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Abstract
State-of-the-art neural network architectures in image classification and natural language processing were applied to interfer-
ence fringe reduction in absorption spectroscopy by interpreting the data structure accordingly. A model was designed for 
temporal interpolation of background spectra and a different model was created for gas concentration fitting. The networks 
were trained on experimental data provided by a wavelength modulation spectroscopy instrument and the best performing 
architectures were analyzed further to evaluate generalization performance, robustness and transferability. A BERT-styled 
fitter achieved the best performance on the validation set and reduced the mean squared error of fitted amplitude by 99.5%. 
However, analysis of the de-noising behavior showed large biases. A U-Net styled convolutional neural network reduced 
the mean squared error of the interpolation by 93.2%. Evaluation on a test set provided evidence that the combination of 
model interpolation and linear fitting was robust and the detection limit was improved by 52.4%. Transferring the trained 
interpolator model to a different spectrometer setup showed no chaotic out-of-distribution effects. Additional fine-tuning 
further increased the performance. Neural network architectures cannot be generally applied to all absorption spectroscopy 
tasks. However, given the right task and the data representation, robust performance increase is achievable.

1  Introduction

Artificial neural networks and deep learning have contrib-
uted to major breakthroughs in several applications like 
image classification, segmentation, generation of images and 
text, natural language processing (NLP) and many more. 
These new frameworks outperform conventional machine 
learning algorithms in many disciplines [1–5].

However, they cannot be trivially applied to regression 
tasks in natural sciences. In contrast to most conventional 
data analysis methods, hyperparameter optimization often 
needs complete retraining of the neural network and is there-
fore associated with high computational effort. Error estima-
tion of the output is a research field on its own [6] and the 
model prediction can react chaotically to tiny deviations of 
the input [7]. Deep learning applications often differ from 
regression tasks with respect to their goal, constrains and 
requirements [2].

Nonetheless, several studies have successfully applied 
neural networks to spectroscopy tasks and reported per-
formance increases compared to conventional approaches. 
Applications feature classification of spectroscopic data 
obtained from Raman spectroscopy and other spectroscopic 
techniques [8, 9], speeding up expensive calculations via 
surrogate models for nonlinear tomography [10, 11] and 
spectrum prediction [12], and concentration estimation 
[13–15]. Nicely et al. [13] used a shallow neural network 
for fringe reduction in direct absorption spectroscopy using 
simulated data. Tian et al. [15] report a good linearity of a 
direct fit performed by a neural network for high SNR input 
spectra. In our recent study we observed good performance 
of a neural network based noise reduction scheme for a spe-
cific noise structure where all tested conventional methods 
fell short [16].

This study will focus on absorption spectra obtained via 
wavelength modulation spectroscopy but the main consid-
erations should be transferable to direct detection methods 
or other data acquisition schemes, as well. The main noise 
sources of wavelength modulation spectroscopy instruments 
can be split into relative and absolute contributions. The 
relative contributions cause disturbances proportional to 
the concentration of the measured species in the cell, e. g. 
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variations in pressure, temperature, laser power and detector 
sensitivity. The main absolute limitation is often caused by 
notorious etalon fringe patterns that emerge from reflective 
surfaces of the optics [17, 18]. Other possible noise sources 
can be interference with absorption of other molecules, laser 
and detector stability or signal processing electronics. This 
study will, however, focus mainly on the reduction of noise 
resulting from interference fringe patterns. The procedures 
described may also be able to remove other noise types, as 
long as the requirements in Sect. 2.3 are fulfilled.

1.1 � Neural networks overview

The basic architecture of an artificial neural network (ANN) 
consists of iterated layers yk of linear transformations imple-
mented via matrix multiplications Wk and a following non-
linearity � [2]:

Theoretically this architecture can approximate any function 
using only a single intermediate ("hidden") layer [19–21]. 
Advanced architectures try to optimize the ability of the 
model to learn and to generalize while being very efficient 
in time and memory.

A first breakthrough in image recognition tasks was 
achieved via convolutional neural networks (CNN) [22]. 
The matrix multiplications are replaced with convolutions of 
small filters whose weights are shared between all positions 
in the image [23]. This operation also ensures translation 
equivariance of the model output with regards to the input 
image [2]. Together with normalization schemes to over-
come internal covariate shift [24], shortcut paths to decrease 
gradient decay [25] and randomization patterns to lower the 
chance of overfitting [26], models were constructed that out-
performed human predictions for image classification tasks.

Vaswani et al. [27] introduced the transformer, a new 
architecture for NLP that builds on a mechanism called 
attention, where a query sequence gates the input sequence 
to focus on important parts. This method lead to other simi-
lar architectures that have become state-of-the-art in NLP, 
such as the bidirectional encoder representation from trans-
formers (BERT) [5]. Others adjusted the transformer-based 
architectures for image classification and achieved compa-
rable results to state-of-the-art convolutional architectures 
[28, 29].

The field of deep learning is fast evolving and state-of-
the-art candidates are constantly changing. Researchers 
seeking to apply deep learning to their discipline may not 
need to design whole neural network topologies themselves, 
but rather adjust already tested state-of-the-art networks to 
their need. Results may benefit from focusing on finding 
the appropriate already available state-of-the-art model. A 

(1)yk+1 = �

(

Wkyk
)

drawback of this approach, though, is the vast size of state-
of-the-art models.

1.2 � Opportunities for neural networks

These fringe patterns can interfere with the frequency region 
of the signal. In our previous study we reported different 
behavior and performance of several noise reduction meth-
ods depending on this interference. Many conventional 
methods are based on frequency separation of signal and 
background and therefore only show great performance if 
this interference is small. Otherwise the method will produce 
a high bias. We reported, however, an improved performance 
of a neural network based approach in a region of high inter-
ference [16].

This behavior can be motivated in an example: Suppose 
an absorption spectrum is obstructed by a pure sinusoidal 
background modulation and some white noise. When fitted, 
the resulting spectrum will show high variations depending 
on the phase of the sine background. Conventional numerical 
noise reduction schemes that act on the frequency domain 
will not be able to reconstruct the original signal but will 
most likely dampen the result towards zero. However, if the 
structure of the background is known a priori, noise reduc-
tion is very efficient. In this example the structure of the 
background can be extracted from the edge of the spectrum 
by a curve fit and the obtained sine can be subtracted from 
the noised spectrum. Of course, such a simple example of 
background can simply be removed by applying established 
experimental techniques, e.g., lock-in amplification. How-
ever, the background structure in a real experiment is often 
more complex. It cannot be easily removed via experimen-
tal techniques and the fitting parameters cannot be easily 
fit. A machine learning algorithm, though, could learn the 
distribution of background structures and infer the interfer-
ence with the signal. This approach requires the background 
structure to have a sparse distribution and be stable over the 
whole absorption spectrum.

Another conventional approach to reduce the impact of 
etalon fringe patterns is regular determination of background 
spectra and an interpolation scheme [30, 31]. If the back-
ground structure changes point-wise and slow enough, this 
approach will give precise estimates of the underlying back-
ground structure of a measured spectrum. The interpolated 
spectrum can be subtracted from the measurement and will 
yield great noise reduction. In a second example a problem 
of this approach will be discussed: Assume the background 
structure does not change point-wise but along the frequency 
axis. If e.g. the phase changes in the order of half a cycle 
between two background measurements, the result of the 
interpolation will vastly differ from the true background 
structure. Given a priori knowledge about the speed of the 
phase shift, the background can be reconstructed again with 
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high precision. In practice obtaining this a priori knowl-
edge can be very hard as a realistic background has a much 
more complex structure and could consist of several phase 
changing periodic structures or beat interferences. Also the 
true shape of the fringe pattern could be obscured by alias-
ing effects [32]. Again a machine learning algorithm could 
learn the distribution of these structures and yield a better 
interpolation scheme to reconstruct the background.

In Sect. 2 possible interpretations of the data in order 
to motivate appropriate model architectures are discussed. 
In Sect. 3 the spectrometer is described in more detail and 
the training data acquisition and processing is presented. In 
Sect. 4 the performances are discussed for the training pro-
cess, validation set evaluation, test set evaluation and further 
transfer applications.

2 � Neural network architectures

As motivated in the introduction, two different machine 
learning objectives will be considered: concentration fitting 
(2) and temporal interpolation (3), with spectrum size N, 
number of spectra for each measurement C and sequence 
interval T. The fitter F directly fits an absorption spectrum 
to obtain the trace gas concentration. The interpolator I gets 
a temporal sequence that contains regular background meas-
urements and reconstructs the evolution of the background 
in the inbetween region.

2.1 � Possible fitting architectures

Although the input to the fitting task is one-dimensional 
(disregarding the feature axis) increasing the dimension to 
two by a redundant linear transformation might be benefi-
cial. This enables the application of models that have proven 
themselves on popular image classification benchmarks. In 
this study the continuous wavelet transform (CWT) with the 
DOG2 wavelet is used to scale up the spectra to RN×J×C with 
J = 128 . The continuous wavelet transform has been very 
successful in environmental sciences [33, 34], but similar 
behavior can be expected for other linear transformations. 
An example plot of a CWT-transformed spectrum can be 
found in Fig. 1.

Now, the data can be interpreted in different ways: a N × J 
image of the whole wavelet spectrum or an N-dimensional 
sequence of J-dimensional vectors.

If data is considered as image-like, a CNN architec-
ture can be used. A novel family of efficient and effective 

(2)F ∶ Z ⟶ AZ ∈ R
N×C

A ∈ R
1

(3)I ∶ X ⟶ YX ∈ R
T×N×C

Y ∈ R
T×N×C

CNNs is EfficientNetV2 [35], from which the smallest 
iteration EfficientNetV2B0 (EffV2) will be used for per-
formance reasons. A CNN architecture iteratively extracts 
features of the image yk and scales down using convolu-
tional (Conv) blocks that contain pooling operations and 
strided convolutions.

In classification tasks the final layer is globally reduced 
and fed through a shallow fully connected neural network 
(FCNN). The result is then softmaxed to retrieve the prob-
ability for each class. In this case, though, the output needs 
to represent the concentration of the trace gas, therefore the 
final output is not passed through an activation layer. This 
way the output can be any real number.

However, as mentioned earlier, a CNN is translation 
invariant with respect to its input - in image processing 
the algorithm should not depend on the global position 
of the object. In the data described there is an anisotropy: 
The signal is left-right-centered and occupies a distinct 
part of the wavelet scaling, while noise is isotropic and 
can appear differently throughout the scaling dimension. 
The vision transformer (ViT) [29] decomposes a picture 
of shape RN×J×C into patches of shape RP×P and flattens the 
pixels to obtain data of shape RN∕P⋅J∕P×P2

⋅C . These patches 
are embedded via a linear transformation. The patch 
embedding is then added to a learned positional encoding 
that represents the position of the patches with regards to 
the complete image. Afterwards the architecture is very 

(4)yk+1 = Conv
(

yk
)

Fig. 1   Example plot of a CWT-transformed spectrum, taken from the 
validation set. Values smaller than zero are colored red, values larger 
than zero are colored blue. The plot suggests how to interpret the data 
as image-like. The anisotropy of the image is visible, with high fre-
quency noise at the lower end of the scaling axis, signal at the higher 
end of the scaling axis and left-right-centered along the spectral axis, 
and obstructing fringes in the same scaling range but isotropic along 
the spectral axis. The SNR of the underlying spectrum is 3.2
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similar to BERT [5] and contains of iterated transformer 
(Trans) blocks containing attention layers:

With the attention mechanism, the model can learn global 
dependencies and structure of the data due to a higher recep-
tive field [28]. The final layer of the transformer can again 
be globally reduced and fed into the FCNN.

Additionally, a hybrid architecture will be considered 
composed of an EffV2 backbone consisting of the first 5 
blocks of the model, whose output is linearly transformed 
and directly fed to a ViT as patch embeddings. Dosovitskiy 
et al. reported similar performance of both approaches and 
found a similarity in function of the first transformer lay-
ers to the CNN backbone. The backbone will extract local 
features of the image that can be processed globally by the 
transformer [29].

If the data is considered as sequence-like, the transformer 
architecture can be applied directly. In this case the data 
is simply reshaped to RN×(J⋅C) and fed into a BERT-styled 
architecture [5]. Table 1 summarizes these approaches and 
gives a small overview of the chosen size.

2.2 � Possible interpolation architectures

The interpolator also gets 2D inputs: temporal sequences of 
spectra. The spectra at the beginning and the end and also 
at regular distances throughout the sequence are considered 
pure background and are point-wise interpolated to fill the 
intermediate temporal region. Also the spectral edges of this 
intermediate region is kept as no absorption signal is to be 
expected here. An example can be found in Fig. 2. Again the 
data can be interpreted image-like or sequence-like but this 
time with a different objective.

If data is considered as image-like, the U-Net variant can 
be used, that has been utilized for segmentation tasks [3] or 
image noise reduction [36]. The down-scaling part of the 
U-Net is constructed from a subset of the EffV2 and the 
inverse of the initial EffV2. In the inverse part every down-
scaling operation is replaced by an upscaling operation to 
obtain outputs with the original dimension.

(5)yk+1 = Trans
(

yk
)

Another approach would be again a ViT styled segmenta-
tion followed by a transformer architecture. The final patches 
can be linearly transformed and concatenated back to the 
original shape of the picture. A hybrid architecture is not 

Table 1   Summary of utilized 
model architectures and number 
of parameters

Task Model Data interpretation Mechanism Parameters

Fitter EffV2 [35] Image Convolution 6.3 M
ViT [29] Image Transformer 10.2 M
Hybrid [29] Image Convolution/transformer 5.2 M
BERT [5] Sequence Transformer 10.1 M

Interpolator U-Net [3, 35] Image Convolution 11.6 M
ViT [29] Image Transformer 9.9 M
BERT [5] Sequence Transformer 10.1 M

Fig. 2   Example plot of a temporal background spectrum sequence 
(top) and estimation via linear interpolation along the time axis 
(bottom). The black boxes mark interpolated regions. The temporal 
interpolation anchors and spectral edges are left unchanged. Values 
smaller than zero are colored red, values larger than zero are colored 
blue. The plot suggests how to interpret the task similar to image 
reconstruction. The objective is to reconstruct the original sequence 
(top) from the linear interpolation (bottom)
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considered here since the U-Net architecture already requires 
a lot of memory.

If data is again considered sequence-like, a linear trans-
formation can be applied to each N × C vector. In contrast 
to the CWT a learnable linear transformation is used here 
since the dimension does not need to be increased in this 
case. This linear embedding can then be input to a BERT 
styled model. The output is again fed to a linear transforma-
tion and gets reshaped to match the desired output. In their 
original paper the authors introduced a masked language 
model (MLM) where words were randomly replaced by a 
missing token and their model was pre-trained in an unsu-
pervised fashion to learn natural language structure [5]. In 
the example given here most of the data is missing, but the 
target output can be slowly transformed to the desired input 
by increasing the number of interpolated spectra in the inter-
mediate region to speed up the initial learning period. This 
procedure is also applied to the image-like representations.

2.3 � Remarks

In summary several ways to interpret the data have been con-
sidered and appropriate established neural network architec-
tures have been chosen for each interpretation. It is impor-
tant to emphasize here that different performances of these 
models do not indicate advantages of one model architecture 
or data interpretation over the other. No proofs or evidence 
of a specific model type to be favored can be given, as these 
are only single random examples. The performance depends 
very much on the choice of hyper-parameters like optimizer 
setup, learning rate value and schedule or number of param-
eters. Taking into account several ways to understand data 
may lead to good performance without sensitive variations 
of hyper-parameters and emerging biases as a consequence.

All procedures motivated in this section and in the intro-
duction require several characteristics of the underlying 
background structure for the neural network approach to 
work accordingly. All of these requirements are fulfilled 
for the specific spectrometer setup used in this study with 
regards to interference fringe patterns as a main noise 
source. The procedures might show similar performance on 
other noise sources, if these requirements are also met there:

•	 Sparse noise distribution. All possible noise shapes 
must follow a sparse probability distribution compared to 
independent white noise. Otherwise no prior information 
about noise structure can be extracted from background 
measurements.

•	 Local stability. The noise structure needs to be locally 
stable so reconstruction is possible from the absorption-
free parts of the data.

•	 Global stability. The noise structure needs to be sta-
ble over time, otherwise the prior information needed 

for reconstruction changes and the network needs to be 
retrained. If the structure changes too fast, retraining is 
needed before desirable performance can be achieved.

3 � Experimentation and network training

The experiment conducted for this study is based on the 
instrument TRISTAR reported in [30, 37]. It is driven by a 
room temperature quantum cascade laser [38] from Alpes 
Lasers operated near the formaldehyde (HCHO) transition 
at 1759.72 cm−1 [39]. The laser beam is guided into a 50 cm 
long White Cell [40] where it gets reflected 128 times to 
yield an effective path length of 64 m. The beam exits the 
cell and is split by a beam splitter into two separate paths. 
One beam is guided through a reference cell filled with the 
substance of interest at high concentration. Both beams are 
focused on identical infrared detectors from VIGO Systems. 
The laser is modulated by a slow triangle wave that scans 
through the absorption spectrum and a fast sine wave that 
is demodulated at twice frequency by the data acquisition 
FGPA. The resulting spectrum is similar to the second deriv-
ative of the absorption profile, depending on the modulation 
depth. In the experiment each data point consists of C = 2 
spectra, one from the increasing part of the triangle wave 
and one from the decreasing part, with N = 512 points each.

Experimental data of the instrument is gathered for 14 
days. The instrument inlet is connected to an air purifier to 
remove the substance of interest, in this case HCHO. The 
reference cell is filled with a high concentration of HCHO. 
The detector channel without reference cell detects absorp-
tion-free spectra that only consist of the interference fringe 
background structure. Spectra acquired at this detector will 
be called BGD. The detector channel with inserted reference 
cell can be assumed fringe-free due to the high concentration 
signal. Spectra acquired at this detector will be called REF. 
Only the last 82% of this data is used for training.

Training data for the interpolator is created using 
sequences of BGD. A sequence X is input to a network that 
gets 4 s of spectra every 63 s and does point-wise linear 
interpolation in the intermediate region. The interpolation 
anchors and 64 points at both edges of the spectrum are left 
unchanged. Then this array of shape RT×N×C is normalized 
for each subarray in C while mean and standard deviation 
are stored. This prepared matrix is fed through the interpola-
tor and the output is rescaled by the standard deviation and 
translated according to the mean that was stored before. The 
loss is calculated as mean-squared-error (MSE) loss between 
this final matrix Y and the input sequence X.

Training data for the fitter is created using random pairs 
of BGD and REF. Two log-uniform distributed values A, S 
are drawn for the concentration and the signal-noise-ratio 
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(SNR). The input to the network Z is a linear combination 
of BGD and REF with

First this input is normalized and the standard deviation is 
stored. Then the CWT is performed that transforms to a 
dimension of RN×J×C . The CWT result is fed through the 
fitter to obtain a single value. This value is rescaled by the 
standard deviation stored. The loss is calculated as MSE 
loss between this rescaled output value and the value A. For 
additional investigation two instances of fitters are trained 
for different SNR ranges.

For validation, sequences of BGD and pairs of BGD and 
REF along with pre-determined random values are taken 
from the first 9–18% of the measurement data. The best 
iteration of each interpolator or fitter, respectively, is then 
applied to the test set. The test set consists of a sequence of 
BGD and injections of calibration gas into the measurement 
cell from the first 9% of the measurement time. Variation 
and point-wise accuracy of background and calibration sig-
nal can then be determined and compared to a conventional 
approach.

Each network is trained on a HPC cluster hosting several 
NVIDIA V100 GPUs. The training process is parallelized 
through the distributed learning scheme Horovod [41].

4 � Results and discussion

In this section the performance of the described model archi-
tectures will be discussed.

4.1 � Training performance

As already mentioned in Sect. 2, the interpolator was trained 
on an easier task during the first 10 epochs for a more effi-
cient training process. A random portion of spectra in the 
input sequence were exchanged by the corresponding spec-
tra in the target sequence. This procedure reinterprets the 
MLM from BERT or an autoencoder application to enable 
faster learning of the underlying distribution. The amount 
of exchanged spectra was linearly decreased towards zero in 
epoch 10. All model architectures show decreasing training 
loss and error metrics while validation metrics do not show 
major indications for overfitting. Figure 3 shows losses and 
mean absolute error of the interpolator models. Additional 
plots can be found in the appendix. For further investigation 

(6)Z = A REF +
A

S
BGD

of the robustness, several ablation studies [29] were per-
formed where the number of parameters of each model was 
reduced by scaling down the feature axes. The scaled down 
models achieved faster convergence speeds while resulting 
in similar final metrics. Example plots can also be found in 
the appendix.

4.2 � Validation set performance

Although different performances during training might sug-
gest the most suitable model choice for each application, 
these metrics only provide guidance during the training pro-
cess. Model performance should always be derived from 
experiments that more closely reassemble real applications. 
Thus, the models are evaluated in more detail using the vali-
dation sets.

Fig. 3   Training metric (upward triangle) and validation metric (down-
ward triangle) of interpolator models based on BERT (red), VIT (yel-
low) and UNET (blue) architecture: Top: Loss (mean squared error); 
Bottom: MAE (mean absolute error)
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The fitter model is evaluated by calculating the absolute 
squared error between model prediction and true signal 
amplitude of each spectrum in the validation set. For the 
investigation of small signal behavior the pure background 
spectra are also input to the model to obtain predicted zero 
amplitudes.

Fig. 4 shows an overview of the evaluation results for the 
fitters trained on a low SNR range. The BERT-styled variant 
shows the least combination of bias and variance for the zero 
amplitude while performing similar to the EffV2 and Hybrid 
variant overall. The mean squared error over the validation 
set is reduced by 99.5% and the mean squared error on pure 
background spectra by 97.4%. The absolute squared error 
can be further investigated depending on the input SNR. 

This is depicted in Fig. 5. The BERT variant outperforms 
linear fitting in the low SNR regime by 1–2 orders of mag-
nitude but falls short in the high SNR range.

The fitters trained on a high SNR range fail to outperform 
linear fitting and perform poorly for SNR values below their 
training data. A large bias is introduced when fitting pure 
background spectra due to the lack of low signal examples 
in their training distribution. Detailed plots similar to the 
ones shown in the low SNR example can be found in the 
appendix.

The interpolator models are evaluated by calculating 
point-wise squared errors between predicted background 
spectra and measured background. The evaluation result 

Fig. 4   Evaluation of fitter models trained on low SNR range and 
comparison to linear fit. Red boxes indicate 25%-quantile, median 
and 75%-quantile; red whiskers indicate 10% and 90% quantile. Blue 
diamonds show the mean, blue whiskers (if provided) show one 
standard deviation. Top: absolute squared error between prediction 
and true value. Maxima are in the order 104 . Bottom: predicted ampli-
tude of pure background spectra

Fig. 5   Fitter squared error as a function of input SNR. Linear fit in 
red, low SNR trained BERT variant prediction in blue. Boxes indicate 
25%-quantile, median and 75%-quantile; whiskers indicate 10% and 
90% quantile. Diamonds and lines show the mean. For better visuali-
zation the BERT plot is slightly offset along the x-axis

Fig. 6   Point-wise squared error between prediction and true spectra 
of interpolator models and comparison to linear interpolation. Red 
boxes indicate 25%-quantile, median and 75%-quantile; red whiskers 
indicate 10% and 90% quantile. Blue diamonds show the mean, blue 
whiskers show one standard deviation
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is shown in Fig. 6. Here the U-Net variant clearly shows 
the best performance. The mean squared error is reduced 
by 93.2%. This does not necessarily indicate an advantage 
of this exact model architecture compared to a transformer 
type, since further hyper-parameter optimizations can result 
in increased training efficiency and model performance. The 
behavior of the U-Net variant is analyzed in more detail by 
calculating the point-wise squared errors in dependence of 
the distance of the spectrum from the nearest interpolation 
anchor. This relation can be found in Fig. 7. In the case of a 
stable, slowly changing background, the linear interpolation 
would give best estimations near the anchors, which is the 
case in this dataset. The model prediction shows no depend-
ency on the distance to the nearest anchor and reduces the 
error evenly over the sequence.

4.3 � Denoising behavior

Despite the extraordinary mean squared error reduction from 
application of the fitter model, the denoising behavior shows 
undesirable properties that introduces disadvantages com-
pared to classical linear fitting. In the low SNR limit the 
variance of the linear method is very large compared to the 
signal amplitude. It is shown in Fig. 8 that the fitter model 
introduces a small bias while substantially reducing the vari-
ance. This leads to an effective reduction of the MSE. How-
ever, the bias is comparable to the signal amplitude which 
renders the method almost useless in applications.

A possible explanation of this behavior is a poorly chosen 
loss function. While the loss is reduced, the actual objec-
tive is not reached. Alternative explanations are non-opti-
mal model and optimizing schemes or an impossible task. 

Fig. 7   Point-wise squared error as a function of distance to nearest 
interpolation anchor. Linear interpolation in red, U-Net variant pre-
diction in blue. Boxes indicate 25%-quantile, median and 75%-quan-
tile; whiskers indicate 10% and 90% quantile. Diamonds and lines 
show the mean. For better visualization the U-Net plot is slightly off-
set along the x-axis

Fig. 8   Denoising behavior of the fitter model. Estimated amplitude 
against true value for the linear fit (red) and the low-SNR fitter model 
output using the BERT-styled variant (blue) for a low SNR exam-
ple batch with 256 spectra. The black solid line refers to a perfect fit 
y = x . The MSE values for this example batch are 121 and 59 for the 
linear fit and the fitter model, respectively. Despite the improvement 
in MSE, the fitter model produces a large bias which makes the esti-
mation less meaningful

Fig. 9   Training metric (red upward triangle) and validation metric 
(blue downward triangle) of classifier model based on EffV2 architec-
ture. Top: Loss (binary crossentropy); Bottom: accuracy
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For the investigation of the loss function, a variation of the 
experiment is conducted where instead of estimating the 
absolute concentration, the final layer is activated using the 
sigmoid function and the model is trained to distinguish pure 
background spectra from absorption spectra with an SNR of 
0.01. Figure 9 shows the training performance of this model. 
The accuracy of the validation set shows no significant per-
formance increase compared to random guessing. Thus, 
either the combination of model architecture and optimizing 
scheme is not optimal or the distinction between background 
and low SNR signal is not possible. The latter is the case if 
the data does not match the requirements given in Sect. 2.3. 
More specifically, the noise structure might not be locally 
stable or not sparse enough for the fitter task.

The interpolator shows desirable properties in the denois-
ing behavior. In Fig. 10 the deviation from the true value 
of both approaches is depicted. The example from Sect. 2 
is used. While coarse structures are visible in the differ-
ence between linear interpolation and original spectra, the 
residual structure of the model interpolation is much less 
correlated. This indicates effective learning of the underly-
ing distribution and successful reconstruction.

For the rest of this chapter, only the interpolator will be 
considered.

4.4 � Test set performance

The test set is evaluated using experimental performance 
metrics instead of model loss. This allows further quanti-
fication of the performance and generalization ability of 
each method. In absorption spectroscopy experiments, key 
parameters that limit the instrument performance are the 

reproducibility of calibrations due to temporal drifts, the 
relative precision, and the detection limit. The reproducibil-
ity of calibrations is retrieved by first averaging individual 
calibration intervals and calculating the standard deviation 
of these averages. It is a measure for long-term drifts and 
stability. The precision is the relative standard deviation of 
all calibration amplitudes after correction of the long-term 
drifts. The detection limit is two times the standard deviation 
of background amplitudes. Since only absorption-free gas 
was measured during the experiment, the detection limit can 
be evaluated using spectra marked as background as well as 
spectra marked as ambient.

Figure 11 gives an overview of the resulting experimental 
performance metrics. Similar to the validation set results the 
model-based approach achieve a better detection limit than 
the linear approach. Applying the interpolator model and a 
linear fit achieves a very robust reduction of detection limit 
as both the absolute and the relative errors are reduced.

Example time series of background and calibration ampli-
tudes are shown in Fig. 12. Again, very robust behavior can 
be observed for the combination of interpolator model and 
linear fit. This indicates evidence that the proposed interpo-
lator architecture provides robust noise reduction.

4.5 � Transferability

An important question left unanswered is the transferability 
of the networks. What kind of output is created if a differ-
ent spectrometer is used? Is a similar performance increase 

Fig. 10   Denoising behavior of the interpolator model. Difference 
between the example of the temporal background spectrum sequence 
shown in Fig. 2 and the linear interpolation along the time axis (left) 
and the interpolator model output using the U-Net variant (right) Fig. 11   Experimental performance metrics for the different interpo-

lation techniques. Reprod: reproducibility of calibrations; DetLim 
(BGD): detection limit (2� ) evaluated at spectra marked background; 
DetLim (AMB): detection limit (2� ) evaluated at spectra marked 
ambient
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possible? Will the result contain chaotic artifacts due to out-
of-distribution problems?

To answer these questions, the trained model is applied 
to a different QCL absorption spectrometer which utilizes a 
20 cm long Herriott Cell configuration with 182 passes [42, 
43] and is operated at the carbon monoxide (CO) transi-
tion at 2190.02 cm−1 [44]. Data acquisition and detectors are 
similar, but the experiment is driven at a different modula-
tion and sweeping frequency.

Evaluation data for the interpolator was gathered by 
flooding the absorption cell with nitrogen. Zero gas was 
measured for 70 h. Application of the pre-trained version 
directly resulted in similar performance than linear interpo-
lation. This indicates that the transferred model may require 
additional fine-tuning to achieve a good performance, while 
it does not result in chaotic artifacts. For fine-tuning, the first 
7 h of nitrogen measurement were taken as new training 
and validation data and the pre-trained interpolator model 
was trained further for 10 epochs, which results in 0.8% of 
fine-tuning iterations compared to pre-training iterations. A 
comparison of the evaluation is shown in Fig. 13.

5 � Summary and conclusion

In this study several possible applications of neural net-
works to absorption spectroscopy experiments were tested 
by interpreting the data structure in a way that several 
state-of-the-art neural network architectures can achieve 
good performance. These architectures were chosen from 
image classification and natural language processing tasks. 
A model for interpolation of background spectra and a 
model for gas concentration fitting of absorption spectra 
were created. Each neural network was trained on meas-
ured data and showed good generalization performance. 
The best performing instance of each task was further 
evaluated using test data and data from a different type of 
absorption spectrometer.

Fitters trained on a high SNR range did not outper-
form linear fitting. The best performing fitter trained on 
a low SNR range was of the BERT-type. It decreased the 
mean squared error on the validation set by 99.5% and the 
mean squared error on pure background spectra by 97.4%. 
However, undesirable denoising behavior was observed 
that rendered the method unusable. Training a classifier 
with the same architecture showed that this behavior was 
not caused by a poor choice of loss function but is caused 
either by insufficient architecture and optimizing scheme 
or an impossible objective. Considering the human-level 
performance in image recognition and natural language 
processing tasks of the chosen architectures, the objective 
might not be possible due to the strong interference of 
signal and background. However, due to the large search 

Fig. 12   Examples of amplitude results for different interpolation 
techniques. Top: Example result during zero gas measurement. Grey 
regions indicate declaration of the spectra as background. Bottom: 
Example result during calibration gas injection

Fig. 13   Performance comparison of linear approaches to interpolator 
model transferred to the alternative spectrometer. Point-wise squared 
error between background spectra and interpolation reconstruction 
with linear interpolation, pre-trained variant and fine-tuned vari-
ant. Red boxes indicate 25%-quantile, median and 75%-quantile; red 
whiskers indicate 10% and 90% quantile. Blue diamonds show the 
mean, blue whiskers show one standard deviation
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space and choice of hyper-parameters this can only be 
speculated.

The best performing interpolator was of the U-Net type 
and reduced the mean squared error of the validation set by 
93.2%. It showed less dependence on the distance from the 
nearest interpolation anchor than the linear interpolation. 
The combination of model interpolation and linear fitting 
showed very robust behavior and decreased the relative 
error by 8.2% and the detection limit by 52.4% on the test 
set.

It was shown that the interpolator model can be trans-
ferred to a different spectrometer without chaotic out-
of-distribution effects. However, the performance of the 
pre-trained model on the different setup does not match 
the performance on the original spectrometer setup and 
may become worse than conventional approaches. The per-
formance can be enhanced via fine-tuning on new data. 
Using just 0.8% fine-tuning iterations in relation to initial 
training iterations, the interpolator mean squared error was 
reduced by 36.3 % compared to the conventional approach.

In conclusion, using state-of-the-art architectures is no 
guarantee to obtain a well performing neural network if the 
task is not appropriate. But, interpreting the task in multi-
ple ways to include many state-of-the-art architectures can 
make the application less sensitive to specific properties 
of a chosen network and speed up the architecture design 
significantly.

In this study only 2f-wavelength modulation spectroscopy 
was considered, but the concept should also work for other 
absorption spectroscopy data acquisition schemes due to the 
similarities of the spectral features and the dominant noise 
sources. More fine-tuning may be required in this case.

Appendix A Additional figures

 See Figs 14, 15, 16, 17, 18, 19, 20

Fig. 14   Training metric (upward triangle) and validation metric 
(downward triangle) of high-SNR fitter models based on BERT (red), 
VIT (yellow), Hybrid (grey) and EffV2 (blue) architecture: Top: Loss 
(mean squared error); Bottom: MAE (mean absolute error)

Fig. 15   Training metric (upward triangle) and validation metric 
(downward triangle) of low-SNR fitter models based on BERT (red), 
VIT (yellow), Hybrid (grey) and ffV2 (blue) architecture: Top: Loss 
(mean squared error); Bottom: MAE (mean absolute error)
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Fig. 16   Ablation study. Training loss (upward triangle) and validation 
loss (downward triangle) of high-SNR fitter models based on VIT. 
Original model size performance in blue and reduced parameter ver-
sions in light blue, pink, red in the order of smaller model sizes

Fig. 17   Ablation study. Training loss (upward triangle) and valida-
tion loss (downward triangle) of low-SNR fitter models based on VIT. 
Original model size performance in blue and reduced parameter ver-
sions in light blue, pink and red in the order of smaller model sizes

Fig. 18   Ablation study. Training loss (upward triangle) and valida-
tion loss (downward triangle) of interpolator models based on UNET. 
Original model size performance in blue and reduced parameter ver-
sions in purple and red in the order of smaller model sizes

Fig. 19   Evaluation of fitter models trained on high SNR range and 
comparison to linear fit. Red boxes indicate 25%-quantile, median 
and 75%-quantile; red whiskers indicate 10% and 90% quantile. Blue 
diamonds show the mean, blue whiskers (if provided) show one 
standard deviation. Top: absolute squared error between prediction 
and true value. Maxima are in the order 101 . Bottom: predicted ampli-
tude of pure background spectra

Fig. 20   Fitter squared error as a function of input SNR. Linear fit in 
red, high SNR trained EffV2 variant prediction in blue. Boxes indi-
cate 25%-quantile, median and 75%-quantile; whiskers indicate 10% 
and 90% quantile. Diamonds and lines show the mean. For better vis-
ualization the EffV2 plot is slightly offset along the x-axis
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