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Abstract
In our investigation, we delve into the dynamics of thermal entanglement and quantum-memory-assisted entropic uncertainty 
relation (QMA-EUR) within an XXZ Heisenberg spin-1/2 chain consisting of two qubits. This system is affected by the 
Herring–Flicker (HF) coupling and exposed to the Dzyaloshinsky–Moriya (DM) interaction, in the presence of an external 
homogeneous magnetic field. We assume that the system is in thermal equilibrium with a reservoir and examine how vari-
ous parameters, including the HF coupling distance R, equilibrium temperature, and other system characteristics, affect the 
logarithmic negativity used to quantify thermal entanglement and QMA-EUR. Our findings reveal intriguing distinctions in 
the behaviors of QMA-EUR and thermal entanglement. Notably, an increase in temperature is found to effectively reduce 
thermal entanglement while simultaneously enhancing QMA-EUR. Furthermore, we notice that bipartite entanglement and 
QMA-EUR exhibit distinct behaviors as we vary the coupling distance, R. Specifically, the logarithmic negativity attains 
its highest value at a coupling distance of R = 1.25 , which coincides with the lowest QMA-EUR value. Furthermore, we 
discover that the presence of high-intensity magnetic fields has a detrimental influence on the level of thermal entangle-
ment. However through adjustments in the inter-spins relative distance R, the strength of the DM interaction, temperature 
T, the anisotropy parameter, and the static magnetic field B, it is possible to suppress the QMA-EUR and enhance bipartite 
entanglement within the system. These findings suggest encouraging possibilities for advancing quantum technologies that 
make use of this quantum system.

1  Introduction

Quantum entanglement is a strong type of non-classical cor-
relations, making it the key to many applications in quantum 
computing and information [1]. Consequently, this becomes 
a pivotal component in advanced quantum information tech-
nologies, notably quantum sensing [2], quantum computa-
tion [3, 4], quantum cryptography [5, 6], quantum teleporta-
tion [7–9], quantum randomness [10], quantum dense coding 
[11], and so on. Many quantifiers were proposed to quantify 

the amount of quantum entanglement, such as entangle-
ment of formation, negativity, concurrence, and logarith-
mic negativity [12–24]. In recent decades, numerous efforts 
have been undertaken to identify the most effective measure 
among various alternatives. However, it is difficult to say 
definitively that one measure is better than the others, as 
each one offers unique advantages depending on specific 
conditions. In this context, quantum entanglement has been 
extensively examined in many papers using different quanti-
fiers [25–30].

The uncertainty principle, initially postulated by Heisen-
berg [31], lies at the heart of quantum mechanics, crucially 
illustrating the distinction between the quantum and classical 
worlds. Since then, Robertson [32] has expanded the concept 
of the uncertainty principle to encompass any two incom-
patible observables. Instead of using standard deviation 
and based on the concept of entropy, other interpretations 
of the uncertainty principle have been proposed [33–36]. 
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In this sense, Berta and his colleagues [37] discovered that 
the uncertainty principle could be strengthened by taking 
into consideration an entangled quantum memory associated 
with the measured particle. Thereby, the concept of quan-
tum-memory-assisted entropic uncertainty relation (QMA-
EUR) is highly correlated with the connection of the particle 
to the quantum memory. Furthermore, it was found that the 
bound of QMA-EUR can be further refined by taking into 
account the quantum discord and the classical correlations 
associated with the measured particle [38]. The QMA-EUR 
has various potential applications, including probing quan-
tum correlations [38, 39], entanglement witness [40, 41], 
quantum speed limit [42, 43], quantum cryptography [44], 
quantum metrology [45], and quantum key distribution [46]. 
Moreover, the QMA-EUR has been generalized and inves-
tigated in various bipartite and multipartite quantum sys-
tems [47–54]. In addition, EUR with and without quantum 
memory were derived for multiple measurements settings 
[55]. By taking into account the mutual information and the 
Holevo quantity, Xie et al. further tightened the lower bound 
of EUR for multiple measurements [56].

Exploring quantum entanglement, non-classical correla-
tions, and QMA-EUR in Heisenberg spin-chain models, is 
attracting growing interest within the scientific community. 
Within this domain, numerous researchers have undertaken 
investigations into quantum resources and QMA-EUR in 
a variety of bipartite and multipartite quantum systems, 
including Heisenberg spin-chain models [46, 50, 57–62]. 
Additionally, there has been extensive scrutiny of the 
dynamics of quantum resources in a bipartite Heisenberg 
XXZ model under the influence of Dzyaloshinsky–Moriya 
(DM) interaction (referenced as [63–65]).

Apart from Heisenberg spin models, EUR and quantum-
ness were investigated in other interesting systems at the 
intersection between quantum information and elementary 
particle physics or relativity theory, such as experimen-
tally observed neutron oscillations [66–68] or Dirac fields 
in the background of Garfinkle–Horowitz–Strominger 
(GHS)—dilation black holes [69]. However, despite these 
extensive efforts, a significant gap remains unaddressed 
in the realm of quantum entanglement and QMA-EUR 
when considering the XXZ model in conjunction with 
Herring–Flicker coupling. Hence, it is crucial to spotlight 
the behaviors of quantum entanglement and QMA-EUR 
within this framework. In realistic settings, and due to 
quantum fluctuations, spins are not frozen on their lat-
tice sites, thus it is an interesting prospect to assume that 
the coupling strength between spins might depend on the 
distance separating them. Indeed, the Herring–Flicker cou-
pling relies on the inter-spin relative distance (R), offering 
an insight into its real essence within the Heisenberg XXZ 
model. Therefore, it is crucial to explore the impact of the 
distance R on the thermal entanglement and QMA-EUR 

in the bipartite Heisenberg XXZ model. Moreover, we aim 
to study the effects of the DM interaction and an external 
magnetic field on thermal entanglement while considering 
the distance R and other system parameters.

Building upon earlier research, specifically investiga-
tions into the effects of Herring–Flicker coupling [70, 
71], our study delves into the fundamental relation-
ship between bipartite entanglement and QMA-EUR in 
a two-qubit Heisenberg system with Herring–Flicker 
coupling. The main objective is to examine how the HF 
coupling distance affects various quantum indicators 
within this system in the presence of the Dzyaloshinskii-
Moriya (DM) interaction and an external magnetic field. 
Within this context, Huang and Kais [72] have previ-
ously demonstrated the dependence of entanglement in 
an XY spin chain, governed by the Ising model, on the 
distance associated with Herring–Flicker coupling [73]. 
Notably, their research revealed that an increase in the 
magnetic field strength leads to a reduction in entan-
glement over the Herring–Flicker coupling distance. 
This coupling mechanism plays a crucial role in delin-
eating the energy difference between the triplet and 
singlet states of the hydrogen molecule, as expounded 
in reference [73]. This difference is quantified as 
J(R) = Etriplet − Esinglet = 1.642 e−2RR5∕2 + O(R2e−2R)   , 
which implies that the distinction between the symmet-
ric and antisymmetric state energies must be exceedingly 
small, decaying exponentially as e−2R . Thus, by manipulat-
ing the coupling distance, the energy difference becomes 
adjustable. Building upon these findings, our paper delves 
into the study of correlations within a bipartite Heisen-
berg XXZ model. This model includes the Herring–Flicker 
coupling, the DM interaction, and the external uniform 
magnetic field. The Herring–Flicker approximation is a 
valuable tool for gauging the strength of the exchange 
interaction between the two qubits in the Heisenberg XXZ 
model. Here, we examine the impact of various factors, 
including the inter-spin relative distance R, the DM inter-
action, the anisotropy parameter, the external magnetic 
field, and the equilibrium temperature, on the variations in 
thermal entanglement and QMA-EUR within the Heisen-
berg model under consideration.

We structure our paper, as follows: In Sect. 2, we briefly 
introduce essential definitions and expressions related to 
logarithmic negativity ( LN  ) and QMA-EUR. In Sect. 3, 
we outline the Hamiltonian for the bipartite Heisenberg 
XXZ model with Herring–Flicker coupling under DM 
interaction and derive the associated thermal density 
matrix using Gibbs equation. Section 4 presents and ana-
lyzes the behaviors of QMA-EUR and logarithmic negativ-
ity within the studied system. In Sect. 5, we summarize the 
main findings of our research.
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2 � Quantum indicators

We provide in this section the definitions of QMA-EUR and 
logarithmic negativity employed in this study to measure, 
respectively, the measurement uncertainty and the amount 
of entanglement between the two qubits in the considered 
system.

2.1 � LN

LN  is an extensively used measure of entanglement since it 
is easy to compute [20, 21]. Given a bipartite density matrix 
� , LN  is given as follows

where the notation ‖�T2‖1 = Tr
�
√

�T2(�T2 )†
�

 is the trace 
norm of the partial transpose �T2 [17, 23]. We resort to the 
following expression to compute the logarithmic negativity

where �j are the negative eigenvalues of �T2 . LN  varies from 
0 to 1; it cancels out ( LN(�) = 0 ) for unentangled states and 
it is maximal ( LN(�) = 1 ) for bipartite states with maximal 
entanglement.

2.2 � QMA‑EUR

Uncertainty relations limit the potential information one can 
gather about a system’s physical properties. For two arbi-
trary observables O and W  , this uncertainty can be 
expressed using the standard deviation ΔO =

�

⟨O
2
⟩ − ⟨O⟩

2 
as [32]

However, in the framework of information theory, uncer-
tainty relations are written in terms of the entropy. Among 
these entropic uncertainty relations, we find the following 
relation [36, 37] based on the Shannon entropy H(O):

the term 1
c
 quantifies the complementarity of the two observ-

ables, with c = maxkl �⟨ok ∣ wl⟩�
2 . �ok⟩ and �wl⟩ are, respec-

tively, the eigenvectors of O and W.
Uncertainty relations can be thought of by considering 

two parties; Alice and Bob who agree on two measurements 
O and W . Bob creates a particle in a desired quantum state 

(1)LN(�) = log2 ‖�
T2
‖1,

(2)LN(�) = log2

(

∑

j

|�j|

)

,

(3)ΔOΔW ≥
1

2
�⟨[O,W]⟩�.

(4)H(O) + H(W) ≥ log2
1

c
,

and transmits it to Alice, who then performs one of the two 
measurements and informs Bob of her decision. Bob has 
to reduce his uncertainty regarding the outcome of Alice’s 
measurement. Berta et al. [37] proved that in order to achieve 
his task and minimize the uncertainty, Bob should entangle 
the particle he sends to Alice to a quantum memory. This 
new improved uncertainty relation, named QMA-EUR is 
written in terms of the von Neumann entropy [37]

where the condit ional  von Neumann entropy 
S(O(W)|B) = S(�O(W)B) − S(�B) quantifies the uncer-
tainty about the result of the measurement O(W) 
given the information stored in the quantum mem-
o r y  B .  𝜌O =

∑

k(�ok⟩⟨ok�⊗ I)𝜌AB(�ok⟩⟨ok�⊗ I)  a n d 
𝜌W =

∑

l(�wl⟩⟨wl�⊗ I)𝜌AB(�wl⟩⟨wl�⊗ I) are the post-meas-
urements states and �B is the reduced density matrix describ-
ing the quantum memory B. Moreover, the supplementary 
term S(A|B) in the bound of the inequality (5) quantifies the 
amount of entanglement between the particles A and B. In 
this manuscript, we choose our two measurements to be the 
Pauli matrices �x and �z . Therefore, we find that c = 1

2
 . The 

left-hand side of the inequality is the measured QMA-EUR, 
and it is given by

The right-hand side of the inequality is the bound constrict-
ing the estimation accuracy by Bob. It is computed using the 
following expression

3 � Setup

In this research, we investigate a system consisting of two 
spins described by a Heisenberg model. The system is sub-
jected to the Dzyaloshinsky–Moriya interaction with a uni-
form external magnetic field B. The spins are assumed to 
be coupled through the Herring–Flicker interaction. The 
system’s Hamiltonian can be expressed as follows

here, ��
i=1,2

 (with � = x, y, z ) represent the Pauli matri-
ces. The parameter � signifies the anisotropy factor, and 
D⃗ denotes the Dzyaloshinsky–Moriya interaction vec-
tor, assumed to be oriented along the z-axis, that is: 
D.(�� ∧ ��) = D⃗z

(

𝜎⃗x
1
𝜎⃗
y

2
− 𝜎

y

1
𝜎x
2

)

 . Furthermore, B repre-
sents the external magnetic field along the z-axis. The 

(5)S(O|B) + S(W|B) ≥ S(A|B) + log2
1

c
,

(6)UL = −2S(�B) + S(��xB) + S(��zB).

(7)UR = log2
1

c
+ S(�AB) − S(�B).

(8)
H = J(R)

(

𝜎x
1
𝜎x
2
+ 𝜎

y

1
𝜎
y

2
+ 𝛿𝜎z

1
𝜎z

2

)

+ D⃗.(𝛔⃗𝟏 ∧ 𝛔⃗𝟐) + B
(

𝜎z

1
+ 𝜎z

2

)

,
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Herring–Flicker coupling J(R) that characterizes the inter-
action between the qubits is given by:

with the leading-order coefficient �HF = 1.642 . The strength 
of the exchange interaction J(R), diminishes exponentially, 
and it is generally considered a short-range interaction. The 
accompanying figure provides a visual depiction of the cou-
pling between two spins as a function of the relative distance 
R (Fig. 1);

In the standard computational basis {{�jk⟩; j, k = 0, 1} , 
the Hamiltonian given by Eq. (8) can be expressed as

By performing a direct computation, we can ascertain the 
eigenvalues and associated eigenvectors of the Hamiltonian 
provided in Eq. (10)

 where � =
√

D2
z
+ J2(R).

The following Gibbs density operator describes the sys-
tem with the Herring–Flicker interaction. This system and 
a reservoir are in thermal equilibrium at a temperature T

(9)J(R) = �HF e−2RR5∕2 + O(R2e−2R),

(10)

H =

⎛

⎜

⎜

⎜

⎝

J(R)� + 2B 0 0 0

0 − J(R)� 2J(R) + 2iDz 0

0 2J(R) − 2iDz − J(R)� 0

0 0 0 J(R)� − 2B

⎞

⎟

⎟

⎟

⎠

.

(11)E1 = J(R)� + 2B, ��1⟩ = �00⟩,

(12)

E2 = −J(R)� − 2�, ��2⟩ =
1
√

2

�J(R) + iDz

�
�01⟩ + �10⟩

�

,

(13)

E3 = −J(R)� + 2�, ��3⟩ =
1
√

2

�−J(R) − iDz

�
�01⟩ + �10⟩

�

,

(14)E4 = J(R)� − 2B, ��4⟩ = �11⟩,

here, we define � as 1

kBT
 , where kB represents the Boltzmann 

constant, which we conveniently set to unity. The partition 
function, Z , is expressed as Z = Tr(e−�H) =

∑4

i=1
e−�Ei . The 

resulting thermal density matrix is expressed in the calcula-
tion base as follows

The elements of the density matrix are expressed as

w i t h  t h e  p a r t i t i o n  f u n c t i o n 
Z = 2e−

J(R)�

T

(

cosh(
2B

T
) + e

2J(R)�

T cosh(
2�

T
)
)

.

4 �  Discussion and results

Here, we highlight the results of our research, wherein we 
analyze the behavior of quantum entanglement measured via 
LN(�) and QMA-EUR within a two-qubit Heisenberg model 
featuring Herring–Flicker coupling under the impact of 
Dzyaloshinsky–Moriya interaction. We perform an in-depth 
examination of how various critical parameters, including 

(15)�(T) =
e−�H

Z
,

(16)�(T) =

⎛

⎜

⎜

⎜

⎝

�11 0 0 0

0 �22 �23 0

0 �32 �33 0

0 0 0 �44

⎞

⎟

⎟

⎟

⎠

.

(17)

�11 =
e
−

J(R)�+2B

T

Z
,

�22 = �33 =
e

J(R)�

T cosh(
2�

T
)

Z
,

�44 =
e

−J(R)�+2B

T

Z
,

�23 = −
e

J(R)�

T
J(R)+iDz

�
sinh(

2�

T
)

Z
,

�32 = �∗
23
,

Fig. 1   Variation of J(R) versus 
the coupling distance R 
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the inter-spins relative distance (R), the external magnetic 
field (B), the equilibrium temperature (T), the strength of 
DM interaction ( Dz ), and the anisotropy parameter ( � ), 
impact the quantum metrics utilized in our study.

To initiate this exploration, Fig. 2 examines the impact 
of varying the coupling distance (R) on the QMA-EUR and 
thermal entanglement within the system under investigation. 
It is worth noting that all other system parameters are held 
constant, with values set to � = Dz = B = 0.5.

From Fig. 2a, d, it is worth remarking that the coupling 
distance R, and consequently the HF-coupling J(R) influence 
the behavior of thermal entanglement. In this light, we 
notice that two intervals of R values are distinguished; for 
0 < R < 1.25 , an improvement of LN(�) is observed. 
R = 1.25 , which corresponds to the maximum of Her-
ring–Flicker coupling J(R) ≈ 0.2354 , is the ideal configura-
tion of this parameter, allowing for a maximal strengthening 
of entanglement. Beyond this optimal coupling distance 
( R = 1.25 ), LN(�) decreases and freezes into a constant 
value. It is clear from Fig. 2a, d that the effect of the tem-
perature T is the most prevailing, such that entanglement 
decreases steadily and vanishes for growing T degrees. In 
Fig. 2d we recognize the phenomenon of entanglement sud-
den death (ESD) happening at specific critical temperatures 
Tc . The values of Tc where the quantum phase transition 

entanglement-separability occurs, is improved for growing 
R in the range of 0 < R ≤ 1.25 . Thereby, we find that 
Tc(R = 0.5) ≈ 1.244 , while Tc(R = 1.25) ≈ 1.435 . In order 
to explain the entanglement sudden death behavior, we thor-
oughly investigate the expression of LN  used to quantify 
entanglement. The density matrix �(T) (Eq. (16)) is an X 
state, so is its partial transpose �TB(T) . Further, we find that 
the eigenvalues of this latter are �1 = �2 = �22 , which is a 
posit ive real .  The other two eigenvalues are 

�3,4 =
(�11 + �44) ∓

√

(�11 − �44)
2 + 4��23�

2

2
 , we can clearly 

see that �4 is always positive, which leaves us with �3 . In this 
specific chosen configuration of � = Dz = B = 0.5 , we find 
that �3 is negative for low T degrees, but as T grows, �3 
increases until reaching �3 = 0 for a specific T, which 
depends on the relative distance R between the two spins. 
This specific temperature is the ESD temperature Tc . The 
findings shown in Fig. 2a imply that higher strengths of the 
Herring–Flicker coupling between the two qubits can 
enhance thermal entanglement in the system under consid-
eration at lower temperatures. This means that by regulating 
the system parameters and the Herring–Flicker coupling, we 
can somewhat shield our system against the negative impact 
of temperature on its quantum features, namely the amount 
of thermal entanglement captured here by LN(�) . Moving 
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Fig. 2   LN(�) (a–d) and QMA-EUR (b–c–e) in terms of T and R when � = Dz = B = 0.5
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on to Fig. 2b, c, e, where we observe that QMA-EUR dis-
plays the opposite behavior to that of thermal entanglement 
for different values of the coupling distance R. At lower tem-
peratures, we observe that QMA-EUR reveals significant 
values for R = 0 ; i.e. in the absence of Herring–Flicker cou-
pling. Whereas, as T = 0 , the QMA-EUR is zero for all non-
zero values of the coupling distance R. This finding indicates 
that introducing Herring–Flicker coupling can reduce QMA-
EUR in the system at lower temperatures. As the tempera-
ture increases, QMA-EUR increases monotonically and 
reaches its maximal value ( UL = UR → 2 ) at higher tempera-
tures. Consequently, by adequately adjusting the coupling 
distance R yielding higher Herring–Flicker coupling strength 
and by carefully selecting the other system parameters, it is 
possible to attenuate the harmful effects of temperature, 
reduce the QMA-EUR, and stabilize the amount of thermal 
entanglement within the investigated system.

Next, we present in Fig. 3, the impact of the DM inter-
action and the Herring–Flicker coupling distance on ther-
mal entanglement and QMA-EUR in the two-qubit spin 
system. We fixed the remaining parameters at T = 0.2 and 
� = B = 0.5.

In Fig. 3a, d, a clear pattern emerges: when the DM inter-
action within the system is absent ( Dz = 0 ), LN(�) becomes 

nonexistent. A minor, insignificant level of thermal entan-
glement appears at a coupling distance of R = 1.25 , which 
corresponds to the peak strength of the Herring–Flicker 
coupling, approximately J(R) ≈ 0.2354 . Conversely, when 
the DM interaction becomes sufficiently strong ( Dz ≥ 2 ), 
the two spins become maximally entangled regardless of 
the coupling distance R between them. For small non-zero 
values of Dz , it is observed that LN(�) initially increases, 
reaching its maximum at R = 1.25 , and then decreases to 
stabilize at its initial value recorded for R = 0 . These find-
ings underscore the ability to optimize thermal entanglement 
within the system by fine-tuning both the Herring–Flicker 
coupling and the DM interaction. In Fig. 3b, c, and e, a 
notable contrast emerges in the behavior of QMA-EUR 
compared to thermal entanglement. Regardless of the 
coupling distance R, it becomes apparent that QMA-EUR 
diminishes as Dz increases and ultimately becomes negli-
gible for higher levels of DM interaction strength. In fact, 
with high values of Dz , there is a complete lack of uncer-
tainty in the results of both measurements, �x and �z , as 
reflected in the conditional entropies within the QMA-EUR: 
S(��xB) − S(�B) = S(��zB) − S(�B) = 0 . Furthermore, in the 
lower bound UR , the term quantifying entanglement between 
the two qubits yields S(A|B) = − log2(d = 2) = −1 , with d 
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Fig. 3   LN(�) (a–d) and QMA-EUR (b, c–e) in terms of R and Dz when T = 0.2 and � = B = 0.5
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representing the dimension of the qubit A sent to Alice. Con-
sequently, this indicates that the lower bound is also reduced 
to zero. These findings provide valuable insights into the 
interplay between thermal entanglement and the system’s 
parameters. Specifically, they shed light on the fact that ther-
mal entanglement between the two qubits exhibits a notable 
enhancement within a defined range of distance values. This 
enhancement is closely related to the augmentation in the HF 
coupling J(R) and the presence of a substantial DM interac-
tion. Furthermore, these observations emphasize an intrigu-
ing inverse relationship. As thermal entanglement becomes 
more pronounced and robust, the measure of QMA-EUR 
experiences a decline. This phenomenon implies a fine-
tuned relationship between the level of quantum entangle-
ment and the precision of measurements within the system. 
A rise in one factor corresponds to a decrease in the other. 
This connection can be explained theoretically by delving 
into quantum entanglement’s nature as a type of quantum 
correlation. Essentially, stronger quantum correlations result 
in a decrease in measurement uncertainty. In simpler terms, 
higher entanglement leads to less uncertainty, while lower 
uncertainty is associated with increased entanglement.

In Fig. 4, we illustrate the variations of thermal entan-
glement, UL , and UR in the system under consideration as 
a function of Herring–Flicker coupling distance (R) for 

different given values of (B). The other defining parameters 
are set to T = 0.2 and � = Dz = 0.5.

Figure  4a–e offer a comprehensive view of how the 
interplay between the coupling distance R and the exter-
nal magnetic field B affects the system. Figure 4a clearly 
illustrates that a strong magnetic field B causes quantum 
entanglement to vanish, regardless of the specific value of 
the coupling distance R. Meanwhile, in a scenario where the 
temperature remains fixed at T = 0.2 , the quantifier LN(�) 
approaches its maximum value of 1 when B = 0 , regard-
less of the chosen value for R. Moreover, when B = 0.5 , we 
observe a noteworthy trend in LN(�) as it increases with the 
growing value of R until reaching its peak at R = 1.25 . This 
particular coupling distance corresponds to the point where 
the HF coupling achieves its maximum value. Subsequently, 
LN(�) gradually decreases and stabilizes at its initial value, 
which is approximately LN(�) ≈ 0.26 , as the coupling dis-
tance R continues to increase. This trend underscores that the 
coupling distance between the two qubits enhances thermal 
entanglement within the examined system, specifically at 
R = 1.25 . In contrast, Fig. 4b, c clearly demonstrate that the 
absence of B leads to a reduction in both UL and UR within 
the system. As the magnetic field strength, B, increases, 
both UL and UR reach their respective peaks but eventually 
stabilize at a consistent value of ( UL = UR = 1 ) at higher B 
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Fig. 4   LN(�) (a–d) and QMA-EUR (b–c–e) in terms of R and B when T = 0.2 and � = Dz = 0.5
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values. In contrast, the behavior depicted in Fig. 4e reveals 
that QMA-EUR experiences a decrease in the absence of 
an external magnetic field ( B = 0 ). Remarkably, it is even 
possible to entirely eliminate measurement uncertainty when 
R = 1.25 , as we find that both UL and UR reach a value of 
zero. As the external magnetic field B is introduced into the 
system, QMA-EUR attains its highest value, after which, 
with an increase in the coupling distance R, this value gradu-
ally diminishes, reaching its minimum value at R = 1.25 . 
Subsequently, it rises again to reach a stable value at higher 
values of the coupling distance R. Moreover, at elevated lev-
els of the magnetic field ( B = 3 ), it becomes evident that 
QMA-EUR remains constant, with both UL and UR equal to 
one, regardless of the specific coupling distance R.

Now, let us investigate in Fig. 5 the impact of DM interac-
tion (Dz) on the variation of our quantum indicators when 
R = 1.5 and � = B = 0.5.

In Fig. 5a, it is evident that the strength of the DM inter-
action Dz plays a crucial role in mitigating the adverse effects 
of rising temperatures (T). When there is no DM interaction 
( Dz = 0 ), it is clear that LN(�) becomes null ( LN(�) = 0 ) 
for all temperatures, except for a slight peak occurring at 
nearly zero temperatures. However, with non-zero Dz values, 
LN(�) distinctly captures maximum thermal entanglement 
at lower temperatures ( T → 0 ). This entanglement gradu-
ally diminishes as temperature increases and drops to zero 
at critical temperatures ( Tc ), which are dependent on the 
values of Dz . Remarkably, higher DM interaction strengths 
allow for the maintenance of maximal entanglement even at 
relatively high temperatures. This is reflected in the width 
of the plateau regions presented in Fig. 5a. Furthermore, an 
increase in Dz results in raising the critical temperature at 
which the entangled state is lost. In Fig. 5b, it becomes clear 
that the amount of QMA-EUR in the system at low tem-
peratures ( T → 0 ) is dependent on the strength of the DM 
interaction. For Dz ≠ 0 , both UL and UR reach a value of zero, 

corresponding to a maximally entangled state. Conversely, 
in the absence of the DM interaction ( Dz = 0 ), we find that 
UL = UR = 1 . As temperature increases, QMA-EUR rises 
and eventually stabilizes at a value of UL = 2 at higher tem-
peratures. To summarize, the relationship between QMA-
EUR and quantum entanglement within the system offers 
valuable insights. These two indicators display contrasting 
behaviors in response to the various parameters defining 
the Heisenberg model under investigation. By analyzing 
the dynamics of quantum entanglement, one can effectively 
anticipate the corresponding changes in QMA-EUR, and 
conversely, observing the fluctuations in QMA-EUR pro-
vides crucial insights into the evolving entanglement within 
the system. This reciprocal interaction between the two met-
rics sheds light on the intricate interplay of factors influenc-
ing the behavior of the studied system.

Next, we investigate in Fig. 6 the joint effect of � (the ani-
sotropy parameter) on the variation of thermal entanglement 
and QMA-EUR within the considered Heisenberg system. 
The other system parameters are fixed at R = 1.25 , B = 0.2 , 
and Dz = 3.

In Fig. 6a, it is evident that LN(�) exhibits a signifi-
cant amount of thermal entanglement at lower tempera-
tures ( T → 0 ) across all values of � . As the temperature T 
increases, the thermal entanglement within the two-qubit 
system decreases. This decrease indicates a transition from 
a maximally entangled state to an entangled state, where 
0 < LN(𝜌) < 1 . At elevated temperatures, LN(�) declines 
rapidly and eventually reaches zero at a critical tempera-
ture ( Tc ), which is contingent upon the anisotropy param-
eter. For instance, when � = 0 , the critical temperature is 
approximately Tc ≈ 6.83 , while for � = 2 , it is approxi-
mately Tc ≈ 7.58 . At Tc , the system assumes a separable 
state ( LN(�) = 0 ). Moreover, Fig. 6a highlights the role of 
the anisotropy parameter in enhancing thermal entanglement 
within the system. It is evident that the width of the plateau 
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Fig. 5   LN(�) (a) and QMA-EUR (b) as a function of T for different values of Dz when R = 1.5 and � = B = 0.5
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region in LN(�) slightly increases with higher � . However, it 
is DM interaction that effectively preserves maximal entan-
glement with respect to temperature T (Fig. 5). In Fig. 6b, 
there is a clear inverse relationship between QMA-EUR and 
thermal entanglement. At low temperatures, QMA-EUR is 
consistently zero ( UL = UR = 0 ), but as the temperature 
rises, QMA-EUR increases steadily to reach a maximum 
value for all values of �.

Finally, we examine how the external homogeneous mag-
netic field (B) impacts thermal entanglement and QMA-EUR 
within the considered system. To do this, we plot LN(�) and 
QMA-EUR in terms of temperature T for various values of 
B, and we set the other system parameters to R = 1.5 and 
� = Dz = 0.5 , as shown in Fig. 7.

Figure 7a provides valuable insights into the behavior of 
LN(�) in the absence of an external magnetic field (B). It is 
evident that LN(�) captures the maximum thermal entan-
glement in the ground state ( T → 0 ). As the temperature 
(T) increases, LN(�) declines rapidly and reaches zero at 

the critical temperature ( Tc ≈ 1.418 ). Importantly, the Tc 
value at which the quantum phase transition from entangle-
ment to separability occurs is determined by the Dz value 
and remains independent of the magnetic field’s intensity 
(B). Additionally, the width of the plateau region decreases 
with increasing B. For B = 1, a small resurgence of LN(�) 
is noticed around T ≈ 0.2, but it eventually vanishes at Tc. 
Beyond a certain threshold of B, the two-qubit Heisen-
berg model becomes separable even at extremely low tem-
peratures. This implies that the presence of B with higher 
intensities has a negative impact on the amount of thermal 
entanglement, as reflected in LN(�) . Analyzing Fig. 7b, 
we can clearly observe that QMA-EUR exhibits a consist-
ent increase with rising temperature (T), and throughout 
this progression, UL remains consistently greater than UR . 
However, a noteworthy phenomenon occurs at the critical 
temperature ( Tc ), where thermal entanglement completely 
vanishes. At this point, QMA-EUR tends to stabilize at its 
maximum value, aligning perfectly with its lower bound, 
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Fig. 6   LN(�) (a) and QMA-EUR (b) in terms of T for various values of � when R = 1.25 , B = 0.2 and Dz = 3
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Fig. 7   LN(�) (a) and QMA-EUR (b) in terms of T for various values of B when R = 1.5 and � = Dz = 0.5
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holding UL = UR = 2 . Moreover, Fig. 7b highlights that 
the presence of an external magnetic field (B) enhances 
the QMA-EUR between the qubits in the studied system. 
Consequently, for low values of B ( B → 0 ), QMA-EUR 
commences at UL = UR = 0 when T = 0, and then steadily 
increases as temperature rises. On the other hand, for higher 
values of B, it initiates at a substantial value ( UL = UR = 1 ). 
Overall, Fig. 7 underscores the strong connection between 
measurement uncertainty and the level of entanglement 
between the two qubits. It becomes evident that maximizing 
entanglement leads to the complete reduction of QMA-EUR, 
emphasizing the intricate interplay between these two key 
aspects in the system.

5 � Conclusion

In summary, we have examined the relations and variations 
of thermal entanglement and quantum-memory-assisted 
entropic uncertainty (QMA-EUR) in a two-qubit one-
dimensional XXZ Heisenberg spin-1/2 chain with Her-
ring–Flicker coupling under an external homogeneous 
magnetic field and DM interaction at thermal equilibrium 
with a reservoir. Specifically, we examined the impact 
of Herring–Flicker coupling on thermal entanglement 
and QMA-EUR. It has been shown that Herring–Flicker 
coupling can enhance thermal entanglement against the 
negative impact of T and external magnetic field, specifi-
cally for the distance R = 1.25 , which yields the maximal 
strength of the Herring–Flicker interaction. Our findings 
also demonstrate that increasing the anisotropy parameter 
and DM interaction strength can improve thermal entan-
glement in the system. Therefore, thermal entanglement 
between the two qubits is achieved and can be maintained 
by reducing the temperature and the intensities of the 
external magnetic field while simultaneously increasing 
the DM interaction and the anisotropy parameter. On the 
other hand, our results revealed that equilibrium tempera-
ture has a significant influence on QMA-EUR and that the 
latter shows marked variations according to this param-
eter. QMA-EUR grows for rising temperatures, reaching 
a steady maximum value ( UL = UR = 2 ) at greater tem-
perature degrees. Moreover, our analysis shows that a 
strong Herring–Flicker coupling can lead to a reduction 
in QMA-EUR, and inversely, a strong external magnetic 
field may lead to the expansion of QMA-EUR. It is worth 
mentioning that although the graphical results obtained 
show unequivocally that quantum entanglement and QMA-
EUR have an anti-correlated relationship, demonstrating 
that it is possible to reduce or even eliminate measurement 
uncertainty by achieving and preserving maximal amounts 
of entanglement in quantum systems, finding an analyti-
cal expression linking directly QMA-EUR or its lower 

bound UR to LN(�) for any arbitrary X-state is a difficult 
task. Finally, this research provides valuable insights into 
optimizing a two-qubit XXZ Heisenberg model with Her-
ring–Flicker coupling to achieve quantum advantages in 
quantum information processing.
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