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Abstract
The essential factor in laser frequency conversion involves phase matching within nonlinear optical crystals. To our knowl-
edge, few studies have investigated the noncollinear phase matching calculation for biaxial crystal out of the principal plane. 
In this paper, we propose an arbitrary direction phase matching model and a computational method based on gradient descent 
(GD) algorithm, which can be applied to noncollinear in the principal plane, collinear and noncollinear out of the principal 
plane. In the case of 1053 nm third harmonic generation (THG) in  LiB3O5 (LBO) crystal, the phase matching conditions 
are converted into a system of nonlinear equations with six variables and six equations, which can be solved by iterative 
optimization search with the GD algorithm and includes type-I (ss-f) and type-II (fs-f). We reveal the relationship of phase 
matching angles and effective nonlinear coefficients ( deff  ) for various structures. Our method uncovers the existence of many 
solutions in the non-principal plane with γ > 8° and the deff  close to the maximum value 0.66834 pm/V at θ = 90°, φ = 141.84° 
and γ = 0. The resolution of the arbitrary direction phase matching problem holds significant importance, as it expands the 
possibilities for laser frequency conversion, especially for noncollinear structures.

1 Introduction

Due to material limitations, it’s difficult to directly achieve 
lasers for all wavelength ranges. However, we can indirectly 
extend the laser’s spectrum into the infrared, visible light 
and ultraviolet ranges using frequency conversion technol-
ogy. The frequency conversion techniques include second 
harmonic generation (SHG), third harmonic generation 
(THG), sum frequency generation (SFG), difference fre-
quency generation (DFG), optical parametric oscillator 
(OPO), optical parametric amplification (OPA) [1–5], etc. 
The realization of these three-wave interactions needs to sat-
isfy the conservations of momentum and energy, commonly 
referred to as the phase-matching conditions. Nonlinear 

optical crystals commonly used for frequency conversion 
include  KH2PO4 (KDP), β-BaB2O4 (BBO),  KTiOPO4 
(KTP),  LiB3O5 (LBO), etc. The critical phase matching cal-
culation for uniaxial crystals is simple due to the rotational 
symmetry of their refractive index ellipsoid. However, the 
critical phase matching in biaxial crystals is more complex 
and challenging because their refractive index surface forms 
a two-sheeted structure, with three principal axes having 
unequal refractive indices [6, 7]. Therefore, it is particularly 
important to study the calculations of critical phase match-
ing of biaxial crystals.

Since the 1960s, several researchers have carried out stud-
ies on frequency conversions and phase matching calcula-
tions for biaxial crystals [5, 8–17]. In 1967, Hobden et al. 
calculated the collinear SHG phase matching curves for 
biaxial crystals, for the first time, classified phase matching 
types into 14 categories [5]. In 1984, Yao et al. calculated 
the phase matching angle and effective nonlinear coefficient 
of the biaxial crystal KTP collinear SHG to find the opti-
mal phase matching angle [9]. In 2001, Liu et al. derived 
analytical expressions for the phase matching of noncol-
linear OPA in the principal planes of biaxial crystals [11]. 
These researches above focused on collinear and principal 
planes noncollinear phase matching. The noncollinear phase 
matching outside the principal planes of biaxial crystals is 
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difficult to obtain because there is no analytical expression 
for the refractive index. In 2000, Boeuf et al. investigated 
the noncollinear phase matching of parametric down con-
version in uniaxial and biaxial crystal outside the principal 
planes [12]. However, only the phase matching for uniaxial 
crystals was calculated, not for biaxial crystals. In 2022, 
Buryy et al. optimized the local conversion efficiency for 
each fixed second harmonic direction but did not calculate 
the complete phase matching distribution, with noncollinear 
SHG outside the principal planes by the extreme surface 
method [17]. However, none of the above researches had 
solved the problem of noncollinear phase matching of biax-
ial crystals in arbitrary directions. Hobden et al. and Yao 
et al. calculated only the collinear phase matching, then, Liu 
et al. calculated only the OPA noncollinear phase matching 
in the principal planes. Boeuf et al. attempted to calculate 
the phase-matching angles in the non-principal plane, how-
ever, his approach required specifying seven variables in the 
process of parametric down conversion, resulting in limited 
degrees of freedom and an inability to obtain more combi-
nations of phase matching. Moreover, Buryy et al. searched 
for the maximum conversion efficiency at each fixed second 
harmonic direction by varying the directions of two funda-
mental waves and could not solve for all possible combina-
tions of phase matching.

In this paper, we present a novel method based on gradi-
ent descent (GD) algorithm for arbitrary directions critical 
phase matching. Our method addresses the challenging cal-
culation of the phase matching for biaxial crystals, encom-
passing collinear out of the principal plane, noncollinear in 
the principal plane and especially noncollinear out of the 
principal plane. According to the three-wave phase match-
ing and coplanar conditions, a system of nonlinear equations 
with six equations in six variables can be obtained when 
the frequency relationship is known. Our method is consist-
ent with analytical and exhaustive search methods for the 
phase matching of collinear and noncollinear in the principal 
planes. Our gradient descent method and the general ana-
lytical and exhaustive search methods all utilize the Python 
program (PyCharm, V2023.1.4). This method has profound 
significance as it can be applied to solving phase matching in 
any three-wave interactions process and arbitrary directions, 
yielding more possible three-wave combination geometries. 
In the case of 1053 nm THG in LBO crystal which has a 
significant application in inertial confinement fusion (ICF) 
and laser fast ignition [18, 19]. The remainder of the paper 
is organized as follows. Section 2 introduces the model of 
arbitrary directions phase matching calculation based on the 
GD algorithm. Section 3 presents the calculation results of 
the phase matching angles and effective nonlinear coeffi-
cients in arbitrary directions, taking 1053 nm THG in LBO 
biaxial crystal for example. Section 4 draws the conclusion 
of this paper.

2  Phase matching model and GD algorithm

2.1  Arbitrary direction phase matching conditions

The three-wave interactions process must satisfy the phase 
matching conditions: energy conservation and momentum 
conservation [20, 21].

where 
⇀

k
i
(i = 1, 2, 3) denotes the wave vector, ki = (�ini)∕c 

denotes the wave number,�i denotes the angular frequency,ni 
denotes the refractive index and c is the speed of light in 
vacuum. For biaxial crystals, the refractive index ni(�i,�i) 
of wave vector 

⇀

k
i
 is related to both the polarization (�i) and 

azimuth (�i) angles in the spherical coordinate system. As 
shown in Fig. 1, the wave vector of three-wave noncollinear 
phase matching in arbitrary directions or non-principal 
planes. We define 𝜃1 < 𝜃3 < 𝜃2 as the near-axis structure and 
𝜃2 < 𝜃3 < 𝜃1 as the off-axis structure (if in the same θ plane, 
comparing φ), and the difference between them will be 
shown later in Sect. 3.

The wave vector of three-wave noncollinear phase 
matching in arbitrary direction is decomposed into three 
coordinate axes, and the conservation of momentum con-
dition of Eq. (1) can be rewritten as [22]:
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Fig. 1  The near-axis schematic diagram of three-wave phase match-
ing. α(β) denotes the angle between wave vectors 
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Equation (3) concerning the three waves in the same 
plane, the vector triangles and the angular relationship:

where ki = �ini∕c , for arbitrary directions THG phase 
matching conditions can be obtained by combining Eqs. (2) 
and (3), where �2 = 2�1,�3 = 3�1.

Equation (5) is the refractive index surface equation of a 
biaxial crystal [23].

Here kx = sin � cos�,ky = sin � sin� and kz = cos � rep-
resent the component of the unit wave vector on the coordi-
nate axis.nx, ny and nz correspond to the principal refractive 
indexes at a given wavelength and can be solved by the Sell-
meier equations of the crystal, where nx < ny < nz.

We make the following substitutions:

Equation (5) can be rewritten as:

This is a quadratic equation, we can obtain the refrac-
tive indexes for the two polarizations (fast and slow) by the 
root formula. The refractive index of a wave vector inside a 

(2)

⎧
⎪⎨⎪⎩

k1 sin �1 cos�1 + k2 sin �2 cos�2 − k3 sin �3 cos�3 = 0

k1 sin �1 sin�1 + k2 sin �2 sin�2 − k3 sin �3 cos�3 = 0

k1 cos �1 + k2 cos �2 − k3 cos �3 = 0

,

(3)

⎧
⎪⎪⎨⎪⎪⎩

k2
3
= k2

1
+ k2

2
+ 2k1k2

�
cos �1 cos �2 + sin �1 sin �2 cos(�1 − �2)

�
a cos

�
cos �1 cos �2 + sin �1 sin �2 cos(�1 − �2)

�
= a cos

�
cos �1 cos �3 + ...

sin �1 sin �3 cos(�1 − �3)
�
+ a cos

�
cos �2 cos �3 + sin �2 sin �3 cos(�2 − �3)

�
k2
2
= k2

1
+ k2

3
− 2k1k3

�
cos �1 cos �3 + sin �1 sin �3 cos(�1 − �3)

�
,

(4)
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n1 sin �1 cos�1 + 2n2 sin �2 cos�2 − 3n3 sin �3 cos�3= 0

n1 sin �1 sin�1 + 2n2 sin �2 sin�2 − 3n3 sin �3 sin�3 = 0

n1 cos �1 + 2n2 cos �2 − 3n3 cos �3 = 0

9n2
3
− n2

1
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2
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cos �1 cos �2 + sin �1 sin �2 cos(�1 − �2)

�
= 0

a cos
�
cos �1 cos �2 + sin �1 sin �2 cos(�1 − �2)

�
= a cos

�
cos �1 cos �3 + ...

sin �1 sin �3 cos(�1 − �3)
�
+ a cos

�
cos �2 cos �3 + sin �2 sin �3 cos(�2 − �3)

�
4n2

2
− n2

1
− 9n2

3
+ 6n1n3

�
cos �1 cos �3 + sin �1 sin �3 cos(�1 − �3)
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z

= 0,

(6)

⎧⎪⎨⎪⎩

a = n−2
x
, b = n−2

y
, c = n−2

z

B = −(b + c) sin2 � cos2 � − (a + c) sin2 � sin2 � − (a + b) cos2 �

C = bc sin2 � cos2 � + ac sin2 � sin2 � + ab cos2 �

x = n−2

,

(7)x2 + Bx + C= 0,

crystal depends on the polarization, wavelength, polarization 
and azimuthal angles.

2.2  Calculation process based on GD algorithm

Equation (4) is a system of nonlinear equations with six vari-

ables and six equations which cannot be solved by analyti-
cal or exhaustive methods. Therefore, we propose a calcu-
lational method based on the GD algorithm which is widely 
applied in the field of machine learning and optimization 
[24, 25]. The loss function of the GD algorithm is a critical 
parameter which can represent the difference between the 
predicted value and the true value and the iteration direc-
tion is determined by the gradient of the loss function con-
cerning the independent variable. Subtracting the gradient 
value from the independent variable allows for a step-by-step 
iterative reduction of the target loss function until the error 
threshold is met. Thus, applying the GD method to the prob-
lem of solving a system of nonlinear equations can quickly 
converge to a locally optimal solution [26].

As for  the solut ion of  Eq.   (4) ,  replacing 
�1, �2, �3,�1,�2,�3 by x1, x2, x3, x4, x5, x6, respectively, it 
can be transformed into a set of six multivariate functions 
of Eq. (9) and the corresponding loss functions could be 
formed by the root mean square (RMS) of each multivariate 
function. The iteration directions of the six independent vari-
ables can be combined to form an iteration vector. Each gra-
dient can result in a positive, negative, or zero value, signify-
ing diverse iterative directions. The determination of each 
gradient is not solely governed by a single loss function. 

(8)

⎧
⎪⎨⎪⎩

nfast =
√
2∕

�
−B +

√
B2 − 4C

nslow =
√
2∕

�
−B −

√
B2 − 4C

,
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Therefore, the key is how to determine the descent values of 
the six independent variables in each round of iteration. A 
simple method is to take the average value of partial deriva-
tives of different loss functions for the same independent 
variable as the descent value of this independent variable, 
which may ignore some faster descent directions from the 
overall view, and even cause the iteration to be difficult to 
converge. In this work, we propose a method wherein the 
maximum absolute value in all iterative directions is retained 
for each independent variable. This approach results in sev-
eral iterative vectors formed by combining these respective 
iterative directions of each independent variable. Ultimately, 
the best iterative vector is selected based on its capacity to 
minimize the sum of all loss functions. This method could 
effectively accelerate the process of iterative convergence.

Figure 2 shows the computational flowchart based on 
the GD algorithm, and the detailed iterative process of 
iterative are as follows.

Step 1: Parameters definitions. R is the maximum itera-
tion number and ε is the error threshold of loss func-
tions. The random initial independent variables vector 
is x(n) = (x

(n)

1
, x

(n)

2
, x

(n)

3
, x

(n)

4
, x

(n)

5
, x

(n)

6
) , in which n repre-

sents the iterative count, and n = 0 means the initial iter-
ation. According to the relationship between the angles 
of the three vectors, the initial value of x(0)

1
, x

(0)

3
, x

(0)

4
, x

(0)

6
 

could be set as four random data between the targeted 
range, and then the initial value of x(0)

2
, x

(0)

5
 could be set 

as x
(0)

1
+x

(0)

3

2
,
x
(0)

4
+x

(0)

6

2
 respectively.

Step 2: Transform the nonlinear equations of 
Eq.  (9) to a vector function F(x) = 0 and the cor-
responding loss vector function is L(x) = 0 , whose 
component could be represented as follows: 
Lj =

1

2
(fj(x) − 0)2 =

1

2
fj(x)

2, j = 1, 2, ..., 6.
Step 3: Calculate the value of L(x(n)) L(x(n)) , and then 
sum all the results of six components together as the n 
th iteration’s loss value En . If the loss value En is less 
than ε, then the vector x(n) is just one of the valid solu-
tions of the nonlinear functions and the iteration pro-
cess could stop. If the iterative count exceeds the maxi-

(9)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f1(x) = n1 sin x1 cos x4 + 2n2 sin x2 cos x5 − 3n3 sin x3 cos x6= 0

f2(x) = n1 sin x1 sin x4 + 2n2 sin x2 sin x5 − 3n3 sin x3 sin x6 = 0

f3(x) = n1 cos x1 + 2n2 cos x2 − 3n3 cos x3 = 0

f4(x) = 9n
2

3
− n2

1
− 4n2

2
− 4n1n2

�
cos x1 cos x2 + sin x1 sin x2 cos(x4 − x5)

�
= 0

f5(x) = a cos
�
cos x1 cos x2 + sin x1 sin x2 cos(x4 − x5)

�
− a cos

�
cos x1 cos x3 + ...

cos x1 cos x3
�
− a cos

�
cos x2 cos x3 + sin x2 sin x3 cos(x5 − x6)

�
= 0

f6(x) = 4n2
2
− n2

1
− 9n2

3
+ 6n1n3

�
cos x1 cos x3 + sin x1 sin x3 cos(x4 − x6)

�
= 0

,

mum iteration number, i.e., n > R, the iteration process 
should also stop, otherwise, the process should go on.
Step 4: Calculate the Jacobi matrix of L(x(n)) denoted as 
JL . Analyze each column of the matrix to get the average 
of positive items, the average of negative items and the 
zero item, denoted as A+

j
,A−

j
,A0

j
, respectively, which can 

be formed into i terat ive direct ion vectors 
Cj = (A+

j
,A−

j
,A0

j
). Specifically, the iterative direction vec-

tors Cj as at least one component when the corresponding 
column has only positive items, or only negative items or 
only zero items. Then assemble gradient vectors Gm 
whose jth component is one of the Cj vector’s item. By 
denoting the number of Cj vector’s components as Nj, the 
count of the gradient vectors could be represented as 

M =
∏6

1
Nj and the gradient vectors could be denoted as 

Gm,m = 1, 2, ...,M.

Step 5: Calculate the value of the loss function at each 
x(n) − Gm , and denote the final iterative gradient vector 
for the n th iteration as Gmin = argmin

{
x(n) − Gm

}
 , with 

the minimal value of loss function.
Step 6: Update the iterative independent variables vector 
as x(n + 1) = x(n) − Gmin and update the iterative count as 
n = n + 1 then repeat the process from step 3.

3  Calculational results: take 1053 nm THG 
in LBO as an example

Our method realizes critical phase matching calculations for 
collinear and noncollinear configurations, principal and non-
principal plane cases, type-I (ss-f) and type-II (fs-f). Next, 
we will delve the phase matching calculation of THG in a 

(10)JL =

⎡
⎢⎢⎢⎢⎢⎣

�L1

�x1

�L2

�x2
⋯

�L1

�x6
�L2

�x1

�L2

�x2
⋯

�L2

�x6

⋮ ⋮ ⋱ ⋮
�L6

�x1

�L6

�x2
⋯

�L6

�x6

⎤
⎥⎥⎥⎥⎥⎦

,
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negative biaxial crystal LBO with a fundamental wavelength 
of 1053 nm, where ω1 = ω, ω2 = 2ω, ω3 = 3ω. For simplicity, 
we only consider monochromatic waves.

3.1  Collinear THG phase matching

Collinear THG phase matching geometry is shown in 
Fig. 3, where �1 = �2 = �3,�1 = �2 = �3 and � = � = � = 0 . 

Based on the previous studies [5, 9], the phase matching 
condition can be obtained.

The first is the exhaustive search method. The phase 
matching curves (the curve formed by scattered points) 
of type-I and type-II can be obtained through iteration 
over the two variables, θ and φ, ranging from 0 to 180°, 
as shown in Fig. 4a and c. The second is our GD method. 
By setting �1 = �2 = �3 and �1 = �2 = �3 , with � and � 
ranging from 0 to 180°, we can obtain the phase match-
ing curves for a half sphere, illustrated in Fig. 4b and d. 
From Fig. 4 we can see that the calculation results of the 
methods of exhaustive search and GD are in high agree-
ment. Type-I with solutions ranges: θ is from 16.8° to 
163.2°, φ is from 0 to 45.66° and 134.34° to 180°. Type-II 

(11)
{

s + s → f ∶ ns
�
+ 2ns

2�
= 3n

f

3�

f + s → f ∶ n
f
� + 2ns

2�
= 3n

f

3�

,

Fig. 2  Flowchart of the calcula-
tion based on the GD algorithm

Fig. 3  Collinear phase matching geometries
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with solutions ranges: θ is from 45.37° to 134.63°, φ is 
from 61.12° to 118.88°. The phase matching curves of 
type-I and type-II collinear THG are symmetric about 
θ = 90° and φ = 90° (also symmetric about θ = 180° and 
φ = 180°). In other words, it is just needed to calculate the 
phase matching curves within the first octant (θ = [0–90°], 
φ = [0–90°]).

3.2  Noncollinear THG phase matching in principal 
planes

Noncollinear THG phase matching geometries in the 
principal plane are shown in Fig. 5. For near-axis struc-
ture: �2 = �3 + � and �1 = �3 − � ; for off-axis structure: 
�1 = �3 + � and �2 = �3 − � , where α + β = γ.

In the present researches, noncollinear phase matching 
in the principal plane is generally calculated by analytical 
or exhaustive search methods [12]. According to Fig. 5, the 
phase matching condition can be rewritten as Eq. (12). The 

only two realizations of 1053nm fundamental wave noncol-
linear THG in the principal planes are type-I in the XY plane 
and type-II in the YZ plane. No other type of THG in the 
principal planes can be realized, as the effective nonlinear 
coefficient is zero ( deff = 0 ) or Eq. (12) without a solution.

3.2.1  Type‑I, s + s → f in XY principal plane

There are three methods to calculate the phase matching 
angles for type-I THG in XY principal plane, θ = 90°. The 
first is the analytical method. Equation (13) is the analytical 
expression for type-I noncollinear THG phase matching 
angles ( �3 ) of 

⇀

k
3

 , derived from Eq. (12). By successively 
varying the angle α, we can derive the phase matching 

(12)
{

3n3� = n� cos � + 2n2� cos �

2n2� sin � = n� sin �
,

Fig. 4  Collinear THG phase 
matching curves, λ1 = 1.053 μm, 
λ2 = 0.5265 μm, λ3 = 0.351 μm. 
a ss-f, exhaustive search 
method; b ss-f, GD method; c 
fs-f, exhaustive search method; 
d fs-f, GD method

Fig. 5  Noncollinear phase 
matching geometries in 
principal planes. a Near-axis 
structure; b Off-axis structure
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curves are shown in Fig.  6a. Where, λ1 = 1.053  μm, 
λ2 = 0.5265 μm, λ3 = 0.351 μm; When � = � = � = 0 and 
�1 = �1 = �1 = 38.224°, it signifies collinear phase 
matching.

 
The second is the exhaustive search method. 

Replacing the refractive index expression in Eq.  (12): 
n1 = ns

�
, n2 = ns

2�
, n3 = n

f

3�
 . The phase matching curves can 

be obtained by iterating over the three variables: φ3, α and 
β, as shown in Fig. 6b.

Distinguishing from the preceding two existing methods, 
the third is our novel method which is based on the GD 
algorithm. Where R = 2000, � = 10−12 , fixing θ = 90° and 
φ within 35°–145. The phase matching curves are shown in 
Fig. 6c. It can be noticed that the results calculated by our 
method are highly consistent with the previous two meth-
ods. The phase matching curves of φ3-α, φ3-β, and φ3-γ are 
symmetric about φ3 = 90° with γmax = 18.53° (αmax = 6.11°, 
βmax = 12.42°) when φ3 = 90°. The phase matching curves of 
the near-axis and off-axis can be further obtained, as shown 
in Fig. 6d. Where φ1, φ2, φ3 denote near-axis, φ1ʹ, φ2ʹ, φ3ʹ 

(13)

⎧⎪⎪⎨⎪⎪⎩

�3

�
�3
�
= arcsin

⎧⎪⎨⎪⎩

nx(�3)
nz(�2)
�2

cos �+
nz(�1)
�1

cos �

⎧⎪⎨⎪⎩

�
ny(�3)
�3

�2
−
�
nz(�2)
�2

cos �+
nz(�1)
�1

cos �

�2

n2
y(�3)−n2x(�3)

⎫⎪⎬⎪⎭

1∕2⎫⎪⎬⎪⎭
� = arcsin

�
ns
2

ns
1

�1

�2
sin �

�
,

denote off-axis, and φ3 = φ3ʹ (green curve) is symmetric 
about φ = 90°. Further, it can be observed that the phase 
matching angles between the near and off-axis are symmet-
ric about φ = 90°.

3.2.2  Type‑II, f + s → f in YZ principal plane

There are two methods to calculate the phase matching 
angles for type-II THG in the YZ principal plane, φ = 90°. 
Type-II phase matching is unable to derive analytical 
expressions. The first is the exhaustive search method. 
Replacing the refractive index expression in Eq.  (12): 
n1 = n

f
�, n2 = ns

2�
, n3 = n

f

3�
 . The phase matching curves can 

be obtained by iterating over the three variables: θ3, α and β, 
as shown in Fig. 7a. Where α, β, γ denote the near-axis, αʹ, 
βʹ, γʹ denote the off-axis.

Distinguished from the exhaustive search method, 
the second is our novel method which is based on GD. 
Where R = 2000, � = 10−10 , fixing φ = 90° and θ within 
40°–140°. The phase matching curves are shown in 
Fig. 7b. We can also find that the results calculated by our 
method are highly consistent with the exhaustive search 

Fig. 6  Noncollinear phase 
matching curves of type-I (ss-f) 
THG in XY principal plane, 
λ1 = 1.053 μm, λ2 = 0.5265 μm, 
λ3 = 0.351 μm. a Analytical 
method; b Exhaustive search 
method; c GD method; d Near-
axis and off-axis
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method. The phase matching curves of θ3-α, θ3-β, and 
θ3-γ are asymmetric about θ3 = 90°. The near-axis and 
off-axis three-wave phase matching curves can be further 
obtained, as shown in Fig. 7c. Where θ1, θ2, θ3 denote 
near-axis, θ1ʹ, θ2ʹ, θ3ʹ denote off-axis, and θ2 = θ2ʹ (green 
curve) is symmetric about θ = 90°. It can also be found 
that the phase matching angles between the near and off-
axis are symmetric about θ = 90°.

Moreover, the accuracy of different methods is ana-
lyzed by comparing their effects on wave vector mismatch 
and conversion efficiencies. For THG conversion effi-
ciency (η) is related to the wave vector mismatch ( Δk ) 
[21].

where L is the crystal thickness, � ∝ ��, �0 = 1053nm . Δn is 
the difference in refractive index, which can be obtained 
from Eqs. (9), (11), (12) and (13). For the analytical method, 
Δk = 0, �� = 1 . In the exhaustive method and GD method we 
set two different thresholds, μ and ε. For the exhaustive 
s e a r c h  m e t h o d ,  � = Δn = 10−6  , 
Δk =

2�

�0
Δn =

2�

�0
� = 5.97 ⋅ 10−3∕mm , when L = 1 mm, 

η’ = 0.9999; when L = 5 mm, η’ = 0.9971; when L = 10 mm, 
η’ = 0.9883. For our GD method, � = 10−12,Δn =

√
2� , 

Δk =
2�

�0
Δn =

2�

�0

√
2� = 8.44 ⋅ 10−3∕mm , when L = 1 mm, 

η’ = 0.9998; when L = 5 mm, η’ = 0.9942; when L = 10 mm, 

(14)

{
�� = sin c2(|Δk|L∕2)

Δk =
2�

�0
Δn

,

η’ = 0.9768. By comparing the η’ values of other methods, 
the accuracy of our GD method is high enough.

3.3  Noncollinear THG phase matching 
outside the principal planes

In subsections 3.1 and 3.2, the analytic and exhaustive 
search methods can calculate phase matching of collinear 
and noncollinear in the principal planes, but they are ineffec-
tive in calculating noncollinear phase matching outside the 
principal planes. Next, we will apply our method to conduct 
noncollinear THG phase matching calculations outside the 
principal planes, the diagram is shown in Fig. 1.

3.3.1  Type‑I, s + s → f

For type-I noncollinear THG phase matching outside of 
principal planes, the refractive indices n1,n2 and n3 in Eq. (9) 
can be replaced by ns

�
, ns

2�
, n

f

3�
 respectively. The results 

obtained through our GD method are depicted in Fig. 8, 
where R = 3000, � = 10−10 . Figure 8a shows the total phase 
matching distributions, including both near-axis and off-axis 
types; Fig. 8b and c correspond to near-axis and off-axis 
phase matching distributions, respectively; Fig. 8d is the 
projection of Fig. 8a in the θ-φ plane, and the black line 
represents the collinear phase matching curve. k1, k2 and 
k3 correspond to near-axis structure; k1’, k2’ and k3’ corre-
spond to off-axis structure. Figure 8 reveals that the phase 
matching distributions of the near-axis type and the off-axis 

Fig. 7  Noncollinear phase 
matching curves of type-II (fs-f) 
THG in YZ principal plane, 
λ1 = 1.053 μm, λ2 = 0.5265 μm, 
λ3 = 0.351 μm. a Exhaustive 
search method; b GD method; c 
Near-axis and off-axis
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type exhibit approximately symmetric about θ = 90°. The 
outline of the arbitrarily directions phase-matching distri-
butions projected in the θ-φ plane agree with the collinear 
phase-matching curve (black curve). If the number of calcu-
lations is large enough, the phase matching results in arbi-
trary directions can perfectly include phase matching in the 
collinear and principal planes.

3.3.2  Type‑II, f + s → f

Similar to subsection 3.3.1, for type-II noncollinear THG 
phase matching outside of principal planes, the refractive 
indices n1,n2 and n3 in Eq. (9) can be replaced by nf�, ns2�, n

f

3�
 

respectively. Figure  9 shows the distributions of phase 
matching in arbitrary direction obtained by the GD method, 

Fig. 8  Noncollinear phase 
matching of type-I (ss-f) THG 
outside of principal planes, 
λ1 = 1.053 μm, λ2 = 0.5265 μm, 
λ3 = 0.351 μm. a Near-axis and 
off-axis; b Near-axis; c Off-axis; 
d Projection to the θ-φ plane

Fig. 9  Noncollinear phase 
matching of type-II (fs-f) THG 
outside of principal planes, 
λ1 = 1.053 μm, λ2 = 0.5265 μm, 
λ3 = 0.351 μm. a Near-axis and 
off-axis; b Near-axis; c Off-axis; 
d Projection to the θ-φ plane



 D. Xing et al.109 Page 10 of 15

where R = 3000, � = 10−10 . From Fig. 9, we can also find 
that the phase matching distributions of the near-axis type 
and the off-axis type are approximately symmetric about 
θ = 90°. The outline of the arbitrarily directions phase-
matching distributions projected in the θ-φ plane also agrees 
with the collinear phase-matching curve (black curve).

3.4  Effective nonlinear coefficient for THG phase 
matching

The conversion efficiency (η) of the three-wave interaction 
process is proportional to the square of the effective nonlin-
earity coefficient ( deff  ), � ∝

(
deff

)2 . The effective nonlinear 
coefficients are related to the second-order nonlinear tensor 
( dijk ) of crystal and the unit-polarized vectors ( �i, �j, �k ) of 
the interacting three waves [21, 22].

For biaxial crystals, the unit politicized vectors of the 
slow and fast waves are respectively:

(15)deff = aidijkajak

where δi is the angle between e(ωi) and the plane z-k, which 
is the function of θ, φ and Ωi. e(ωi) is the component of the 
electric field corresponding to the wave vector. Ωi is the 
angle between the optic axis and the z-axis at frequency ωi 
in the biaxial crystal [21, 22].

The second-order nonlinear tensor of LBO crystals.

Equation  (18) is the expression for the type-I phase 
matching.

Equation  (19) is the expression for the type-II phase 
matching.

(16)

aes =

⎛
⎜⎜⎝

a
es
1

a
es
2

a
es
3

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

cos � cos� cos �i − sin� sin �i
cos � sin� cos �i + cos� sin �i

− sin � cos �i

⎞
⎟⎟⎠
,

aef =

⎛
⎜⎜⎝

a
ef

1

a
ef

2

a
ef

3

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

− cos � cos� sin �i − sin� cos �i
− cos � sin� sin �i + cos� cos �i

sin � sin �i

⎞
⎟⎟⎠
,

(17)

⎧
⎪⎨⎪⎩

cot 2�i =
cot2 Ωi sin

2 �−cos2 � cos2 �+sin2 �

cos � sin(2�)

tanΩi =
nz(�i)

nx(�i)

�
n2
y
(�i)−n

2
x
(�i)

n2
z
(�i)−n

2
y
(�i)

�1∕2 ,

(18)dijk =

⎛⎜⎜⎝

0 0 0 0 0 d15
d31 d33 d32 0 0 0

0 0 0 d24 0 0

⎞⎟⎟⎠
,

(19)

d
ssf

eff
(I) = a

e3
i
dijka

e1
j
a
e2
k
= a

e3,f

i
dijka

e1,s

j
a
e2,s

k

= d31(− cos �3 sin�3 sin �3 + cos�3 cos �3)(cos �1 cos�1 cos �1 − sin�1 sin �1)(cos �2 cos�2 cos �2 − sin�2 sin �2)

+d33(− cos �3 sin�3 sin �3 + cos�3 cos �3)(cos �1 sin�1 cos �1 + cos�1 sin �1)(cos �2 sin�2 cos �2 + cos�2 sin �2)

+d32(− cos �3 sin�3 sin �3 + cos�3 cos �3) sin �1 cos �1 sin �2 cos �2

+d24 sin �3 sin �3[− sin �1 cos �1(cos �2 sin�2 cos �2 + cos�2 sin �2) − sin �2 cos �2(cos �1 sin�1 cos �1 + cos�1 sin �1)]

+d15(− cos �3 cos�3 sin �3 − sin�3 cos �3)[(cos �1 sin�1 cos �1 + cos�1 sin �1)(cos �2 cos�2 cos �2 − sin�2 sin �2) + ...

(cos �1 cos�1 cos �1 − sin�1 sin �1)(cos �2 sin�2 cos �2 + cos�2 sin �2)],

(20)

d
fsf

eff
(II) = a

e3
i
dijka

e1
j
a
e2
k

= a
e3,f

i
dijka

e1,f

j
a
e2,s

k

= d31(− cos �3 sin�3 sin �3 + cos�3 cos �3)(− cos �1 cos�1 sin �1 − sin�1 cos �1)(cos �2 cos�2 cos �2 − sin�2 sin �2)

+d33(− cos �3 sin�3 sin �3 + cos�3 cos �3)(− cos �1 sin�1 sin �1 + cos�1 cos �1)(cos �2 sin�2 cos �2 + cos�2 sin �2)

+d32(− cos �3 sin�3 sin �3 + cos�3 cos �3)(− sin �1 sin �1 sin �2 cos �2)

+d24 sin �3 sin �3
[
sin �1 sin �1(cos �2 sin�2 cos �2 + cos�2 sin �2) − sin �2 cos �2(− cos �1 sin�1 sin �1 + cos�1 cos �1)

]

+d15(− cos �3 cos�3 sin �3 − sin�3 cos �3)[(− cos �1 sin�1 sin �1 + cos�1 cos �1)(cos �2 cos�2 cos �2 − sin�2 sin �2) + ...

(− cos �1 cos�1 sin �1 − sin�1 cos �1)(cos �2 sin�2 cos �2 + cos�2 sin �2)],
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Based on Ref. [25], we derive the effective nonlinear 
coefficient expressions of THG. The second-order nonlinear 
tensor coefficient of LBO crystals, where d31 = 0.67 pm/V, 
d32 =  ± 0.85 pm/V, d33 =  ± 0.04 pm/V [21]. For collinear 
THG phase matching,�1 = �2 = �3 = �,�1 = �2 = �3 = � 
and �1 = �2 = �3 = � , Eqs. (19) and (20) can be simplified. 
In the XY principal plane θ = 90° and δ = 0, we can simplify 
the expressions of effective nonlinear coeff i-
cients:dXY ,ssf

eff
(I) = d32 cos�3 and dXY ,fsf

eff
(II) = 0 . In the YZ 

principal plane φ = 90° and δ = 0, dYZ,ssf
eff

(I) = 0 and 
d
YZ,fsf

eff
(II) = d15 cos �2 . Similarly, when considering the XZ 

principal plane, no solution exists for THG phase matching 
as discussed in subsection 3.2. Its effective nonlinear coef-
ficient expression is not in the scope of our discussion. For 
collinear and principal planes SHG, the effective nonlinear 
coefficients we calculate are in agreement with Ref. [21].

The distributions of effective nonlinear coefficients can 
be obtained by substituting the phase matching angles 
calculated in subsections 3.1, 3.2, and 3.3 into Eqs. (14) 
and (15). As shown in Fig.  10, the effective nonlinear 
coefficient distributions for collinear (red points) and 
XY principal plane (blue points) in the LBO crystal cor-
respond to the results of the phase matching calculations 
in Figs. 4b and 6, respectively. Figure 10a is the distribu-
tion of deff (�,�) , We note that the maximum and minimum 
points of the collinear align with those of the XY principal 
plane, (deff )min = − 0.66834 pm/V at θ = 90° and φ = 38.16°, 
(deff )max = 0.66834 pm/V at θ = 90° and φ = 141.84°, and 

{
(deff )min

}2
=
{
(deff )max

}2 . We can conclude that the deff  
distributions of the collinear and XY principal plane are 
approximately centrosymmetric about the point (90°, 90°, 
0). Figure 10b–d show the left, front and top views of the 
deff (�,�) , respectively.

Similarly, according to Eq. (14), the effective nonlinear 
coefficients of the arbitrary directions noncollinear THG are 
related to �i and �i(i = 1,2,3) of the three wave vectors, it 
is related to six angles. As shown in Fig. 11, the effective 
nonlinear coefficients distributions of arbitrary directions 
and collinear (black points) type-I THG in the LBO crystal. 
Figure 11a represents the effective nonlinear coefficients 
corresponding to the near-axis and off-axis types, where 
the black curve is the collinear type. We can find that the 
effective nonlinear coefficients of the arbitrary directions 
type fill Fig. 10a, with the collinear type serving as a partial 
boundary, which is approximately centrosymmetric about 
the point (90°, 90°, 0). Figure 11b and c show the effec-
tive nonlinear coefficients for near-axis and off-axis types, 
respectively; Fig. 11d–f show the front, left and top views 
of Fig. 11a, respectively. From Fig. 11 we can conclude that 
the deff  of arbitrary directions phase matching achieves the 
maximum and minimum value at XY principal plane col-
linear phase matching. Further, there exists a large number 
of phase-matching types in which deff  close to the maximum 
and minimum values not only around the XY principal plane 
collinear phase matching point but also at the ends of the 
polarization angle range (near 0 or 180°) where the angle γ 
greater than 8°.

Fig. 10  The effective nonlinear 
coefficient distributions of the 
XY principal plane and the col-
linear type-I (ss-f) THG, LBO, 
λ0 = 1053nm. a The distribution 
concerning polarization and 
azimuth angles; b Left view; c 
Front view; d Top view
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For 1053 nm type-II THG phase matching. As shown 
in Fig. 12, the effective nonlinear coefficient distributions 
for collinear (black points) and YZ principal plane which 

correspond to the results of the phase matching calculations 
in Figs. 4d and 7, respectively. According to Eq. (15), the 
effective nonlinear coefficients of the collinear are related to 

Fig. 11  The effective nonlinear coefficient distributions of arbitrary directions and the collinear type-I (ss-f) THG, LBO, λ0 = 1053nm. a Near-
axis, off-axis and collinear; b Near-axis and collinear; c Off-axis and collinear; d Front view; e Left view; f Top view

Fig. 12  The effective nonlinear 
coefficient distributions of the 
YZ principal plane and col-
linear type-II (fs-f) THG, LBO, 
λ0 = 1053nm. a The distribution 
concerning polarization and 
azimuth angles; b Front view; c 
Left view; d Top view
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Fig. 13  The effective nonlinear coefficient distributions of arbitrary directions, YZ principal plane and the collinear type-II (fs-f) THG, LBO, 
λ0 = 1053nm. a Near-axis, off-axis and collinear; b Near-axis and collinear; c Off-axis and collinear; d Front view; e Left view; f Top view

Table 1  Partial results of the 
GD method for solving THG 
phase matching in arbitrary 
direction at λ1 = 1.053 μm for 
LBO crystal

Types θ1/° θ2/° θ3/° φ1/° φ2/° φ3/° α/° β/° γ/° deff/pm/V

Type-I, near-axis 172.08 177.50 176.90 54.25 144.64 86.90 2.75 5.57 8.32 0.6654
171.77 179.64 177.31 60.66 162.48 65.67 2.75 5.56 8.31 0.6647
107.55 108.51 108.20 139.61 139.63 138.96 0.44 0.89 1.33 0.4671

89.96 91.03 89.68 140.74 139.51 139.92 1.41 2.84 4.25 0.6486
88.39 89.19 88.91 104.65 86.12 92.23 6.11 12.42 18.53 0.0330

… … …
Type-I, off-axis 175.21 174.47 176.43 163.37 56.09 81.22 2.75 5.56 8.31 0.6663

173.87 173.16 174.69 141.62 61.13 83.31 2.77 5.61 8.38 0.6647
112.64 111.24 111.70 138.35 137.92 138.06 0.48 0.97 1.45 0.3920

93.16 90.10 91.11 141.40 140.40 140.73 1.06 2.15 3.21 0.6561
96.67 85.84 89.42 102.30 87.30 92.23 6.09 12.39 18.48 0.0325

… … …
Type-II, near-axis 47.47 47.97 47.79 85.15 89.31 87.96 1.01 2.10 3.1 0.4487

57.41 63.70 61.65 76.68 79.14 78.37 2.16 4.48 6.64 0.3052
71.71 72.46 72.17 83.88 93.18 90.17 2.89 5.99 8.88 0.2008
70.86 80.30 77.23 89.97 90.30 90.20 3.07 6.37 9.44 0.1129
85.79 88.36 87.52 74.92 84.18 81.17 3.12 6.47 9.59 0.0208

… … …
Type-II, off-axis 53.29 49.87 50.98 89.91 92.32 91.51 1.28 2.63 3.91 0.4318

65.26 58.87 60.95 93.87 92.09 92.69 2.14 4.43 6.58 0.3466
75.45 67.33 69.97 88.25 88.54 88.44 2.64 5.48 8.12 0.2583
89.43 80.39 83.33 98.33 97.46 97.75 2.95 6.13 9.08 0.1106
91.78 89.66 90.35 100.76 91.14 94.27 3.20 6.65 9.85 0.0036
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�i and �i(i = 1,2,3), and the effective nonlinear coefficients 
of the YZ principal plane are related to the �2 of the sec-
ond-harmonic wave vectors. Figure 12a is the distribution 
of deff (�,�) , we can see that the maximum and minimum 
points of the collinear and YZ principal plane are consist-
ent with each other, (deff )min = − 0.47284 pm/V at φ = 90° 
and θ = 134.89°, (deff )max = 0.47284 pm/V at φ = 90° and 

θ = 45.11°, and 
{
(deff )min

}2
=
{
(deff )max

}2 . We can also 
conclude that the deff  distributions of the collinear and YZ 
principal plane are approximately centrosymmetric about the 
point (90°, 90°, 0). Figure 12b–d show the front, left and top 
views of the deff (�,�) , respectively.

Similarly, according to Eq. (15), the effective nonlinear 
coefficients of the arbitrary directions THG are related to �i 
and �i (i = 1,2,3). Figure 13a represents the effective nonlin-
ear coefficients corresponding to the near-axis and off-axis 
types, where the black curve is the collinear type. Figure 13b 
and c show the effective nonlinear coefficients for near-axis 
and off-axis types, respectively; Fig. 13d–f show the front, 
left and top views of Fig. 13a, respectively. We can also find 
that the effective nonlinear coefficients curves of the YZ 
principal plane and collinear serving as the boundary of the 
arbitrary directions, the effective nonlinear coefficients of 
Fig. 13 are approximately centrosymmetric about the point 
(90°, 90°, 0).

Table 1 represents the partial results of the GD method for 
solving the THG phase matching in arbitrary directions for 
LBO crystals at 1053 nm: phase matching angles, angles of 
three-wave vectors and effective nonlinear coefficients. The 
phase matching consists of Type-I and Type-II, each type 
including near-axis and off-axis. One set of phase matching 
solutions consists of the polarization and direction angles of 
three wave vectors, including six angles �1, �2, �3,�1,�2,�3.

4  Conclusion

In this paper, we propose and derive a model for arbitrary 
direction phase matching, and successfully implement 
phase matching calculations based on the GD algorithm. 
For 1053nm THG in LBO crystal, including three subcat-
egories: collinear, noncollinear in the XY and YZ princi-
pal planes, and noncollinear in arbitrary directions. It can 
be further divided into two subcategories: type-I (ss-f) and 
type-II (fs-f). For collinear and principal planes noncol-
linear THG phase matching, we compared our GD method 
with traditional analytical and exhaustive search methods, 
and the computed results exhibited a high degree of con-
sistency. Furthermore, we obtained the distribution of 
phase matching angles and effective nonlinear coefficients 
for arbitrary direction noncollinear THG. We found that 
the collinear and principal planes phase matching curves 

constitute the outline of the distribution for arbitrary direc-
tion phase matching. The phase matching angles exhibit 
approximate symmetry around both θ = 90° and φ = 90°, 
and the near-axis and off-axis are approximately symmet-
ric about θ = 90°. The effective nonlinear coefficients of 
the near-axis and off-axis are approximately centrosym-
metric about (90°, 90°, 0). Besides, type-I possesses larger 
nonlinear coefficients and noncollinear angles compared to 
type-II. It has the largest nonlinear coefficient at collinear 
structure, while the angle γ is greater than 8° as the effec-
tive nonlinear coefficient approaches its maximum value.

Our method proves to be versatile for laser frequency 
conversion as arbitrary directions phase matching presents 
a more extensive range of solutions compared to collinear 
and noncollinear in principal plane phase matching. The 
phase matching of various types of both uniaxial and biax-
ial crystals can be calculated by our GD method. Not only 
1053 nm wavelength, but other wavelengths can be applied 
as well. It could provide a higher conversion efficiency 
for SFG and DFG [2], a broader gain bandwidth for OPA 
and OPO [1, 4], a higher resolution and a larger temporal 
window for third-order auto-correlator [27].
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