 −
||�23||2 . In the expressions (27), (28) and (29) 

𝜉ij = Tr
(
𝜚 (𝜏i ⊗ 𝜏j

)
) with ( i, j = 0, 1, 2, 3 ) denote the compo-

nents of the correlation matrix � that occur when the density 
matrix � is expanded following the Fano-Bloch decomposi-
tion [57, 58] as

By making use of (25) and (31), one can explicitly find that 
[59]

We observe that �11 ≥ �22 , this implies that �1 ≥ �2 . 
Therefore, the LQU and UIN take the following forms:

(27)

�1 =

�√
�
+
+

√
�
−

���
�
�

+
+

�
�
�

−

�

+
1

4

⎡
⎢⎢⎢⎣

�
�
2

11
− �

2

22

�
+
�
�
2

03
− �

2

30

�
�√

�
+
+

√
�
−

��√
�
�

+
+
√
�
�

−

�
⎤
⎥⎥⎥⎦
,

(28)

�2 =

�√
�
+
+

√
�
−

���
�
�

+
+

�
�
�

−

�

+
1

4

⎡
⎢⎢⎢⎣

�
�
2

22
− �

2

11

�
+
�
�
2

03
− �

2

30

�
�√

�
+
+

√
�
−

��√
�
�

+
+
√
�
�

−

�
⎤
⎥⎥⎥⎦
,

(29)

�3 =
1

8

⎡
⎢⎢⎢⎣

�
�03 + �30

�2
−
�
�11 − �22

�2
�√

�
+
+

√
�
−

�2
+

�
�03 − �30

�2
−
�
�11 + �22

�2
�√

�
�

+
+
√
�
�

−

�2

⎤⎥⎥⎥⎦

+
1

2

��√
�
+
+

√
�
−

�2

+

��
�
�

+
+

�
�
�

−

�2
�

(30)

�
±
=

1

2

(
t1 ±

√
t2
1
− 4d1

)
, �

�

±
=

1

2

(
t2 ±

√
t2
2
− 4d2

)

(31)𝜚 =
1

4

3∑
i,j=0

𝜉ij 𝜏i ⊗ 𝜏j.

(32)

�00 = tr(�) = 1, �03 = 1 − 2(�22 + �44),

�30 = 1 − 2(�33 + �44)

�11 = 2(||�14|| + ||�23||), �22 = 2(||�23|| − ||�14||),
�33 = 1 − 2(�22 + �33).

(33)

U(�) = 1 −max
(
�1,�3

)
, Uc(�) =

{
1 −min

(
�2,�3

)
, vvv = 000

1 −
1

|vvv|2 vvvWvvvT , vvv ≠ 000
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Wher the Bloch vector vvvT =
{

Tr
(

� (�1 ⊗ �
)

), Tr
(

� (�2 ⊗ �
)

), Tr
(

� (�3 ⊗ �
)

)
}

=
{

0, 0, �11 + �22 − �33 − �44
}

.

4 � Results and discussion

In this section, we display the main results related to the 
characterization of the quantum correlations and coherence 
within the Ising-XYZ diamond chain structure framework. 
Our analysis focuses on the behavior of three key quantifiers 
C
�1
(�) , UIN and LQU. For the sake of simplicity, we deal in 

our analysis with the dimensionless quantity T/J, J1∕J , Γ∕J , 
and b/J by attributing to J an energy unit.

We first study how temperature and interstitial site inter-
actions influence the quantum resource in the Ising-XYZ 
diamond chain. In Fig. 2, we present a comprehensive 
analysis of the behavior of �1 norm coherence ( C

�1
 ), UIN 

( Uc(�) ), and LQU ( U(�) ) concerning variations in T/J and 
Γ∕J . This investigation is performed while keeping other 
parameters fixed at b∕J = 1 , � = 0.95 , and J1∕J = −0.3 . 
The depicted trends unveil crucial insights into the impact 
of temperature and anisotropy on quantum correlation 
and coherence within the Ising-XYZ diamond chain. The 
observed trend indicates a decrease in quantum correla-
tion and coherence with increasing temperature and anisot-
ropy parameters. This suggests a detrimental effect of both 

temperature and anisotropy on the quantum characteristics 
of the system. In the first case Figs. 2d, e and f exhibit 
saturation behavior where all three quantifiers reach unity 
when Γ∕J ≤ −1 and T∕J → 0 . This implies that the system 
is in a bell state ��2⟩ (14), achieving maximal coherence, 
non-locality, and correlation under these specific condi-
tions. In the second case, as Γ∕J approaches 0, we observe 
that quantum coherence and correlation achieve the value 
around C

�1
= 0.56 and Uc(�) = U(�) = 0.31 at zero tempera-

ture then increase to some peak before decreasing with 
higher values of T/J. While for Γ∕J ≥ 0.5 we observe a 
monotonic decay in coherence and correlation.

Additionally, a notable observation is the diminishing 
quantum correlation and coherence at relatively higher tem-
peratures. This phenomenon is attributed to the presence of 
thermal noise, which disrupts the quantum states and reduces 
their coherence levels. Overall, this analysis provides valu-
able insights into how temperature and anisotropy parameters 
affect quantum correlations and coherence within the Ising-
XYZ diamond chain structure, shedding light on the system’s 
quantum behavior under varying conditions.

In the next step, we will study the effect of the tem-
perature T and the Ising spin exchange parameter J1 on the 
dynamics of C

�1
(�) , UIN, and LQU by fixing the values of 

� , Γ∕J , and b/J. The main results are depicted in Fig. 3. 
These figures show that the quantum coherence and the 
WYSI-derived correlations behave similarly in terms of 

Fig. 2   The variation of the �
1
 norm of coherence C

�
1
(�) (a, d), UIN (b, e) and LQU (c, f) in terms of temperature and Γ∕J for b∕J = 1 , � = 0.95 

and Ising spin exchange J
1
∕J = −0.3
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the dimensionless variables T/J and J1∕J . More precisely, 
UIN (Fig. 3b) and LQU (Fig. 3c) capture the correlations 
only for small values of T/J and J1∕J . Increasing one of the 
variables while fixing the other leads to the correlation and 
coherence demolition. We notice that the quantum correla-
tion and coherence quantities are maximal when T → 0 and 
J1 → 0 . In Fig. 3d and e, we observe that at low tempera-
tures, quantum coherence and non-local correlations in the 
Ising-XYZ system increase and reach their local maximum 
at a J1∕J-dependent critical value of Tc∕J . After each local 
maximum, the quantum coherence and correlations decrease 
gradually to reach an asymptotic value without disappearing 
completely. This behavior indicates the presence of quantum 
phase transitions in the Ising-XYZ system. Also, we can see 
that the increase in J1∕J leads to a degradation of quantum 
correlations and coherence.

In addition, the Fig. 3f results provide a typical behav-
ior of the LQU for various values of J1∕J and temperature 
T/J. As J1∕J increases, the quantum correlation amounts 
decrease to achieve their peak value at a critical tempera-
ture Tc∕J.

Next, Fig. 4 displays a comparison between the three 
studied quantifiers in terms of the temperature when the 
Ising spin exchange parameter is fixed at J1∕J = 0.3.

It is shown that the quantum coherence, in the cho-
sen basis, is more robust than quantum correlation. To 
go further, we study in what follows the influence of the 

xy-anisotropy parameter � on the three suggested quantifiers. 
To do this, we illustrate in Fig. 5 the behaviors of C

�1
 , UIN, 

and LQU in terms of � for various values of the normalized 
magnetic field b/J.

It is observed that the three quantifiers behave similarly in 
terms of � when b∕J ≥ 0.9 . They increase from a vanished 
value, especially for b∕J > 0.9 , to reach a maximum 

Fig. 3   The variation of �
1
 norm of coherence C

�
1
(�) (a, d), UIN (b, e) and LQU (c, f) in terms of temperature and Ising spin exchange J

1
∕J for 

� = 0.95 , b∕J = 0.1 , Γ∕J = 0.3

Fig. 4   A comparative behavior of all considered quantifiers in terms 
of temperature for � = 0.95 , Γ∕J = 0.3 and b∕J = 0.1 and Ising spin 
exchange J

1
∕J = 0.3 . The figure plots show that the quantum coher-

ence decays more slowly in comparison with the skew-information 
correlation when the temperature increases relatively
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value. We notice that the amounts of coherence (Fig. 5a) 
and correlations captured by UIN (Fig. 5b) are important 
when b/J is small. However, this behavior is reproduced 
for LQU (Fig. 5c) only when b∕J ≥ 0.9 and refuted for 
b∕J < 0.9 . Besides, LQU reveals a typical behavior in terms 
of � when b∕J < 0.9 . It decreases monotonically from a 
maximum value to reach a local minimum, which depends 
on b/J, and then  increases to attain its own maximum 
again. We conclude from Fig. 5 that increasing � generally 

contributes to enhancing coherence and non-local quantum 
correlations.

Next, we analyse the combined effect of the xy-anisotropy 
parameter � and the temperature on the dynamics of C

�1
(�) , 

UIN, and LQU.
From Fig. 6, we show plots that demonstrate that quantum 

coherence and WYSI-correlation are maximal for T∕J → 0 
and � ≤ 0.25 . More precisely, it can be observed from 
Fig. 6a, b, that the �1 norm of coherence and UIN behave 

Fig. 5   The variation of �
1
 norm of coherence C�1 (�) (a), UIN (b) and LQU (c) as a function of xy-anisotropy parameter � , with varying values of 

b/J, while keeping other parameters such as T∕J = 0.1 , Γ∕J = 0.3 and J
1
∕J = −0.3

Fig. 6   The variation of �
1
 norm of coherence C

�
1
(�) (a), UIN (b) and LQU (c) as a function of temperature is shown for different values of � , 

with fixed parameters b∕J = 0.5 , Γ∕J = 0.3 and J
1
∕J = −0.3
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similarly for very small temperature values. Nevertheless, 
as T/J increases, quantum coherence decreases monotoni-
cally to achieve a value close to zero, while UIN disappears 
asymptotically. Besides, some transitions from coherent to 
incoherent and from non-correlated to correlated states for 
� ≤ 0.25 can be detected. Like the previous analysis, the 

LQU (Fig. 6c) shows different behavior compared to the 
coherence and non-local correlations captured by UIN. As 
Fig. 6c displays, the LQU decreases more rapidly to close 
to zero as T/J increases. From these obtained results, we can 
stress that the xy-anisotropy � not only improves quantum 

Fig. 7   The dynamic behavior of coherence and skew information correlations as a function of the thermal noise in the case of xy-anisotropy 
parameter 𝛼 < 0 , with fixed parameters b∕J = 0.5 , Γ∕J = 0.3 and J

1
∕J = −0.3

Fig. 8   The variation of �
1
 norm of coherence C�1 (�) (a), UIN (b) and 

LQU (c) as a function of temperature is depicted for different values 
of b/J, while the other parameters are fixed at � = 0.95,Γ∕J = 0.3 and 
J
1
∕J = −0.3 . In comparative behavior of all considered quantifiers in 

terms of temperature (d)
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correlations and coherence but also reduces the destructive 
effect of temperature.

From Fig. 7 we find that for 𝛼 < 0 or 𝛼 > 0 quantum cor-
relation and WYSI-correlation decrease as the temperature 
increases. This indicates that the thermal noise degrades 
quantum coherence and correlations independently of the 
anisotropy parameter’s sign.

Finally, we study the effect of temperature on the ther-
mal quantum coherence and correlation in the Ising-XYZ 
diamond chain for various external magnetic field values.

To do this end, we illustrate in Fig. 8 the thermal behavior 
of C

�1
 , UIN, and LQU for some chosen values of b while 

keeping the other parameters � , Γ∕J , and J1∕J constant. It 
is shown that in addition to the expected destructive effect 
of temperature, increasing values of the external magnetic 
field (b/J) lead to the collapse of quantum correlation and 
coherence. On the other hand, as shown in Fig. 8b, c, the 
quantum correlation quantifiers vary in the same trend in 
terms of T/J. As T/J increases, WYSI-derived quantum cor-
relations decrease rapidly and disappear for high tempera-
tures. It should be noted that for b = 0 and T∕J → 0 , UIN 
is maximally correlated while LQU increases from 0.45 to 
reach its own maximum value and then decreases rapidly. 
In comparison, quantum correlations are more sensitive to 
magnetic field perturbations than coherence.

5 � Concluding remarks

We have investigated the thermal behavior of nonclassi-
cal correlations and quantum coherence in a two-qubit 
Ising-XYZ diamond chain structure subjected to an exter-
nal uniform magnetic field. The influences of the model’s 
parameters on quantum correlations and the �1 norm of 
coherence are examined in detail. Our findings suggest that 
the Ising-XYZ diamond chain structure maintains non-
classical correlations and coherence at low temperatures. 
However, at higher temperatures, increased thermal noise 
decays the existing coherence and correlations between 
quantum system parts. Besides, we demonstrate that when 
the interaction between interstitial sites ( Γ∕J ≤ −1 ) in the 
Ising-XYZ structure chain is taken into account, the sys-
tem stabilizes and, therefore, the suggested quantifiers 
become important. Also, our results show that increasing 

the xy-anisotropy parameter values reinforces quantum 
correlation and coherence. We also note that the UIN and 
�1 norm of coherence generally provide similar behaviors. 
Accordingly, in addition to characterizing non-local quan-
tum correlations, UIN can be exploited to reveal quan-
tum coherence in the studied system. Despite the harm-
ful effects of temperature and high magnetic field values 
on quantum resources, we have shown that the amounts 
of quantum coherence and quantum correlations can be 
enhanced within these conditions by adjusting the other 
parameters of the investigated system.

A Appendix

The matrix of the two-qubit Heisenberg operator (18) can 
be rewrites as

where the elements of the operators (34) are defined as:

The elements of the reduced density operator �ij have been 
expressed as follows [40]:

(34)� =

⎛⎜⎜⎜⎝

�11 0 0 �14

0 �22 �23 0

0 �
∗

23
�33 0

�
∗

14
0 0 �44

⎞⎟⎟⎟⎠
,

(35)

�11 = d2
+
a2
+
e−�E1(�k ,�k+1) + d2

−
a2
−
e−�E4(�k ,�k+1)

�22 = �33 =
1

2

(
e−�E2(�k ,�k+1) + e−�E3(�k ,�k+1)

)

�23 =
1

2

(
e−�E2(�k ,�k+1) − e−�E3(�k ,�k+1)

)
�14 = d

+
a
+
e−�E1(�k ,�k+1) + d

−
a
−
e−�E4(�k ,�k+1)

�44 = d2
+
a2
+
e−�E1(�k ,�k+1) + d2

−
a2
−
e−�E4(�k ,�k+1).

(36)
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