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Abstract
The nickel–cobalt (NiCo) layered double hydroxide (LDH) is prepared by ultrasonic liquid phase-assisted exfoliation method 
and dispersed onto mirror forming saturable absorber (SA). With NiCo-LDH SA, a continuous wave mode-locked laser at 
1065.9 nm with a maximum output power of 1.72 W was achieved with a repetition frequency of 69 MHz and a pulse width 
of 18 ps. To the best of our knowledge, this is the first implementation of the NiCo-LDH as a SA for continuous wave mode-
locked laser operation, which demonstrates the great potential of the NiCo-LDH for integration into lasers.

1 Introduction

Due to their unique characteristics including high peak 
power, good beam quality and low thermal impact, 1 µm 
ultrafast lasers have been widely applied in various fields 
such as optical imaging, biomedical sciences, materials 
processing, environmental monitoring, etc. [1–4]. Passive 
mode-locking based on saturable absorber (SA) modulation 
plays a crucial role in generating 1 µm ultrashort pulses. 
Compared with active mode-locking which requires external 
modulator, passive mode-locking has numerous advantages 
including simple structure, stable pulse operation, high 
repetition rate and fast response time [5–7].

In passively mode-locked laser, semiconductor SA 
mirrors (SESAMs) are commonly used due to their stability 
and tunability [8]. However, the SESAMs usually suffer 

from complex preparation process, high cost and limited 
application wavebands. Owing to their facile fabrication, 
rapid response times and adjustable bandgaps, the two-
dimensional materials as SAs have been extensively 
studied such as graphene [9], black phosphorus (BP) 
[10], topological insulators (TIs) [11], transition metal 
dichalcogenides (TMDs) [12], etc. Graphene, a zero-
bandgap material, offers a large modulation bandwidth but 
has a lower damage threshold. BP exhibits a wide range of 
tunability but is susceptible to oxidation, resulting in a poor 
stability in ambient air. TIs possess unique electronic band 
structures and surface states with high saturable absorption 
efficiency, but the manufacturing process remains relatively 
complex. TMDs have high carrier mobility and long exciton 
recovery time, while the intrinsic energy bandgap is between 
1 and 2  eV which limits their applications in the mid-
infrared wavebands.

Recently, Layered Double Hydroxides (LDHs) have 
attracted much attention due to their stable layered structure, 
large specific surface area, remarkable capacity for ion 
exchange and commendable tunability [13]. The efficacy of 
Ni-based LDHs as potential SAs in ultrafast lasers has been 
experimentally demonstrated. In 2021, we used a Nickel-
vanadium layered double hydroxide (NiV-LDH) as SA to 
achieve passively Q-switched mode-locking in a 2 µm laser, 
generating pulses as narrow as 320 ps [14]. Subsequently, we 
demonstrated a 1.3 m passively Q-switched mode-locking 
laser based on the nickel–cobalt layered double hydroxide 
(NiCo-LDH) SA with a pulse width as narrow as 25 ps [15]. 
In 2023, Wang et al. utilized NiCo-LDH as a SA to achieve 
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a passively Q-switched mode-locking laser at 2 µm with a 
pulse width of 221 ps [16].

In this paper, we achieve a 1065.9 nm continuous wave 
mode-locked (CWML) laser with the Nickel–cobalt layered 
double hydroxide SA. The ultrafast laser has a repetition 
frequency of 69 MHz, a shortest pulse width of 18 ps and a 
spectral linewidth of 0.46 nm. To the best of our knowledge, 
this is the first demonstration of nickel-based LDH as a SA 
for 1-µm CWML laser operation.

2  Preparation and characterization 
of NiCo‑LDH SA

NiCo-LDH SA is prepared with ultrasonic liquid-phase 
exfoliation combined with drop-casting method. Firstly, 
adding 40 mg NiCo-LDH powder to a 10 mL centrifuge 
tube, followed by the addition of 9 mL anhydrous ethanol 
 (CH3CH2OH). Mixing them evenly by employing 
intermittent ultrasound for 12 h in an ultrasonic cleaner. 
Subsequently, centrifuging the mixture with 6000 
revolutions per minute for 15 min. Finally, taking 60 µL 
of the supernatant and drop-casting it onto a plane mirror 
(1000–1100 HR), and drying it at room temperature for 12 h.

The Raman spectra of the NiCo-LDH excited by a 
633 nm laser source is shown in Fig. 1a. The sharp peak at 
526  cm−1 is attributed to vibrations of M–O, O–M–O and 
M–O–M (here, the M stands for Ni and Co) bonds. The 
peak at 1072  cm−1 originates from the C–O vibration mode 

of interlayer methanol molecules. The peak at 1344  cm−1 is 
ascribed to the asymmetric stretching of interlayer carbonate 
anions [18]. Figure 1b shows the X-ray diffraction (XRD, 
Rigaku, Japan) of the NiCo-LDH. The diffraction peaks 
were observed at 12.5, 33.76, 39.56 and 59.84 degrees, 
corresponding to the (003), (006), (015) and (110) planes of 
the LDH structure, respectively [19]. Figure 1c exhibits the 
atomic force microscopy (AFM, MULTIMODE8, Germany) 
image of the NiCo-LDH nanosheets, indicating a height of 
approximately 15 nm (as shown in Fig. 1d).

Figure  2a and b shows the transmission electron 
microscopy (TEM, HT7800, Japan) and scanning electron 
microscopy (SEM, JSM-6700F, Japan) images of the NiCo-
LDH, respectively, indicating that the NiCo-LDH powder 
exhibits a banded morphology characterized by alternating 
layered arrangements. The composition ratios of C, O, 
Ni, and Co elements were measured by energy dispersive 
spectrometer (EDS) (SU8010, HITACHI), as shown in 
Fig. 2c. Figure 2d shows the EDS elemental spectroscopy 
of the NiCo-LDH sample, characterizing the elemental 
composition and distribution.

Figure 3a shows the linear transmission of NiCo-LDH, 
which is measured by a spectrophotometer ranging from 500 
to 1500 nm. The experimental setup of the opening Z-scan 
is shown in Fig. 4. In the experiment, a titanium-sapphire 
(Ti:Sapphire) laser with a repetition frequency of 80 MHz, 
a pulse width of 56 fs and a central wavelength of 800 nm 
was utilized as the light source. Two plano-convex lenses 
with a focal length of 200 mm were used to focus light 

Fig. 1  a Raman spectra of 
the NiCo-LDH powders; b 
XRD pattern of the NiCo-
LDH powders; c AFM image 
and d corresponding height 
distribution of the NiCo-LDH 
nanosheet
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spots. The beam was divided into two identical beams with 
the beam splitter and two identical power meters was used 
to record the power before and after passing through the 

NiCo-LDH SA. The transmittances of the sample at different 
positions were recorded to test the nonlinear absorption 
characteristics of the NiCo-LDH SA, as shown in Fig. 3b. 
The results show that the transmittance variation with the 
Z-scan is symmetrically distributed around the center of the 
Z-scan. The Z-scan experiments do not exhibit any instances 
of two-photon or multi-photon absorption, which are typical 
manifestations of saturation absorption phenomena. The 
results of the Z-scan experiment can be fitted using the 
following formula [20],

(1)T =

∞
∑

m=0

[

−q0(z, 0)
]m

(m + 1)1.5
,m ∈ N,

Fig. 2  a TEM image of the 
NiCo-LDH; b SEM image of 
the NiCo-LDH; c EDS image 
of the NiCo-LDH; inset: 
Percentage of elements in the 
NiCo-LDH; d EDS elemental 
mapping images of the NiCo-
LDH

Fig. 3  a Wavelength-dependent 
changes in linear transmittance 
spectrum of the NiCo-LDH; b 
Open aperture Z-scan curves

Fig. 4  Z-scan experimental setup
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where T(z) is the transmission, Leff = (1 − e−�0L)∕α0 , Leff is 
the sample’s effective thickness, I0 is the on-axis irradiance 
at the focus, Z0 is the diffraction length of the beam. 
The open aperture Z-scan experimental results indicate 
the saturable absorption of NiCo-LDH. The nonlinear 
absorption coefficient is − 1.1 cm/GW [21].

3  Experimental setup and results

The experimental setup of the passively mode-locked 
Nd:YVO4 laser is depicted in Fig. 5, which is a “W” type 
resonator with a cavity length of 2.1 m. The pump source is a 
fiber-coupled semiconductor laser with a central wavelength 
of 808 nm. Through a 1:1 coupling system, the pump laser 
is focused into the laser medium. The laser medium is a 
3 × 3 × 6  mm3 Nd:YVO4 crystal with a doping concentration 
of 0.5 at. %. Both end faces of the crystal are coated with 
an antireflection (AR) at 808 nm and 1064 nm. To dissipate 
heat loading, the Nd:YVO4 crystal is wrapped with indium 
foil and then placed into a copper hot sink cooling with 

(2)q0(z, 0) =
�effLeffI0
(

1 +
Z2

Z2

0

) ,
10 °C circulating water. A flat mirror (M1) is placed in front 
of the crystal as the input mirror with coating with AR at 
808 nm and high reflection (HR) at 1064 nm. Two concave 
mirrors (M2, M3) with a curvature of 500 mm serve as the 
folded mirror of the W-shaped cavity, which is coated with 
HR at 1000–1100 nm on the inner surface. The end of the 
W-cavity is also a flat mirror (M4) with a HR coating at 
1000–1100 nm. Additionally, the NiCo-LDH SA is placed 
in the cavity. The output mirror is a concave mirror with a 
curvature of 100 mm (M5) with a transmittance of 10% at 
1064 nm.

The average output power was measured by the power 
meter (Thorlabs, S302C). The output pulses were monitored 
by an oscilloscope (Agilent Technologies, DSO-X3104A) 
with a photoelectric probe (EOT, ET-3000). The laser 
spectrum was recorded by a spectrometer.

As shown in Fig. 6a, the laser threshold is about 0.4 
W. The maximum average output power of 1.72 W was 
achieved with a slope efficiency of 22% under the absorbed 
pump power of 8.29 W. The central wavelength is located 
at 1065.9 nm with a narrow spectral linewidth of 0.46 nm. 
To evaluate the stability of CWML average output power, 
a power meter was used to document power variations over 
time, as shown in Fig. 6b. Average output power values 
were systematically recorded at one-second intervals over 
a 1-h period. Notably, with the absorbed pump power (Pabs) 
maintained at 8.29 W, the observed variation in average 
output power remained below 1.5%. We maintained CWML 
laser operation for seven hours, and the pulse profile 
observed on the oscilloscope remained stable. When the 
laser was shut down and restarted after 1 week, a subsequent 
oscilloscope check confirmed the good stability of the 
CWML laser in our experiment.

The pulse train of 1 μm mode-locked laser is depicted 
in Fig. 7. When the pump power located at a lower level, 
Q-switched mode-locking (QML) pulses appear (as 
shown in Fig. 7a, b) with repetition frequency of 69 MHz, 
corresponding to a cavity round-trip length of 4.2  m. 
According to the mode-locking theory, the achievement 

Fig. 5  The experimental setup of passively mode-locked Nd:YVO4 
laser with NiCo-SA

Fig. 6  a Average output power 
of the passively mode-locked 
Nd:YVO4 laser. Inset: the 
corresponding laser spectrum; 
b Average output power 
fluctuations over time
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of CWML necessitates that the pulse energy within the 
cavity should be satisfied as Eq. (3) [22]:

Ep,c is the minimum intra-cavity pulse energy which is 
required for obtaining stable CW mode locking, Fsat,L is the 
saturation flux of the gain medium and can be calculated 
with Fsat,L = h�∕2�L ( �L , which is equal to 11.4 ×  10–19 
 cm2, is the emission cross-section of the Nd:YVO4 crystal 
@1064 nm), Aeff,L and Aeff,A is the area of the fundamental 
mode in the Nd:YVO4 crystal and the NiCo-LDH SA 
mirror, respectively, Fsat,A is the saturation energy density 
of the SA mirror, ΔR is the modulation depth of the NiCo-
LDH SA. A stable CWML is achieved for Ep > Ep,c and a 
QML is achieved for Ep < Ep,c.

As the pump power increases, the energy in the cavity 
is large enough to generate CWML pulses, as shown in 
Fig. 7c, d. The CWML pulses have a pulse repetition rate 
of 69 MHz, corresponding to the cavity round-trip time. 
Under certain conditions, an intra-cavity SA can support 
not only fundamental wave mode-locking (a single pulse 
per cavity round trip) but also harmonic wave mode-
locking (several pulses per cavity round trip), as shown 
in Fig. 7e, f [21].

The pulse width of CWML pulses was measured by an 
autocorrelator (A.P.E, Pulse check 50). Figure 8 shows the 
autocorrelation trace of the 1 µm CWML pulses, which have 
a pulse width of 18 ps with a Gaussian Fitting.

Table 1 summarizes the relevant reports of solid-state 
mode-locked lasers using nickel-based LDH as SAs. To our 
knowledge, this is the first demonstration of the NiCo-LDH 
as a SA for CWML operation.

Table  2 summarizes the results for 1  μm solid-state 
CWML lasers using a variety of 2D material SAs. 
Notably, the output power achieved by using NiCo-LDH 

(3)Ep,c =
√

Fsat,LAeff,LFsat,AAeff,AΔR.

as SA is higher than other 2D materials. This remarkable 
performance provides compelling evidence for the potential 
utility of NiCo-LDH SA in high-power ultrafast mode-
locked laser systems.

4  Conclusion

In conclusion, the NiCo-LDH SA was successfully prepared 
by ultrasonic liquid phase-assisted exfoliation method. Based 
on the NiCo-LDH SA, a W-type Nd:YVO4 all-solid-state 
mode-locked laser was achieved with a maximum output 
power of 1.72 W, a pulse width of 18 ps and a repetition 
frequency of 69 MHz. The results reveal that the NiCo-LDH 

Fig. 7  a and b The temporal pulse train in the QML state; c and d The temporal pulse train in the CWML state; e and f The temporal pulse train 
of second harmonic wave in the CWML state

Fig. 8  Autocorrelation trace (Gaussian pulse shape assumed)
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SA possesses excellent potentials for ultrashort 1 µm pulse 
laser generation.
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