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Abstract
Hyperfine splitting frequency shifts of paramagnetic atoms (H, Li, Na, K, Rb, and Cs) induced by noble-gas collisions are 
calculated by perturbation theory. The finite sizes of the core orbitals of noble-gas atoms (He, Ne, Ar, Kr, and Xe) are taken 
into account by the modified pseudopotential. The wave function of the valence electron is orthogonalized to the core orbit-
als, leading to a correct calculation of the resonance frequency. Fitting results are compared for the wave function bases and 
the core orbital sizes. The best fits are obtained when the Hartree–Fock–Roothaan wave function is used for the ground state 
of paramagnetic atoms and when repulsion forces due to the outermost occupied orbitals of noble-gas atoms are considered. 
For all combinations of alkali-metal and noble-gas atoms, the obtained fitting parameters are close to the pseudopotential 
height of approximately 2.6 times the atomic radius.

1  Introduction

The hyperfine splitting frequency of the ground state of 
alkali-metal atoms has been studied intensively both exper-
imentally and theoretically [1–7]. Frequency shifts were 
measured in buffer gases but have not been well explained 
by simple theories based on atomic orbitals. A negative 
frequency shift was obtained with dispersion potentials for 
heavier noble-gas atoms. However, as the atoms became 
heavier, the measured frequency shifts and their temperature 
dependence could not be satisfactorily explained. Recently, 
the introduction of turning points in collisions has made it 
possible to numerically reproduce frequency shifts over a 
wide temperature range, from light to heavy noble-gas atoms 
[8]. Despite various improvements, however, some of the 
obtained parameters do not provide physical insight.

The Fermi pseudopotential has been used for s-wave scat-
tering and can also describe the repulsion force in atomic 
collisions at room temperature or above. The pseudopoten-
tial is a good approximation for collision partners with small 
atomic radii. In collisions with heavier noble-gas atoms, 
the radii of the occupied core orbitals should be consid-
ered in the repulsion force. Therefore, the pseudopotential 

is modified to take into account the overlap of the wave 
functions of the valence electron and the electrons in core 
orbitals. On the other hand, the theoretical repulsion poten-
tial had been systematically obtained based on the Cou-
lomb-approximation (CA) wave function [9]. Therefore, 
the theoretical potential curve and the CA wave function 
were used to calculate the frequency shift [7, 8]. However, 
for heavier alkali-metal atoms, the CA wave function devi-
ates significantly from more accurate functions such as the 
Hartree–Fock–Roothaan (HFR) wave function [10, 11]. In 
calculations, the fitting parameters might have presented 
systematic bias due to the alkali-metal dependence, which 
is inevitably included in the theoretical potentials. This work 
compares calculations using the CA and the HFR wave func-
tions to check if this bias happened.

The perturbed wave functions of the valence electrons are 
orthogonalized to the core orbitals of the noble-gas atoms. 
The orthogonalization changes the electron density, that is, 
the magnitude of spin interaction at the positions of both 
nuclei of collision pairs. The orthogonalized wave approxi-
mation (OWA) has explained the enhanced spin-exchange 
interaction between valence electrons and noble-gas nuclei 
[12, 13], which is a key interaction in modern quantum 
devices of ensemble atomic vapor [14, 15]. In addition to 
this enhancement, the numerical calculations in this work 
provide details of the frequency shift of hyperfine resonance, 
i.e., the change in the magnitude of the interaction between 
valence electrons and nuclei of the paramagnetic atoms.
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In the text, paramagnetic atoms such as hydrogen and 
the alkali-metal atom are referred to as atom a, and noble-
gas atoms as atom b.

2 � Hyperfine splitting frequency

2.1 � Isotropic interaction

The isotropic hyperfine interaction in the ground state is 
expressed by the scalar magnetic dipole coupling, A I ⋅ S , 
where I is the nuclear spin and S is the electron spin of 
an atom a [16]. The hyperfine constant A is proportional 
to the density of the valence electron at the position of 
nucleus a. When mean density changes by atomic colli-
sions, the hyperfine constant also changes, A = Ag + �Ag , 
where Ag is the hyperfine constant of a free atom in the 
vacuum.

2.2 � Analysis results

The hyperfine splitting frequencies in noble gases, 
� = �0 + �� , are analyzed in terms of an isotope-independ-
ent dimensionless parameter � [4, 17],

where �0 = Ag(2I + 1)∕2h is the unperturbed frequency 
measured in vacuum, �� is the measured frequency shift, 
N is the number density of noble-gas atoms, a0 is the Bohr 
radius, and h is the Planck constant. The measurements used 
in this work were performed in dilute noble gases. There-
fore, we assume �� ∝ N due to binary collisions and ignore 
nonlinear shifts due to many-body collisions and the forma-
tion of van der Waals molecules [18, 19]. The relative shift 
� obtained from the measured �� is compared with � from 
the theoretical �Ag . The shifts � depend on the temperature 
for the respective collision pairs. Figure 1 shows previ-
ously measured shifts and the fitting curves calculated in 
this work. The theory and analysis conditions are described 
in the following sections. The frequency shifts have been 
measured over a wide temperature range in He, Ne, and Ar 
gases. Therefore, the fitting curves are reliably obtained. In 
Kr and Xe gases, however, the small number of measured 
shifts may have caused ambiguity in the fitting. For Rb and 
Cs atoms, if � in Eq. (21) is greater than the current value in 

(1)� =
1

Na3
0

��

�0
=

1

Na3
0

�Ag

Ag

,

Table 2, the difference between the calculated shifts for each 
condition is reduced, although it cannot be judged based on 
the measurements to date.

2.3 � Collision processes

The frequency shift is obtained by assuming that binary 
collisions are weak and sudden. The phase of hyperfine 
coherence changes continuously and incoherent interrup-
tions are neglected. The phase angle � added in a single 
collision is sufficiently small and assumed to be propor-
tional to �Ag(t) . The frequency shift becomes nonlinear 
as � increases. It takes place by the formation of van 
der Waals molecules [18, 19]. At the high-temperature 
approximation, we ignore the bound states in the poten-
tials, such as vibrational and rotational states of molecules, 
and the spin interactions between atoms a and b [20, 21]. 
Except for the duration of collisions, the interaction energy 
L(t) = �Ag(t)I ⋅ S is negligible. With a large number of col-
lisions, the atomic density operator � follows [22],

where Ha is the Hamiltonian of isolated atom a, Tc is mean 
time from one collision to the next, L̆(𝜔) is Fourier trans-
form of L(t), and L̆†(0) = L̆(0) . The first term shows the time 
evolution of isolated atoms, the second term is the frequency 
shift, and the third is the relaxation of hyperfine levels [4, 
5]. The frequency is shifted by the interaction L(t), but the 
linewidth may or may not broaden depending on the adi-
abatic potential. Other relaxation mechanisms, such as spin-
rotation interactions, are dominant at high temperatures but 
are neglected because they do not cause frequency shifts [13, 
22, 23]. Equation (2) is the same as the ensemble average of 
the quantum Lindblad master equations [24, 25]. Therefore, 
an atomic ensemble can be regarded as a single quantum 
system. Noting the frequency shift of the atomic system,

where the phase angle, � =
1

ℏ ∫
∞

−∞

�Ag(t)dt , is an integral 

along a classical path [26]. The adiabatic potential in 
Sect. 3.2 changes the collision trajectory but not the internal 
spin state. The ensemble average in Eq. (3) is approximated 
by a statistical average in Sect. 3.4.2.
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Fig. 1   Isotope-independent relative shift � of a H [27–31], b Li [32, 
33], c Na [17, 34, 35], d K [17, 35, 36], e Rb [17, 35, 37–45], and f 
Cs [37, 41, 45–50] atoms in noble gases. Marks indicate measured 
shifts. For Li in Kr and K in Xe, the shifts have not been measured 
and are estimated in calculations. Note that the temperature range 
for hydrogen is different from the others. Fitting curves are calcu-
lated using the Coulomb-approximation (CA) and the Hartree–Fock–
Roothaan (HFR) wave functions. The electron density of noble-gas 

atoms is assumed to be the delta function (DLT), all core orbitals 
(ALC), and outermost core orbitals (OMT). The curves are brown 
solid (HFR, OMT), blue dashed (HFR, ALC), green short-dashed 
(HFR, DLT), red dashed-dotted (CA, OMT), purple dashed-dotted-
dotted (CA, ALC), and orange dotted (CA, DLT). For hydrogen in 
Ar, Kr, and Xe, fitting curves show unreasonable temperature depend-
ence by DLT
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3 � Perturbation theory

3.1 � Wave function

The electron wave function is expressed by the direct prod-
uct, �v(ra)�c(ra)�b(rb) , where �v(ra) is the wave function 
of valence electron, �c(ra) =

∏
i �ci(rai) of the occupied 

core orbitals of atom a, �b(rb) =
∏

i �bi(rbi) of the occu-
pied core orbitals of atom b, ra is a displacement of elec-
tron from nucleus a, and rb is a displacement of electron 
from nucleus b. The displacement vectors are shown in 
Fig. 2. At a sufficiently far internuclear distance R, the 
valence electron is in the ground state of the atom a, 
�v(ra) = �ag(ra) . In atomic collisions, the valence electron 
is perturbed by atom b. The perturbed wave functions are 
obtained in Sect. 3.3.1. For core electrons, wave functions 
�ci(rci) are orthogonal to each other. The same holds for 
�bi(rbi) . In addition, these can be considered orthogonal to 
each other since the overlap of �ci(rci) with �bi(rbi) is neg-
ligible even at the closest distance in atomic collisions, as 
shown in Sect. 3.2.1. The perturbed wave function �v(ra) is 
orthogonalized to the core orbitals, �bi(rbi) , in Sect. 3.3.2.

3.1.1 � Hartree–Fock–Roothaan (HFR) wave function

The HFR wave function is used for the ground state of 
valence electrons and the core orbitals of atoms a and b 
[10, 11]. Non-relativistic wave functions do not represent 
electrons near the nucleus well. In particular, the ampli-
tude �ki(0) of the s orbitals differs from the measured 
value, and the difference is wider for heavier atoms. For 
example, the ratios of calculated and measured densities 
|�ag(0)|2 are, respectively, 0.978 (H), 0.723 (Li), 0.706 
(Na), 0.625 (K), 0.554 (Rb), and 0.428 (Cs). These differ-
ences are corrected for atoms a in the following calcula-
tions, but not for noble-gas atoms. The HFR wave function 
is a one-electron wave function based on the mean-field 
approximation. Since, for hydrogen atoms, there is only 
one electron, the HFR wave function is the same as the 
CA wave function.

3.1.2 � Coulomb‑approximation (CA) wave function

The CA wave function is used for the excited state of atom a. 
For comparison with the HFR wave function, the CA wave 
function is also used for the ground state of the valence elec-
tron. For hydrogen atoms, given the excitation energy, the 
CA wave function is identical to the analytic, non-relativistic 
form in the Coulomb potential [51]. Since the thermal energy 
is small compared to the repulsive potential, colliding atoms 
rarely get closer to each other to a distance where the CA wave 
function becomes inaccurate. Therefore, the CA wave func-
tion can be used outside the closest distance (classical turning 
point). In Refs. [7, 8], for the ground state, the CA wave func-
tion was needed to reproduce the theoretical repulsive potential 
based on the CA wave function [52]. The height in Eq. (7) was 
fixed to the theoretical potential. In this work, the potential 
height is treated as a fitting parameter. Therefore, the CA wave 
function is one of the options for best fitting the measured 
hyperfine frequency shift.

3.1.3 � Spin‑orbit coupling

For core electrons, the radial wave function Rbil(rb) , which is 
common to individual shells, is used in the form given as the 
HFR basis function. Therefore, assuming uncoupled states, the 
wave function is the direct product of the radial, orbital, and 
spin basis functions, respectively,

where i is a set of quantum numbers (i, l,ml,mS) . The direct 
product is also assumed for the core electrons of atom a. For 
valence electrons with spin-orbit interaction, we take the 
linear combination of the direct product,

(4)�bi(rb) = Rbil(rb)Ylml
(�b,�b)�mS

(�b),

(5)�an(ra) = Ranlj(ra)
∑

ml,mS

C
jm

lml
1

2
�
Ylml

(�a,�a)�mS
(�a),

R

r r

Fig. 2   Displacement vectors for ra = rb + R . ra and R are, respec-
tively, the displacements of electrons and the nucleus b from the 
nucleus a. rb is the displacement of electrons from the nucleus b

Table 1   The number of core electrons of noble gas N
e
 . The measured 

electric-dipole polarizability � [56, 57], s-wave electron scattering 
length a

s
 [58], and van der Waals radius R

vdw
 [56]. Atomic radius R

sto
 

calculated by single Slater-type wave functions [59] and R
hfr

 by the 
HFR wave functions. These are in atomic units

He Ne Ar Kr Xe

N
e
∕2 1 5 9 18 27

� 1.3873 2.6705 11.150 16.905 27.554
a
s

1.19 0.214 − 1.492 − 3.32 −6.0
R
vdw

2.51 2.25 2.79 2.99 3.26
R
sto

0.593 0.716 1.35 1.66 2.04
R
hfr

0.569 0.634 1.302 1.568 1.938
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where Cjm

lmls�
 is a Clebsch-Gordan coefficient, Ylml

(�,�) is the 
spherical harmonic, and n = (n, l, j,m) . The radial function 
Ranlj(ra) is given by the HFR or CA wave function.

3.2 � Adiabatic potential

The total Hamiltonian is Ha + Hb + H� , where Ha and Hb 
are the Hamiltonians of isolated atoms, respectively. Fermi 
pseudopotential, (2�ℏ2as∕me)�(ra − R) , has been used for 
the repulsive interaction between the valence electron of 
atom a and the electrons of atom b, where me is the elec-
tron mass [4]. The scattering length of slow electrons as 
characterizes the interaction. See Table 1. In the absence 
of dispersion potential, the scattering length corresponds 
to the radius of the hard-sphere model. We will use this 
relation in the following discussion. However, different 
from the Rydberg state [53–55], the orbitals of the ground-
state valence electrons do not have the sufficient spatial 
extent to assume atomic collisions described only by s 
waves. If the radius of the occupied orbitals of atom b is 
smaller than the orbital radius of the valence electron, the 
interaction is approximately described by a Fermi pseudo-
potential. Otherwise, the size of atom b should be included 
in the calculation. This is truly the case for hydrogen 
atoms. In the case of alkali-metal atoms, the finite size of 
noble gas atoms causes small but meaningful changes in 
the fitting parameters.

3.2.1 � Pseudopotential

For the finite size of the core orbital of atom b, we take the 
interaction Hamiltonian to be,

where ra is the displacement of valence electron, rb is repre-
sentative of all rbi , the sum takes over the occupied shells of 
atom b, and Vh = ℏ2ah∕2me . The potential height ah depends 
on both the atoms, a and b. The expectation value of the 
interaction ⟨b�⟨ag�H′�ag⟩�b⟩ is,

where ra = rbi + R and �b(rb) =
∑

i ��bi(rbi)�2 is the electron 
density distribution. Vg(R) presents the repulsive potential of 
atoms a and b. For the Fermi pseudopotential, �b(rb) = �(rb) 
and Vg(R) = 4�Vh|�ag(R)|2 in Eq. (7). Explicit forms for 
numerical calculation are given in Appendix A. The repul-
sion potential due to the core electrons of both atoms a and 
b is assumed as,

(6)H�(ra, rb,R) = 4�Vh

∑

i

�(ra − rbi − R),

(7)Vg(R) = 4�Vh ∫ d3ra|�ag(ra)|2
∑

i

|�bi(rbi)|2,

The convolution between the core orbitals changes the fitting 
parameter ah for the largest noble gas, Xe atoms, by at most 
1% compared to the case of �b(rb) = �(rb) in Eq. (8).

3.2.2 � Electron density of noble‑gas atoms

The calculation is performed for various normalized electron 
densities �b(rb) , such as the delta function �(rb) (called DLT), 
sum of all core orbitals 

∑
i ��bi(rbi)�2 (ALC), and the outer-

most orbital |�bi(rbi)|2 (OMT), as shown in Fig. 3. Empirical 
atomic radii Rsto were obtained from the radius of maximum 
electron density, rb�bi(rb) , in the outermost shell using single 
Slater-type orbitals [59]. Similarly, the radii Rhfr are obtained 
for HFR wave functions, as shown in Table 1. The electron 
density of occupied orbitals of the noble-gas atoms is spherical 
symmetric by sum for azimuthal quantum number ml . 

(8)Vc(R) = 4�Vh ∫ d3ra

∑

i

|�ci(rai)|2�b(rb).

Fig. 3   Normalized electron-density distribution of noble-gas atoms. a 
the outermost orbital, b all occupied orbitals, and c the delta function 
approximated by �(rb) = (

√
�a)−3 exp

�
−
�
rb∕a

�2� , where a = 0.1 . 
The vertical arrow in a indicates the radius Rhfr at which rbRb�(rb) is 
maximum
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Therefore, �b(rb) = (Rb�(rb)∕
√
4�)2 and normalized as 

∫ d3rb �b(rb) = ∫
∞

0

drb
(
rbRb�(rb)

)2
= 1 . As the outermost 

shell, we take 1s (He), 2p (Ne), 3p (Ar), 4p (Kr), and 5p orbit-
als (Xe). For the Ne atom, the radius of the maximum electron 
density of the 2s orbital (0.716) is greater than that of the 2p 
orbital (0.695). As the outermost orbital, however, we take the 
2p orbitals that have wider feet than the 2s orbitals have 
because the convolution in Eq. (7) is more affected by the foot 
of orbitals.

3.2.3 � Dispersion potential

For instantaneous molecules a–b, dispersion forces minimize 
the energy of the adiabatic potential. Previously calculated 
dispersion potential is expressed as [52, 60],

where fn(R) is the damping function changing from 1 to 0 
as the colliding pair approaches. In Sect. 3.4, the adiaba-
tic potential, V(R) = Vc(R) + Vg(R) + VvdW(R) , is used for 
the statistical average. The electrons are attracted to the 
induced dipole in the dispersion forces, and the electron 
density decreases at the nucleus a. This density decrease 
can be calculated by second-order perturbation theory [8]. 
In this work, the change in electron density is assumed to 
be proportional to the dispersion potential [1], as shown in 
Eq. (18), and the proportionality coefficient is obtained by 
fitting.

3.3 � Linear combination of atomic orbitals (LCAO)

When electrons fill the orbitals of atoms a and b in sequence, 
each core orbital is occupied first, and the last electron enters 
the valence orbital. The valence electron is perturbed with the 
core electrons of atom b. The perturbed wave function �v(ra) is 
represented by a linear combination of atomic orbitals (LCAO) 
and consists mainly of �ag(ra) with the mixing of the excited 
states �an(ra) and �bn(rb) of atoms a and b, respectively. In gen-
eral, �v(ra) = cagg�ag(ra) +

∑
n cang�an(ra) +

∑
n cbng�bn(rb) . 

However, �bn(rb) in the last term corresponds to the negative 
ion states, where an electron enters the excited state outside 
the neutral closed shell of the noble-gas atom [61], which is 
scarcely induced by atomic collisions. Therefore, we ignore 
the last term.

(9)VvdW(R) = −f6(R)
C6

R6
− f8(R)

C8

R8
,

3.3.1 � Mixing of excited states of paramagnetic atom

Due to the interaction Hamiltonian H′ in Eq. (6), the valence 
electron wave function is expressed in an LCAO form as,

where the sum extends over all excited states. For normali-
zation, 2ca2 = −

∑
c2
ang

< 0 . The mixing coefficient cang is 
obtained by perturbation theory as −⟨b�⟨an�H��ag⟩�b⟩∕En 
and higher-order terms due to second-order perturbation 
theory are neglected. En is the excitation energy measured 
from the ground state and Eg = 0 [62, 63]. Therefore,

The mixing leads to the change in electron density at nucleus 
a and the decrease in electron density at nucleus b. It means 
that, due to the pseudopotential, the occupied shells repel 
the valence electron at the position of nucleus b and induce 
the frequency shifts of hyperfine resonances of the atom 
a. The change in electron density due to the higher-order 
terms is equivalently included in change due to disper-
sion forces in Eq. (18) [8]. For the Fermi pseudopotential, 
cang(R) = −(4�Vh∕En)�an(R)�ag(R) . Explicit forms for 
numerical calculation are given in Appendix B.

3.3.2 � Orthogonalized wave approximation (OWA)

The wave function of valence electrons should be orthogo-
nal to all other wave functions. Since �v(ra,R) in Eq. (10) 
is intrinsically orthogonal to all occupied shells of the 
atom a, it will be orthogonalized to all occupied shells 
of the atom b [13]. The OWA best approximates the wave 
function inside the core of the noble gas and reproduces 
atomic collisions along with further perturbations due 
to the pseudopotential [12]. The OWA wave function of 
valence electron is,

where 2co2 =
∑

c2
oi

 for normalization and co2 > 0 since 
�an(ra) is not orthogonal to �bi(rb) . Therefore, the electron 
density at the nucleus a is increased by OWA. The orthogo-
nalization coefficient ⟨bi�v⟩ is

where cagg = 1 + ca2 . The OWA increases the number of 
nodes in the wave function and thus the eigenenergy. The 

(10)𝜙v(ra,R) =
{
1 + ca2(R)

}
𝜙ag(ra) +

∑

n>g

cang(R)𝜙an(ra),

(11)cang(R) = −
4�Vh

En
∫ d3ra�

∗
an
(ra)�ag(ra)�b(rb).

(12)�(ra,R) =
{
1 + co2(R)

}
�v(ra) −

∑

i≤g
coi(R)�bi(rb),

(13)coi(R) =
∑

n≥g
cang(R)� d3rb �

∗
bi
(rb)�an(ra),
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coefficient coi mainly comes from the overlap of �bi(rb) with 
�ag(ra) although the other overlaps with �an(ra) are not negli-
gible. For the He atoms, the p component has been neglected 
by this OWA [12]. Explicit forms for numerical calculation 
are given in Appendix C. From Eqs. (10) and (12), the wave 
function of valence electron is,

For various R, the wave functions �(ra,R) , �v(ra,R) , and 
�ag(ra) at ra along the internuclear axis are shown in Fig. 4.

3.3.3 � Enhancement of electron density at noble‑gas 
nucleus

The wave function of the valence electron at nucleus b 
presents the magnitude of the spin-exchange interac-
tion between the electron and the noble-gas nucleus. As 

(14)
𝜓(ra,R) =

{
1 + ca2(R) + co2(R)

}
𝜙ag(ra)

+
∑

n>g

cang(R)𝜙an(ra) −
∑

i≤g
coi(R)𝜙bi(rb).

described in Ref. [13], the enhancement factor � presents 
the ratio of the perturbed wave function at the noble-gas 
nucleus to what it would be in the absence of the noble-gas 
atom. In our notation,

The enhancement factor, a key parameter for alkali-metal 
and noble-gas atomic quantum devices [14, 15, 64], is deter-
mined by the amplitude of the s orbitals, �bi(rb = 0) , where 
i = (i, l = 0,ml = 0,mS) . If R is large enough, �ag(ra) is nearly 
constant as �ag(R) inside the core of atom b. From Eqs. (13) 
and (14), the factor � =

�
1 −

∑
i �bi(0) ∫ d3rb �

∗
bi
(rb)

�
 is 

independent of R and determined only by the noble-gas 
atoms. Therefore, � was assumed to be constant [65]. On 
the other hand, � decreases as the atoms approach each 
other. It is because the overlap of �ag(ra) in Eq. (13), which 
is integrated in three dimensions, becomes smaller and 
because the mixing coefficients cang(R) changes to cancel 
out the dominant part. Therefore, in the region of R where 
the spin-exchange interaction is effective, the enhancement 

(15)�(ra = R,R) = � �ag(ra = R).

eXrKrAeNeH

H

Li

Na

K

Rb

Cs

Fig. 4   Wave functions of valence electron for various collision pairs 
along the internuclear axis. � gray solid curve, �ag green solid curve, 
and �v red dashed curve. From top to bottom, the collision partners 
are H, Li, Na, K, Rb, and Cs atoms; from left to right, He, Ne, Ar, 
Kr, and Xe atoms. The sign of wave function is determined so that 
the outermost anti-node is positive. These are calculated for the fit-
ting parameter ah in Fig. 5a using the HFR wave function for �ag of 
alkali-metal atoms, the CA wave function of the hydrogen atom, and 

the outermost orbital for the electron density of noble-gas atoms. Due 
to pseudopotential, |𝜙v| < |𝜙ag| at ra = R . The change in electron 
density due to dispersion force is not included. Each figure is linked 
to a video (the media file type is MP4). By sliding the seek bar, the 
enhancement factor and the wave functions are shown at displace-
ments outside the classical turning point Rt , where Rt is from Eq. (21) 
and Table 2 for 400K
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factor varies along R differently for each colliding pair. 
Although �(R) decreases, �(R)�ag(R) increases when atoms 
are closer to each other. As the temperature increases, the 
atoms can come even closer to each other, strengthening 
the spin coupling between valence electrons and noble-gas 
nuclei [65–68]. If only for the shifts � , which is the purpose 
of this work, the non-relativistic HFR wave function can be 
used to calculate a sufficiently accurate coi(R) . It is because 
the relativistic correction near rb = 0 is negligible in the 
integration in Eq. (13). On the other hand, a more precise 
evaluation of �(R) requires the correction at rb ≈ 0 , which 
should be significant for heavier noble-gas atoms [69, 70]. 
The current non-relativistically evaluated enhancement fac-
tor and orthogonalized wave function are shown in Fig. 4.

3.4 � Statistical average

Hyperfine splitting frequency shifts are calculated by statisti-
cal average using perturbation theory with atomic wave func-
tions, pseudopotentials, and dispersion potentials. Owing to a 
classical turning point, the statistical average reproduces the 
measured shift over a wide temperature range [8].

3.4.1 � Fractional frequency shift

The fractional frequency shift is a relative frequency shift 
of a function of R, defined by F(R) = �Ag(R)∕Ag [1, 4]. 
We assume that the fractional shift consists of two parts, 
F(R) = Frep(R) + FvdW(R) . The first term is due to repulsion 
force by pseudopotential, as follows,

The second-order coefficients are taken within the first-order 
perturbation theory [8]. Assuming �bi(ra = 0) = 0 , from 
Eq. (14),

where |�an(0)∕�ag(0)| =
√

An∕Ag is a correction to the HFR 
wave functions and An is the measured hyperfine constant of 
ns state of atom a [71–73]. FvdW(R) shows the decrease in 
the electron density at nucleus a due to dispersion forces. We 
assume that the negative shift is proportional to the van der 
Waals potential in Eq. (9) [1],

where Efit is a parameter for fitting the calculated relative 
shifts to the measurements.

(16)Frep(R) =
(
|�(0,R)|2 − |�ag(0)|2

)/
|�ag(0)|2.

(17)

Frep(R) = 2
{
ca2(R) + co2(R)

}

+ 2
∑

n>g

cang(R)
𝜙an(0)

𝜙ag(0)
+

||||||

∑

n>g

cang(R)
𝜙an(0)

𝜙ag(0)

||||||

2

,

(18)FvdW(R) = VvdW(R)∕Efit,

3.4.2 � Classical turning point

For sudden collision of 2𝜋𝜈0𝜏c ≪ 1 , the ensemble average in 
Eq. (3) is expressed by a statistical average. The statistical 
average in the sudden limit (collision duration �c → 0 ) is of 
the same form as the static limit (atomic velocity → 0 ) [26]. 
For microwave coherence of h𝜈0 ≪ kT  , the density operator 
� ≈ ��⟩(e−V∕kT∕Z)⟨�� , where k is the Boltzmann constant 
and the partition function Z is approximately equal to the 
volume of interest. Therefore, the relative shift in Eq. (1) 
is [4, 17],

We use the adiabatic potential V(R) in Sect.  3.2.3 and 
neglect the second-order perturbation energy and the energy 
increase due to OWA. The classical turning point Rt is the 
closest distance the colliding pair can approach. The turn-
ing point is an indispensable cutoff distance for calculating 
relative shifts at high temperatures.

In the classical path of each collision, the pair approaches 
each turning point Ri shown by [4, 22],

where the second term presents the rotational energy at Ri , 
bi is the impact parameter, Ei = mv2

i
∕2 , m is the reduced 

mass, and vi is the initial relative velocity at R = ∞ . For the 
repulsive potentials, Ri > bi . In deep dispersion potentials, 
the atoms attract each other, and a small Ri is expected; if 
V(Ri) < 0 , then Ri < bi . Approximating the ensemble aver-
age of Eq. (20) to be decomposed into the respective terms, 
we define the classical turning point Rt as,

where Rt is greater than the minimum of Ri , Rt > min(Ri) . 
� =

⟨
b2
i
∕R2

i

⟩
 depends on the adiabatic potentials, that is, � 

is larger when the dispersion potential is deeper. Based on 
the work [8], � shown in Table 2 is used.

Since F(R), V(R), and Rt are functions of the fitting 
parameters, ah and Efit , the relative shift depends nonlinearly 

(19)� = ∫
∞

Rt

F(R) e−V(R)∕kT4�R2dR.

(20)Ei = V(Ri) + (b2
i
∕R2

i
)Ei,

(21)V(Rt) = ⟨Ei⟩
�
1 −

�
b2
i
∕R2

i

��
=

3

2
kT(1 − �),

Table 2   Common parameter � in Eq. (21), used in Fig. 5a–f

He Ne Ar Kr Xe

H 0.60 0.63 0.67 0.70 0.73
Li 0.63 0.67 0.70 0.73 0.77
Na 0.67 0.70 0.73 0.77 0.80
K 0.70 0.73 0.77 0.80 0.83
Rb 0.73 0.77 0.80 0.83 0.87
Cs 0.77 0.80 0.83 0.87 0.90
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on the parameters and is obtained by numerical calculation. 
The overlap integrals in Eqs. (11) and (13) are independent 
of the fitting parameters. Therefore, the fitting procedure is 
not time-consuming once the overlaps are calculated.

4 � Discussion

The measured relative shifts were fitted by two parameters, 
E−1
fit

 and ah , as shown in Fig. 1. At a temperature, the calcu-
lated shift increases as ah increases, and the increase in shift 
is canceled out by the increases in E−1

fit
 , indicating a positive 

correlation between these parameters. Nevertheless, fitting 
over a wide temperature range provides unique parameters 
definitively. Since the calculated shift is the offset of the 
respective large shifts due to E−1

fit
 and ah , the measured shift 

gives information on the small changes in the two param-
eters. As shown in the comparison of the fitting curves using 
the HFR wave function and the CA wave function for the 
ground state, it is possible to fit the calculations to the meas-
ured shifts using either wave function. Furthermore, fitting 
is possible for any electron density distribution of noble-
gas atoms, whether OMT, ALC, or DLT. Nevertheless, the 
parameters obtained are different, as shown in Fig. 5a–f, 
where E−1

fit
 is normalized by E−1

c
 [8]. The characteristic 

energy Ec , obtained from the mean excitation energies of 
atoms a and b, mainly normalizes the properties of the atom 
a [1, 6]. In the following, we examine which combination 
reasonably explains the measurements.

Figure 5f obtained by CA, DLT, and OWA with fitting 
parameters E−1

fit
 and ah , can be compared with Fig. 9a in 

Ref. [8], which was obtained by CA, DLT, and no OWA with 
fitting parameters E−1

fit
 and � . The difference in these parameter 

maps is mainly due to the use of OWA or not. Therefore, OWA 
is essential for calculating the electron density at the nucleus 
a. The vertical parameter ah is smaller by the DLT, ALS, and 
OMT distributions in that order because a wider distribution of 
core electrons better reproduces the foot of the adiabatic poten-
tial. For the same reason, in the case of hydrogen, reasonable 
values of ah are obtained by OMT in each noble gas. In Fig. 5e, 
f, too high pseudopotentials of delta function imply the large 
radii of the hard spheres, some of which are larger than the 

respective classical turning points shown in Fig. 4. Therefore, 
the fitting result by DLT does not correspond well with scat-
tering theory. The repulsion potentials were calculated based 
on the CA wave function [52], but as the alkali-metal atoms 
become heavier, the CA wave function differs from the HFR 
wave function. In addition, the parameter ah is smaller for the 
HFR wave function than for the CA wave function. In Fig. 5a, 
ah becomes less alkali-metal dependent for each noble-gas 
atom, where the measured hyperfine splitting frequencies are 
fitted based on the HFR wave function. Therefore, the fitting 
by the HFR wave function and the OMT electron-density dis-
tribution is the best and physically reasonable. Tables 3 and 4 
show the fitting parameters.

In Refs. [7, 8], ah was normalized by the electric-dipole 
polarizability � and van der Waals radius Rvdw . See Table 1. 
Although it appeared to be successful, it was not the only 
solution. That is, � can be replaced by the number of 
core electrons Ne , and Rvdw is macroscopic rather than an 
atomic parameter. To find a more effective normalization, 
the atomic radius Rhfr is applied to Fig. 5a, resulting in the 
parameter map shown in Fig. 6. The obtained parameters 
are close to each other for all combinations of alkali-metal 
and noble-gas atoms and, due to unknown reasons, lie near 
a straight line. Once the reason for the linear relationship is 
clarified, this relationship can be used to reduce the number 
of fitting parameters. At present, neglecting the linear rela-
tion, the center of gravity is at ah∕Rhfr = 2.58 ± 0.53 and 
Ec∕Efit = 1.00 ± 0.30 . Normalization by Ec happens to work, 
judging from the presence of various energies Ec [6] and dis-
persion potentials [7]. According to the scattering theory, the 
height of the pseudopotential after deconvolution in Eq. (6) 
represents the radius of the hard-sphere model, which is 
consistent with and less than the turning point, ah < Rt . At 
the high-temperature approximation, in collisions with an 
atom with a single valence electron, the effective radius of 
the sphere of noble gas atoms can be taken as 2.6Rhfr . Our 
model self-consistently simulates collision-induced reso-
nance shifts even when the noble-gas atom is of a larger 
radius than the paramagnetic atoms and cannot be approxi-
mated by a delta function.

Table 3   Fitting parameter a
h
 obtained in Fig. 5a, in Bohr radii

He Ne Ar Kr Xe

H 4.308 4.911 8.288 8.443 8.615
Li 1.533 1.344 3.286 4.669 5.539
Na 1.964 1.654 4.135 4.428 5.631
K 1.241 1.499 3.704 4.566 5.807
Rb 0.844 1.275 3.412 4.531 5.937
Cs 0.810 1.034 2.998 4.084 5.824

Table 4   Fitting parameter E−1
fit

 in Fig. 5a, in units of hartree−1

He Ne Ar Kr Xe

H 13.10 10.30 9.20 9.00 9.40
Li 9.80 12.70 15.50 17.00 15.90
Na 16.20 16.80 19.80 18.60 18.30
K 10.50 20.10 23.00 24.50 23.00
Rb 6.80 17.70 23.20 25.50 25.50
Cs 6.80 18.00 26.30 31.30 33.50



	 K. Ishikawa 71  Page 10 of 14

5 � Summary

A perturbation theory for the collisional shifts of hyperfine 
resonances was presented that accounted for the finite size 
of both colliding atoms by the modified pseudopotentials. 

The orthogonalized wave approximation was essential 
for calculating the electron density at the position of the 
paramagnetic atoms. With external resources such as the 
theoretical dispersion potentials and the characteristic ener-
gies, the collisional shifts of hydrogen and alkali-metal 

a a

a a

a

E E

a

E E

Fig. 5   Fitting parameters by using Coulomb-approximation (CA) 
and Hartree-Fock-Roothaan (HFR) wave functions. Electron densi-
ties of noble-gas atoms are assumed to be delta function (DLT), all 
core orbitals (ALC), and outermost core orbitals (OMT). a HFR and 
OMT, b CA and OMT, c HFR and ALC, d CA and ALC, e HFR 

and DLT, f CA and DLT. For hydrogen (open marks), the CA wave 
function is used for the ground state of the valence electron in all the 
maps. For the pairs H-Ar, H-Kr, and H-Xe, the parameter ah is too 
large and out of range in c, d, e, and f. Each elliptical region, a guide 
for the eye, contains the closed marks for alkali-metal atoms
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atoms in noble gases were calculated numerically and fit-
ted to the measurements. The calculations were compared 
using the Coulomb-approximation wave function and the 
Hartree-Fock-Roothaan wave function for paramagnetic 
atoms and using various electron distributions for noble 
gas atoms. As a result, the best fits were obtained by the 
Hartree–Fock–Roothaan wave function for the ground state 
of paramagnetic atoms and the outermost occupied orbitals 
for the electron density of the noble gas atoms. The fitting 
parameters, ah∕Rhfr = 2.6 and Ec∕Efit = 1.0 , were obtained 
for all combinations of alkali-metal atoms and noble-gas 
atoms. The linear relation between fitting parameters was 
found but remains to be addressed in future studies.

A. Expectation value of interaction 
Hamiltonian

The expectation value of the interaction Hamiltonian is 
obtained in Eq. (7). This is the convolution of 

|�ag(ra)|2
= R2

ag(ra)∕4�  and �b(rb) = R2
b�
(rb)∕4�  .  Using d3ra

= 2�r2a sin �adrad�a , the expectation value is

where r2
b
= R2 + r2

a
− 2Rra cos �a . This convolution can be 

calculated as

(22)Vg(R) =
Vh

2 ∫
∞

0

dra ∫
�

0

d�a r
2
a
sin �a R

2
ag
(ra)R

2
b�
(rb).

where r2
a
= R2 + r2

b
+ 2Rrb cos �b . Equation (23) is useful 

when the spatial extent of Rb�(rb) is smaller than Rag(ra) . The 
convolution of the shifted function can be altered by forward 
and inverse Fourier transforms. The Fourier transform is 
generally faster than the convolution itself. Nevertheless, the 
above convolution requires only a narrow integration domain 
by utilizing the spherical symmetry of the core orbitals and 
the finite size of the wave function, while the Fourier trans-
form needs to be performed over a wide range. Therefore, 
the above convolutions are calculated faster than the Fourier 
transform.

B. Convolution of valence electron wave 
functions and noble‑gas electron density

In Eq. (11), �ag(ra) and �b(rb) are independent of the azimuthal 

angle � . From �
2�

0

Y
�m

�
≠0(�,�)d� = 0 , only the part of the 

wave function �∗
an
(ra) , C

jm

l0
1

2
m
Ran(ra)Y�0(�a, 0) , gives a non-zero 

i n t e g r a l  v a l u e ,  w h e r e  n = (n, l, j,m)  a n d 

C
jm

l0
1

2
m
= (−1)(j−l−

1

2
)(m+

1

2
)

√
j + 1∕2

2 l + 1
 . Therefore, the first-order 

coefficient of pseudopotential perturbation is,

In spherical coordinate centered at nucleus b,

where ra cos �a = R + rb cos �b is used in Y
�0(�a, 0).

C. Overlap of valence electron orbital 
and noble‑gas core orbitals

T h e  u n c o u p l e d  w a v e  f u n c t i o n ,  �∗
bi(rb)

= Rbi(rb)Y∗
lbml

(�b,�b)�mS
(�b) , is considered for atom b. As 

shown in Appendix B, mj of the mixing state is the same as mS 
of the ground state. Let mS = 1∕2 and consider the excited 
states of mj = 1∕2 for atom a. The s state of la = 0 is,

(23)Vg(R) =
Vh

2 ∫
∞

0

drb ∫
�

0

d�b r
2
b
sin �b R

2
ag
(ra)R

2
b�
(rb),

(24)
cang(R) = −

Vh
En

Cjm
l0 1

2m ∫

∞

0
dra ∫

�

0
d�a r2a sin �a

×
√

� Y�0(�a, 0)Ran(ra)Rag(ra)R2
b�(rb).

(25)
cang(R) = −

Vh
En

Cjm
l0 1

2m ∫

∞

0
drb ∫

�

0
d�b r2b sin �b

×
√

� Y�0(�a, 0)Ran(ra)Rag(ra)R2
b�(rb),

(26)�an(ra) = Ran0
1

2

(ra)Y00(�a,�a)� 1

2

(�a).

a
R

E E

Fig. 6   Fitting parameters by the HFR wave function for the alkali-
metal ground state and the electron density of the outermost orbital 
for noble-gas atoms. The CA wave function is used for hydro-
gen. The vertical axis shows the potential height normalized by 
atomic radius. The elliptical region, a guide for the eye, contains the 
closed marks for alkali-metal atoms. The dashed line shows fitting, 
ah∕Rhfr = (1.30 ± 0.27) + (1.27 ± 0.26)Ec∕Efit . The error bars indi-
cate the center of gravity of the parameters for alkali-metal atoms
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The state of la > 0 is,

For la = 0 , the term giving a non-zero integral value in 
Eq. (13) is,

For lb = 0,

where the double sign in the last line is in the same order as 
ja = la ± 1∕2 . For lalb ≠ 0 and mlb

= 0,

Since the second term is zeroed by integration, only the first 
term is considered, as follows,

For lalb ≠ 0 and mlb
≠ 0 , the term with mlb

= 1 remains as,

Here, only the second term is considered,

(27)

�an(ra) = Ranlj(ra)
∑

ml,mS

C
j
1

2

lml
1

2
�
Ylml

(�a,�a)�mS
(�a)

=

(
C
j
1

2

l0
1

2

1

2

Yl0(�a,�a) + C
j
1

2

l1
1

2
−

1

2

Yl1(�a,�a)

)
Ranlj(ra).

(28)

�∗
bi
(rb)�an(ra) = Rbilb

(rb)Y
∗
lb0
(�b,�b)Y00(�a,�a)Ran0

1

2

(ra)

=

√
2lb + 1

4�
Plb

(cos �b)Rbilb
(rb)Ran0

1

2

(ra).

(29)

�∗
bi
(rb)�an(ra) = Rbi0(rb)Y

∗
00
(�b,�b)C

j
1

2

l0
1

2

1

2

Yl0(�a,�a)Ranlj(ra)

= ±

√
ja +

1

2

4�
Pla

(cos �a)Rbi0(rb)Ranlj(ra),

(30)
�∗
bi(rb)�an(ra) = Rbilb(rb)Y

∗
lb0
(�b,�b)

×
(

C
j 12
l0 1

2
1
2

Yl0(�a,�a) + C
j 12
l1 1

2−
1
2

Yl1(�a,�a)
)

Ranlj(ra).

(31)

Rbilb
(rb)Y

∗
lb0
(�b,�b)C

ja
1

2

la0
1

2

1

2

Yla0(�a,�a)Ranlaja
(ra)

= ±

√
(2lb + 1)(ja +

1

2
)

4�
Plb

(cos �b)Pla
(cos �a)Rbilb

(rb)Ranlaja
(ra).

(32)
�∗
bi(rb)�an(ra) = Rbilb(rb)Y

∗
lb1
(�b,�b)

×
(

C
j 12
l0 1

2
1
2

Yl0(�a,�a) + C
j 12
l1 1

2−
1
2

Yl1(�a,�a)
)

Ranlj(ra).

(33)

R
bil

b
(r

b
)Y∗

l
b
1
(�

b
,�

b
)C

j
1

2

l1
1

2
−

1

2

Yl1(�a,�a
)R

anlj(ra)

=

�
(2l

b
+ 1)(l

a
+

1

2
∓

1

2
)(l

a
− 1)!(l

b
− 1)!

4�
√
(l
a
+ 1)!(l

b
+ 1)!

× P1

l
b

(cos �
b
)P1

l
a

(cos �
a
)R

bil
b
(r

b
)R

anlj(ra).

The sum extends over ( n, la, j, 1∕2 ) for each ( i, lb,mlb
, 1∕2 ) 

in Eq. (13).
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