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Abstract
The present communication presents the asymmetric impact of different higher-order diffractions on the propagation dynam-
ics, stability analysis, and modulation instability of a narrow Gaussian beam in a nonlocal nonlinear medium. The system 
equation, which is a nonlocal nonlinear Schrödinger equation, has been solved analytically by the Lagrange variational 
method as well as numerically using the split-step-Fourier method. The effect of higher order diffraction on beam propaga-
tion parameters, critical energy of soliton formation, and potential energy of the system has been highlighted. Linear stabil-
ity analysis of the system’s governing equation has been performed to identify the parametric space for various classes of 
equilibrium points against small perturbations. Subsequently, the modulation instability has been investigated and the effect 
of higher order diffraction has been highlighted.

1  Introduction

The optical nonlocal soliton, a spatially localized optical 
beam in a nonlocal nonlinear medium, has been investigated 
substantially both theoretically and experimentally [1–11]. 
The nonlocal nonlinear optical materials are generally clas-
sified into three distinct categories: weakly nonlocal, gen-
erally nonlocal, and highly nonlocal [1–11]. The relative 
length of the beam width and the characteristics length of the 

nonlinear media’s response function determine the nonlocal-
ity nomenclature of optical materials [1–7]. The nonlocal 
solitons have been achieved in all three distinct categories 
of nonlocal nonlinearity; weakly nonlocal solitons [3, 4], 
generally nonlocal solitons [6] and highly nonlocal solitons 
[5]. Theoretically, in general, two types of profiles have 
been used for the response functions for the nonlocality: the 
Gaussian-type profile [1], and the exponential-decay type 
profile [2]. The soliton in the strongly nonlocal nonlinearity 
experiences a number of fascinating phenomena, such as a 
large phase shift [5], attraction dynamics between out-of-
phase solitons [2, 8, 12, 13], attraction dynamics between 
dark solitons [14], and long-range interaction between soli-
tons [15]. Nonlocal nonlinearity distinguishes these events 
from those with local nonlinearity. An optical beam pass-
ing through a highly nonlocal medium will undergo peri-
odic changes [16]. The highly nonlocal wave system will 
eventually self-organize into a spatially confined incoher-
ent solitonic structure, which will be fundamentally distinct 
from incoherent optical solitons. Nematicons are an unique 
type of nonlocal solitons that may be found in nematic liquid 
crystals (NLC) [17, 18]. This makes them part of a specific 
category of nonlocal soliton. It has been shown that aniso-
tropic nonlocal vector solitons can exist in unbiased NLC 
[19].

Different kinds of beam profiles have been employed 
to stimulate nonlocal soliton. To mention just a few, 
these include the Gaussian profile [5, 12], super-Gaussian 
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profile [20], the Hermite–Gaussian (HG) profile [21], 
Laguerre–Gaussian profile [7], cosh–Gaussian profile [22], 
Ince–Gaussian profile [23, 24], complex-variable-function 
Gaussian profile [25], and variable sinh-Gaussian profile 
[26]. Dai et. al. showed the excitation of a Hermite-Gaussian 
spatiotemporal soliton in a (3+1)-dimensional partly non-
local nonlinear system [27]. Yang et al. confirmed that a 
competitive nonlocal nonlinear system that obeys the para-
bolic law can play host to dark and single optical solitons 
[28]. Also, a nonlocal medium that exhibits orientational 
nonlinearity has the potential to give rise to a stable vortex 
soliton [29].

A substantial amount of research is dedicated to the study 
of shock waves in nonlocal media. For instance, the forma-
tion of optical spatial shock waves in nonlocal nonlinear 
media [30] and generation of giant collective incoherent 
shock waves from coherent shocklets in nonlocal turbulent 
flows [31].

Clusters of solitons of various types, namely, Gaussian 
solitons, multi-pole solitons, and nested solitons, have been 
excited in a strongly nonlocal (3+1)-dimensional in-homo-
geneous parity-time (PT) symmetric nonlinear system [32]. 
A novel integrable nonlocal nonlinear Schrödinger equation 
that has a Lax pair and an unlimited number of conserva-
tive quantities has been proposed in a PT-symmetric system 
[33]. Hu et al. [34] showed that the presence of nonlocal-
ity has the potential to expand the stability zone of defect 
solitons in PT-symmetric optical lattices. In addition to this, 
nonlocal nonlinearity has a significant impact on the inter-
action dynamics of the Airy beam solitons. In the presence 
of strong nonlocal nonlinearity, two in phase Airy solitons 
develop a long-range attractive force between each other and 
may form a stable bound state consisting of in phase as well 
as  out of phase breathing Airy solitons [35]. It may be noted 
here that both the in phase and the  out of phase airy solitons 
normally repel each other in local nonlinear media.

The modulation instability (MI) in the nonlocal nonlinear 
medium is a highly sought-after phenomenon [1, 7] among 
researchers. MI has been studied in a (1+1)-dimensional 
cubic-quintic nonlocal nonlinear (CQNNL) system [36]. 
These CQNNL systems contain solitons with varied pro-
file configurations. For instance, an elliptic soliton may be 
stimulated in an anisotropic (1+2) dimensional CQNNL sys-
tem [37], or a vortex soliton can be created and stabilized 
in a (1+2) dimensional CQNNL system [38]. Mishra at el. 
demonstrated a bright soliton generation and bifurcation in a 
(1+1) dimensional CQNNL system [10, 39–41]. The experi-
mental confirmation of a single nonlocal spatial soliton has 
been established [42, 43]. Further, the interaction between 
a nonlocal soliton pair has been demonstrated [8, 15], and 
MI of such solitons has been portrayed [44]. The study of 
dark and singular optical solitons is carried out within the 
framework of parabolic law nonlocal nonlinearities [28]. 

The soliton turbulence self-organization of a non-integrable 
system, which develops as a result of the MI, collapses when 
it is subjected to the impact of extremely nonlocal nonlin-
earity [45].

Another significant consequence of nonlocal nonlinearity 
is the MI with long-range gravitational interaction. Grav-
ity is inherently nonlinear and long-range (i.e., nonlocal) 
interaction. Thus, a nonlocal nonlinearity provides a natural 
framework for exploring the long-range general relativity 
effects. This encourages drawing analogies between gravi-
tational and optical phenomena, e.g., optical analogs of the 
Newton–Schrodinger equation, gravitational attraction, and 
light-trapping in the wake of optical solitons (pls see Ref. 
[46], op. cit.). A vast literature is available in the frame-
work of the Newton–Schrödinger or Schrödinger–Poisson 
equation presenting the gravitational interactions [46–48]. A 
nonlinear optical setup can be introduced to illustrate gravi-
tational dynamics that require a highly nonlocal nonlinear-
ity [47]. Hidden coherent soliton states are found from a 
modulationally unstable initial condition in the framework of 
the Schrödinger–Poisson or Newton–Schrödinger equations 
(please see ref. [48], op. cit.). They are hidden means fully 
immersed in random wave fluctuations in the gravitational 
incoherent structures. Given gravity’s nonlinear and nonlo-
cal nature, these hidden coherent solitons might be detect-
able in nonlocal nonlinear optics experiments or dipolar 
Bose–Einstein condensates.

The nonlocal material for narrow beams can possess 
higher-order-diffraction (HD), which primarily includes 
third-order-diffraction (TD) and fourth-order-diffraction 
(FD) in addition to second-order-diffraction (SD). The 
TD and FD have a significant impact on the propagation 
dynamics of narrow beams, making it an essential topic for 
researchers to anticipate some unique and fascinating phe-
nomena [49]. The effect of FD has been studied in solitons 
in the semi-infinite gap of a PT-symmetric periodic potential 
[50], fundamental and dipole gap solitons in PT-symmetric 
mixed linear-nonlinear optical lattices [51], spatial solitons 
and stability with parity-time-symmetric potentials [52], 
and soliton with parity-time symmetric potentials [53]. 
Recently, multi-pole solitons in nonlocal nonlinear media 
with FD [54] have also been investigated. Both bright and 
dark type pure-quartic solitons in weakly nonlocality [55] 
do not possess oscillating tails, which is different from the 
conventional pure-quartic solitons.

Although the effects of TD and FD are significant in the 
study of solitons, they have received relatively little scien-
tific attention in the context of nonlocal nonlinear media. 
As such their effects on beam dynamics have not been 
compared. Therefore, the present study aims to generate a 
nonlocal soliton in nonlocal nonlinear media by incorporat-
ing TD and FD. The study emphasizes on demonstrating 
the effects of TD, FD, and the characteristic length of the 
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response function on soliton beam propagation and MI along 
with linear stability analysis. The structure of this article 
is as follows: In Sect. 2, the mathematical modeling of the 
system and its variational analysis are described. Section 3 
presents the creation of solitons and their dynamics that have 
been determined analytically by the Lagrangian variational 
method (LVM) and numerically by split-step Fourier method 
(SSFM). Section 4 demonstrates the linear stability analysis 
of the nonlocal nonlinear solitons, while Sect. 5 portrays the 
MI of the solitons. The article has been concluded in Sect. 6.

2 � Mathematical modeling

The dynamics of an optical beam propagating through a 
nonlocal nonlinear medium incorporating the SD, TD, and 
FD can be represented by the following nonlocal nonlinear 
Schrödinger equation (NNLSE),

Here, U(x, z) is the slowly varying spatial part of the paraxial 
beam profile with z as the longitudinal propagation distance 
and x as the transverse coordinate. |U(�, Z)|2 represents the 
intensity of the beam. The parameters �2 , �3 , and �4 are the 
coefficients of SD, TD, and FD, respectively. �2 = 1∕(2 k) , 
� = k � , where k is the wave number and � is a constant 
specified by the material property. Both �3 , and �4 can be a 
fraction of �2 . � captures the attenuation in the system. R(x) 
is the Gaussian nonlocal response kernel of the isotropic 
Kerr nonlinear medium, such that ∫ R(x)dx = 1 . We choose, 
R(x) = (1∕

√
��) exp

�
−x2∕�2

�
 where � is the characteristic 

length of the response function (or the extent of nonlocality). 
� is the coefficient of the nonlocal nonlinearity. The class 
of nonlocality is determined, for all intents and purposes, 
by the characteristic length ( � ). When the beam width is 
much smaller than the characteristic length ( w << 𝜎 ), it 
induces a highly or strongly nonlocal nonlinearity. On the 
other hand, when the beam width is approximately equal to 
the characteristic length ( w ≈ � ), it results in weakly nonlo-
cal nonlinearity. The general case of nonlocality falls some-
where between these two extremes, with a range extending 
from weak nonlocality to strong nonlocality [1–7]. Indeed, 
( w >> 𝜎 ) indicates local nonlinearity. Typically, nonlocal 
nonlinear optical media is characterized by an exponential-
shaped response function, as described in Eq. (35) of Ref. 
[1], due to its association with thermal nonlocal nonlinearity. 

(1)
i
�U

�z
+ �2

�2U

�x2
+ i �3

�3U

�x3
+ �4

�4U

�x4
+ i �U

+ �U ∫
∞

−∞

R(x − �) |U(�, z)|2d� = 0.

However, in our current case, it’s worth noting that we are 
utilizing a Gaussian-shaped nonlinear response function.

The effects of higher-order diffraction can be understood 
by employing the unidirectional Helmholtz propagation 
equation [56], wherein the expansion of the dispersion/
diffraction relation gives rise to the higher-order diffrac-
tion terms; but only of even orders. In contrast, the present 
investigation considers the third-order diffraction term. The 
motivation is twofold. Firstly, this theoretical work foreruns 
experimental realization and shows what characteristics the 
solitons may show if materials having both even and odd 
order diffractions and nonlocal nonlinearity are used. The 
recent advancement in metamaterial research unveiled the 
potential of many unique, unconventional materials (e.g., 
metamaterial) and so for the medium modeled here. Moreo-
ver, the model can help in identifying the potential materials, 
and consequently guiding experimental efforts.

The NNLSE, i.e.,  (Eq. 1) is non-integrable. We adopt 
approximate analytical methods as well as numerical meth-
ods. Following the analytical approach  (Eq. 1) has been 
solved through the Lagrangian variational method (LVM) 
as mentioned in [5, 20, 57–59]. The LVM approach is a 
popular approximation technique proposed by Anderson in 
1983 [60]. The effectiveness of this method is reliant on the 
selection of an appropriate trial function or ansatz. We begin 
the present analysis with the following Gaussian ansatz:

where E0 represents the initial beam energy of the profile 
(i.e., (Eq. 2)), while w(z) denotes the beam width. c(z), x0(z) , 
Ω(z) and �(z) are, respectively, the phase front curvature, 
position of beam center, nonlinear frequency shift, and lon-
gitudinal phase of the beam. In the next step of the LVM 
technique, a Lagrangian density L corresponding to (Eq. 1) 
is determined such that �L∕��∗ = �L∕�� = 0 reproduces 
(Eq. 1). In this case, we have

Following the conventional formulation of the LVM tech-
nique, the (Eq. 2) is now put into (Eq. 3) to obtain the 

(2)

U(z, x) =
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−
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reduced Lagrangian (not shown here). Upon integration over 
the entire available space we get the total Lagrangian ⟨L⟩ as

Here S1 =
(
1 + c2 + 2Ω2w2

)
 and S2 =

(
3 + 3 c2 + 2Ω2w2

)
 . 

The total Lagrangian is varied with respect to the free beam 
parameters rj = c(z),w(z), x0(z),Ω(z) and �(z) using the fol-
lowing Euler–Lagrange equation,

to obtain the following set of coupled first-order ordinary 
differential equations (ODEs) that illustrates the evolution 
of the beam parameters during propagation.

Further differentiation of (Eq. 8) with respect to z yields

Here,y(z) = w∕w0 , with w0 = w(0) . S
3
= −�

2
+ 6 �

3
Ω

+6 �
4
Ω2 . Under the influence of the force F(y), Eq. 10 

behaves in a manner akin to the nonlinear harmonic oscil-
lator equation with unit mass. This force F(y) ensures that 
the effects of the diffractive and refractive forces remain in a 
state of equilibrium. The critical power for soliton propaga-
tion can be found by assuming that the two opposing forces 

(4)
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are in perfect equilibrium with one another and y = 1 . The 
critical power for soliton propagation can be written as

The formation of optical soliton is largely reliant on the criti-
cal beam power Ec.

3 � Beam dynamics

Before delving into the beam propagation characteris-
tics in SD, TD, and FD media, it is necessary to provide 
some examples of such media. SD media are abundant 
as they constitute the basic diffraction mechanism. Bire-
fringent materials can exhibit TD, as in the case of some 
examples [61]. Certain materials, such as photorefrac-
tive liquid crystal materials [62, 63], can demonstrate 
both TD and FD. Additionally, metamaterials can exhibit 
both TD [64] and FD [65], depending on their structure. 
Nonlinear optical materials, like potassium dihydrogen 
phosphate, can also exhibit both TD and FD [66, 67]. 
Alongside the material properties, the type of diffraction 
exhibited by media is also dependent on the frequency, 
intensity, and polarization of the incident light. In this 
investigation, we provide a generic study suitable for media 
with HD. Throughout this investigation, the parameters 
are set to w = 1.0, c = 0.0, � = 1∕6, Ω = 0.0, �

2
= 0.5,

�3 = −0.1, and �4 = 0.05 , unless specified otherwise. It’s 
worth emphasizing that in the case of conventional materials 
(that follow the regular dispersion/diffraction relations dis-
cussed in [56]), the fourth-order diffraction coefficient is typ-
ically determined by the second-order diffraction coefficient 
and the laser wavelength. In such cases, the fourth-order 
diffraction coefficient is essentially a predetermined frac-
tion of the second-order diffraction coefficient. Nevertheless, 
the present study takes different values of the fourth-order 
diffraction coefficient in some instances to tackle scenarios 
that encompass materials (such as those exhibiting PT sym-
metries), and advanced technologies that necessitate a more 
comprehensive modeling approach, extending beyond the 
conventional dispersion/diffraction relations.

Equation 11 shows the dependence of the critical beam 
energy ( Ec ) on the characteristic length of the response 
function ( � ). Ec increases nonlinearly with an increase in � 
(Fig. 1a). SD Media alone or in combination with TD media 
show almost similar variation, however, the rate of incre-
ment gets slower in the presence of FD (Fig. 1a). Thus, the 
presence of FD lowers the critical beam energy for soliton 
formation.

(11)

Ec =

�√
�(1 + c2)

�
2w2 + �2

�3∕2

�

��
�2 − 6 �3 Ω

w4
+

3 �4 S1

w6

�
.
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As F(y) is a conservative force, the relation 
F(y) = −dV(y)∕dy determines the corresponding potential 
V(y) as

(12)

V(y) =
24 �4 c2�E0

�2
√

��2
√

�2e2 � z

[
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2 + �2

)]

+
2 �E0
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)

�2
√
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(
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√

2w0
2y2 + �2

− 1
√

2w0
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)

+
2 S23 (1 − y2)
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−
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(

c4 − 1
)

S3(1 − y4)
�2 w0

4y4
−

6 c2�42
(

1 + c2
)2(1 − y6)

�2 w0
6y6

The potential profile V(y) is a parabolic one for all types of 
diffracting media. Alike in the case of critical energy, the 
profiles of SD with or without TD are the same and become 
significantly wider in the presence of FD media (Fig. 1b).

Now Eqs. (6)–(9) (derived by LVM) are solved numeri-
cally using Runge–Kutta fourth-order (RK-4) algorithm 
[68] to determine the evolution of beam parameters with 
propagation distance (z). When the initial energy E0 of a 
beam is exactly equal to Ec (Eq. 11) the beam propagates 
with constant width (Fig. 2c), whereas when the initial 
energy is set lower (Fig. 2a) or higher (Fig. 2e) than criti-
cal energy, the beam width oscillates almost periodically. 
Anyways, in all the cases soliton formation is witnessed. 
Now, in the presence of loss in the system the beam contin-
ues to oscillate periodically for all energy levels but spreads 
eventually (right column of Fig. 2). To highlight the effect 
of the characteristics length � on oscillating soliton width 
we plotted the soliton amplitude for all nonlocal cases, 
namely highly nonlocal ( � = 10.0 ), generally nonlocal 
( � = 4.0 ), weakly nonlocal ( � = 1.0 ) and local ( � = 0.1 ), 
with E0 set to 10% higher than Ec (i.e., E0 = 1.1 × Ec ) for 
various combination of diffractions (Fig. 3 and Fig. S1). 
A comparison of the propagation dynamics with SD, TD, 
and FD for different characteristic lengths � (Fig. 3) dem-
onstrates that a decrease in the characteristic lengths leads 
to an increase in soliton amplitude and a decrease in the 
frequency of oscillation. Also, the presence of HD of any 
kind decreases the frequency of oscillation and increases the 
soliton amplitude (Fig. S1a–d).

Different order of HD affects the beam center ( x0 ) dif-
ferently. The presence of SD and FD makes no shift of the 
beam center (Fig. 4a, c, e, g), but TD pushes the beam center 
to the negative side as the beam propagates (Fig. 4b, d) and it 
is more prominent for the dissipative system. This large shift 
of the beam center (Fig. 4h) can be utilized for developing 
all-optical sensor devices.

At this point, it is useful to validate the analytical results 
obtained from LVM. We adopt the split-step Fourier method 

Fig. 1   a The variation of critical energy of soliton formation with 
the characteristic length ( � ). b The variation of potential V(y) with 
respect to y. The black dotted line is for SD, the cyan color line is for 
SD+TD and the blue color line is for SD+TD+FD

Fig. 2   The variation of beam 
width (w(z)) with propaga-
tion distance (z) for � = 10.0 . 
a E

0
< Ec , c E

0
= Ec and e 

E
0
> Ec . The first column rep-

resents non-dissipative system, 
while the second column is the 
dissipative case corresponding 
to the first column
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(SSFM) [59, 69, 70] for the direct numerical solution of Eq. (1) 
using an initial beam profile similar to what is given in Eq. (2). 
This pseudo-spectral method is faster than the Finite-Differ-
ence Time-Domain (FDTD) method while doing negligible 
compromise with the results. For a range of system param-
eters, we obtained the solitonic beam propagation. Examples 
of such soliton beams are given in Fig. 5 for different com-
binations of various orders of diffraction. A comparison of 
such numerically (SSFM) obtained solitons (Fig. 5) with the 
analytically (LVM) obtained ones (Fig. 2) reveals that both 
types of solitons exhibit a periodic change in amplitudes; how-
ever, the oscillation in amplitude is a bit lesser in the former 
cases. Moreover, the presence of either TD (Fig. 5b) or FD 
(Fig. 5c) along with SD creates snake-like soliton propaga-
tion, while a combination of SD, TD, and FD suppresses such 
dynamics (Fig. 5d). Again, a decrease in � clearly increases 
the periodicity or in other words decreases the frequency of the 
snaking-like oscillation (Fig. 5c, e, f). Such snake-like propa-
gation is not vivid in analytical results (Fig 2). In essence, 
the numerical method reveals a more vivid picture, while the 
analytical method provides the idea of initial values for the 

numerical simulations. Furthermore, soliton behavior involv-
ing third-order dispersion in the temporal domain is commonly 
associated with the emission of the dispersive wave. However, 
no such emission is prominently observed with third-order dif-
fraction in the spatial domain, at least for the set of system 
parameters used in the current investigation. Please note that 
Fig S1 and all other supplementary figures are available in the 
supplementary file.

4 �  Linear stability analysis

The acceptability of the solutions obtained by the LVM 
technique (preceding section) is contingent on the degree 
to which they are stable against perturbations. Therefore, a 
linear stability analysis [71–73] is carried out in the vicinity 
of the equilibrium points ( c0,w0 ) obtained by LVM. firstly, 
we introduce a negligibly small perturbation c⋆ and w⋆ to the 
equilibrium points. The new initial conditions are c = c0 + c⋆ 
and w = w0 + w⋆ . After linearizing Eqs. (6) and (8) around 
a stationary point, we get a pair of equations, which can be 
expressed in a matrix form as

Fig. 3   The variation of beam 
width (w(z)) with propaga-
tion distance (z) for a SD, b 
SD+TD, c SD+FD, and d 
SD+TD+FD. The black, cyan, 
blue, and magenta lines are 
for the characteristic length 
� = 10.0, � = 4.0, � = 1.0, and 
� = 0.1 , respectively

Fig. 4   The dislocation or shift 
of beam center ( x

0
(z) ) with 

propagation distance (z). a, e are 
for SD, b, f are for SD+TD, c, 
g are for SD+FD, and d, h are 
for SD+TD+FD. The first row 
is for the non-dissipative system 
and the second row is for the 
dissipative system ( � = 0.2)
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with,

(13)
d

dz

(
c⋆

w⋆

)
=

(
f11 f12
f21 f22

)(
c⋆

w⋆

)

(14)f11 =
4 c S3

w2
+

24 �4 c
(
c2 + 1

)

w4
,

(15)

f12 =
4
�
�2 − 6 �3 Ω + 6 �4 Ω

2
��
1 + c2

�

w3

−
24 �4

�
1 + c2

�
S1

w5
−

4w�E0

�
w2 − �2

�

√
�
�
2w2 + �2

�5∕2
e2 � z

,

This results in the following characteristic Eigenvalue 
equation:

The two Eigenvalues ( Λ+ and Λ− ) of the 2 × 2 stability 
matrix (right hand side of the Eq. 13) can be calculated using 
the following formula,

(16)f21 =
2S3

w
+

6 �4(1 + 3 c2)

w3
,

(17)f22 = −
2 cS3

w2
−

18�4 c
(
1 + c2

)

w4
.

(18)Λ2 − (f11 + f22)Λ + (f11f22 − f12f21) = 0.

Fig. 5   The variation of beam amplitude (A(z)) with propagation distance (z) for � = 10.0 . a SD, b SD+TD, c SD+FD, d SD+TD+FD, e 
SD+FD for � = 4.0 , and f SD+FD for � = 1.0
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The type or class of equilibrium points can be determined 
by the characteristics of the Eigenvalues ( Λ+ and Λ− ). 
For example, we fixed the values of system parameters as 
w = 1, �2 = 0.5, � = 0, � = 1∕6, Ω = 0.0, �3 = −0.1, and 
�4 = 0.05 while varying the values of � and c to determine 
the various kinds of equilibrium points as per Ref. [71]. A 
choice � = 10 and c = +0.33 results in negative Eigenval-
ues (i.e., Λ+ < Λ− < 0 ) while � = 10 and c = −0.33 results 
in positive Eigenvalues (i.e., Λ+ > Λ− > 0 ); both are the 
condition for a stable node or star. Now, for � = 10 and 
c = ±0.000005 the Eigenvalues are complex conjugate, 

(19)Λ± =
1

2
(f11 + f22) ±

1

2

√
f 2
11
− 2f11f22 + f 2

22
+ 4 f12f21

which is the condition of stable or unstable focus (Fig. 6a, 
b). When � = 10 and c = 0 , the Eigenvalues become pure 
imaginary and the equilibrium point becomes a center 
(Fig. 6c). Similarly, � = 1 or 0.5 or 0.1 and c = −1.53 leads 
to Λ+ < 0 < Λ− , satisfying the saddle point equilibrium 
criterion. By setting c = ±0.35 or c = ±0.91 , either of the 
Eigenvalues become zero (i.e., Λ± = 0 and Λ∓ ≠ 0 ) that 
produce a degenerate type equilibrium point. By selecting 
the proper quadrants of the real and imaginary plots of the 
Eigenvalues, the parametric region for various kinds of equi-
librium points may be identified as shown in Fig 7 for SD 
only (Fig. S3 is for SD & TD), and Fig 8 is for the combina-
tion of SD, TD, & FD.

Fig. 6   Unstable focus phase 
plots (clockwise outward spi-
rals) for Λ+ and Λ− are complex 
conjugates. a c = −5 × 10

−5 and 
b c = +5 × 10

−5 . c stable center 
phase plots for � = 10 and c = 0

Fig. 7   Real and imaginary com-
ponent of the Eigenvalues in the 
parametric characteristic length 
( � ) - chirp (c) zone for only SD. 
The first row represents Λ+ , 
and the second row represents 
Λ− . The real Eigenvalue is in 
the first column, whereas the 
imaginary Eigenvalue is in the 
second column



Asymmetric impact of higher order diffraction on narrow beam dynamics in nonlocal nonlinear…

1 3

Page 9 of 15  194

The stability of the solitons discussed till now can be 
confirmed by conducting direct numerical simulations of 
the original NLS, Eq. (1). As an illustration, the beam 
amplitude versus beam width phase diagrams (Fig. 9) 
obtained solely through numerical methods (specifically, 
SSFM) reveal well-confined trajectories during propa-
gation. These trajectories signify stable soliton beam 
dynamics for all combinations of diffractions and various 
� values.

5 � Modulation instability

MI is a ubiquitous phenomenon that manifests in most 
nonlinear systems in nature and also for optical beams [69, 
74]. It causes small amplitude and phase perturbations, 
arising from noise, to quickly amplify under the combined 
influences of nonlinearity and diffraction (or dispersion, in 
the temporal domain). Consequently, a wide optical beam 
(or a quasi-CW pulse) tends to disintegrate while propa-
gating, leading to either filamentation (or break-up into 
pulse trains) or extinction [75]. The study of nonparaxial 

MI was conducted in reference [56], initially focusing on 
a modified Nonlinear Schrödinger Equation (NLS) with 
higher-order diffraction terms (i.e., the corrections to the 
linear term). Subsequently, the investigation extended to 
include nonlinear term corrections, introducing minor 
nonlocal interactions. Filament generation and the impact 
of the applied corrections have been studied in the zone 
beyond the linear phase of MI. It is found that nonparax-
ial conditions lead to less pronounced filament focusing, 
mainly due to Fourier components cut off in Fourier space, 
restricting focusing in real space. In the current study, we 
are focusing on different orders of diffraction and the lin-
ear stability of solitons. Therefore, it is relevant to conduct 
a thorough investigation of modulation instability (MI), 
which usually occurs in the same parameter region where 
soliton formation takes place. A comprehensive review 
of MI of solitons in spatially nonlocal nonlinear media, 
including the formation, interaction, and collapse of spa-
tial solitons, can be found in Ref. [76]. To examine the 
MI, let’s assume the NNLSE (Eq. 1) has a plane wave 
solution of the form U(z, x) =

√
p0 exp

�
i
�
k0x − �0z

��
 , 

Fig. 8   Real and imaginary 
component of the Eigenvalues 
in the parametric characteristic 
length ( � ) - chirp (c) zone for 
all SD, TD & FD. The first 
row represents Λ+ , and the 
second row represents Λ− . The 
real Eigenvalue is in the first 
column, whereas the imaginary 
Eigenvalue is in the second

Fig. 9   The variation of beam 
amplitude (A(z)) with beam 
width w(z) for � = 10.0 . a 
SD, b SD+TD, c SD+FD, d 
SD+TD+FD, e SD+FD for 
� = 4.0 , and f SD+FD for 
� = 1.0
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where p0 is the incident power. Here, the parameters 
�0, �2, k0, �3, �4, � and � are related by the equation 
�0 = �2k

2
0
− �3k

3
0
− �4k

4
0
− i� − � p0 . Let us now perform 

a linear stability analysis on the plane wave solutions by 
considering a small modulation in the wave solution as

Here, a1(z, x) denotes a small complex perturbation. By sub-
stituting (Eq. 20) into the NNLSE (Eq. 1), and linearizing 
around the solution (Eq. 20), we obtain th perturbed evolu-
tion equation as

where Θ1 =
(
�2 − 3 k0�3 − 6 k2

0
�4
)
 and Θ2 = (�3 + 4 k0�4) . 

We utilized the change of variable as � = z and 
� = x −

(
2�2k0 + 3i k2

0
�3 − 4k3

0
�4
)
z to arrive at the above 

equation. Two coupled equations can be generated by sepa-
rating the perturbation into imaginary and real components 
(i.e., a1 = u + iv ) as:

(20)U(z, x) =
�√

p0 + a1(z, x)
�
exp

�
i
�
k0x − �0z

��
.

(21)
i
�a1

��
+ Θ1

�2a1

��2
+ iΘ2

�3a1

��3
+ �4

�4a1

��4

+ 2� p0 ∫
∞

−∞

Re(a1)R(� − ��) d�� = 0,

(22)
�u

��
= −Θ1

�2v

��2
− Θ2

�3u

��3
− �4

�4v

��4

(23)

�v

��
= Θ1

�2u

��2
− Θ2

�3v

��3
+ �4

�4u

��4

+ 2 � p0 ∫
∞

−∞

u(��, �)R(� − ��) d�� .

Here the quantities û, v̂ and R̂ are defined by the Fourier 
transforms,

where Ψi = u, v,R . The linearized system is transformed to 
a set of ordinary differential equations in k space using the 
convolution theorem for Fourier transformations, as follows:

Here Q = 11 �4k
4
0
+ 4 �3k

3
0
− �2k

2
0
 . This can be expressed in 

matrix form as ��X = AX, where the vector X and matrix A 
are defined as

The eigenvalues � of the matrix A are given by

According to Ref. [74], R(k̂) = 1 for local media, 
R(k̂) = 1 − 𝛾 k2 for weakly nonlocal nonlinear media with 
� being the diffusion parameter, and R(k̂) = exp(−𝜎2 k2∕4) 
for generally nonlocal nonlinear media. The growth rate of 
the MI is defined as the real of the Eigenvalues � (i.e., ℜ(�) ), 
and can be obtained from Eq. (28) as

(24)Ψ̂i(k, 𝜏) = ∫
∞

−∞

Ψi(𝜉, 𝜏) exp(ik𝜉) d𝜉,

(25)
𝜕û

𝜕𝜏
= −Qv̂,

(26)
𝜕v̂

𝜕𝜏
=
(
Q + 2 𝜌 p0R(k̂)

)
û.

(27)X =

[
û

v̂

]
, A =

[
0 − Q

Q + 2 𝜌 p0 R(k̂) 0

]

(28)𝜆2 + Q2 + 2Q 𝜌 p0 R(k̂) = 0.

(29)|ℜ(𝜆)| = ℜ

(√
−Q2 − 2Q𝜌 p0 R(k̂)

)
.

Fig. 10   Growth rate variation 
with wave number k

0
 and power 

p
0
 in weakly nonlocal nonlinear 

media for diffusion parameter 
� = 0.2 . a SD, b SD+TD, c 
SD+FD, and d SD+TD+FD
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The growth rate can be significantly modified by tuning 
different system parameters and order of diffraction. We 
first take the case of weakly nonlocal nonlinear media (i.e., 
R(k̂) = 1 − 𝛾 k2 ) to study the growth rate variation with wave 
number k0 . It is observed that the growth rate of the side-
bands more or less increases with an increase in incident 
beam power p0 at a different pace for different orders and 
combinations of diffraction (Fig. 10). SD and SD+FD lead 
to symmetric sidebands (Fig. 10a, c), while the presence 
of TD makes the upper sidebands more amplified; even-
tually leaving the side bands asymmetric (Fig. 10b, d). 
The sidebands get more amplified for higher values of the 

diffusion parameter. This is prominent for a media with SD 
(Fig. 11a) and higher-order diffraction too follows the same 
trend (Fig. 11b–d). Figure S4 in the supplementary material 
is the same as Fig. 11 except the X-axis is chosen a little 
wider. The variation of the growth rate profile with respect 
to p0 corresponding to the Fig. 11a is given in Fig. 12. Also 
the variation of the growth rate profile with respect to p0 
corresponding to the Fig. 11b–d are given at supplementary 
material in Figs. S5, S6, and S7, respectively.

Unlike in the weakly nonlocal nonlinear media, 
the sidebands get more amplified at lower values of � 
for various order diffraction and their combinations 
(Fig. 13) in the generally nonlocal nonlinear media (i.e., 
R(k̂) = exp(−𝜎2 k2∕4) ). The variation of the growth rate 

Fig. 11   Growth rate variation 
with wave number k

0
 for power 

p
0
= 5.0 in weakly nonlocal 

nonlinear media. Black color 
is for � = 0.0 , cyan color is for 
� = 0.2 , magenta color is for 
� = 0.4 , and blue color is for 
� = 0.6 . a SD, b SD+TD, c 
SD+FD, and d SD+TD+FD

Fig. 12   Growth rate varia-
tion with wave number k

0
 and 

power p
0
 in weakly nonlocal 

nonlinear media for only SD 
case. The diffusion parameter 
a � = 0.0 , b � = 0.2 , c � = 0.4 
and d � = 0.6 . [corresponding 
to Fig. 11a ]
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profile with respect to p0 corresponding to the Fig. 13b is 
portrayed in Fig. 14. Also, the variation of the growth rate 
profile with respect to p0 in a generally nonlocal nonlinear 
media with various combinations of diffraction are shown 
in the supplementary material for � = 0.1 in Fig.  S8, 
� = 1.0 in Fig. S9, � = 4.0 in Fig. S10, and � = 10.0 in 
Fig. S11.

The general observations that TD creates asymmetry 
in the sideband and FD results in decay in intensity are 
somewhat similar to their temporal counterparts, i.e., 
third-order dispersion and fourth-order dispersion.

6 � Conclusion

This paper showcases how higher order diffractions (SD, 
TD, and FD) impact the dynamics, stability analysis, and 
modulation instability of a narrow Gaussian optical beam 
in a nonlocal Kerr nonlinear medium. Apparently, TD has 
no effect on the critical energy of the soliton or corre-
sponding potential profile, but FD reduces the required 
energy and widens the potential profile. If the initial 
energy of the beam is less than or larger than the criti-
cal energy of soliton formation, the beam width oscillates 

Fig. 13   Growth rate variation 
with wave number k

0
 for power 

p
0
= 5.0 in generally nonlocal 

nonlinear media. a only SD, 
b SD+TD, c SD+FD, and d 
SD+TD+FD. Black color is 
for � = 0.1 , cyan color is for 
� = 1.0 , magenta color is for 
� = 4.0 , and blue color is for 
� = 10.0

Fig. 14   Growth rate varia-
tion with wave number k

0
 and 

power p
0
 in generally nonlocal 

nonlinear media for SD+TD. 
a � = 0.1 , b � = 1.0 , c � = 4.0 
and d � = 10.0 . [Corrosponding 
to Fig. 13b]
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during propagation. The amplitude of the oscillations rises 
while the frequency falls due to the existence of FD; how-
ever, TD has no visible effect on those. The growth in the 
characteristic length of the response function reduces the 
amplitude of the oscillation and increases the frequency of 
the oscillation. Interestingly, TD is found to shift the beam 
center, while SD and FD have no such influence. Linear 
stability analysis of the governing equation of the system 
has been conducted to determine the parameter space for 
categorizing the equilibrium points. The modulation insta-
bility is investigated in the presence of HD. The presence 
of TD leads to asymmetric sidebands, while FD leads to 
the decay of the same.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00340-​023-​08137-1.
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