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Abstract
The extended lifespan of mechanical oscillator enables its utilization as a reliable medium for information storage. Optom-
echanical system coupling the cavity mode with mechanical oscillator is a promising device that can transfer the information 
from the light field to the mechanical oscillator for storage. In this paper, we propose an efficient scheme for quantum state 
transfer between the optical mode and mechanical oscillator by introducing pulsed coupling to an optomechanical system. 
By analyzing all the second-order moments, we give a general condition for the pulsed coupling that can guarantee the opto-
mechanical state conversion stably. Then, we take a Gaussian-type pulsed coupling as an example to examine the analysis 
and show that the state initially prepared in optical mode can be transferred to the mechanical mode stably with high fidelity 
for storage. Moreover, our scheme exhibits high robustness against the thermal fluctuation of mechanical mode, as well as 
the variations in the control pulse.

1  Introduction

The quantum state transfer is a crucial task in quantum infor-
mation processing, and has been concerned and studied in 
different quantum optical systems [1–3]. Cavity optome-
chanical system, coupling the optical fields with mechanical 
resonator via radiation pressure, makes it possible to lever-
age the advantages of both the optical mode and mechanical 
resonator [4–7]. Light, due to its high speed, is perfect for 
long-distance transmission of information, while mechani-
cal resonator fits well for storing information because of 
its low dissipation rate [8–12]. Thus the optomechanical 
system is a promising device for transmitting and storing 
quantum information [13–15], where the information car-
ried by light can be transferred into, stored in, and retrieved 
from a mechanical oscillator [16–18]. The state transfer in 
optomechanical system thereby is of great significance and 
has been extensively researched [19–28].

In optomechanical system, the interaction between opti-
cal mode and mechanical oscillator, under strong laser driv-
ing, can be reduced to beam-splitter type when the cavity 
resonates with mechanical mode within the red-sideband 
regime [29–33]. By such a beam-splitter type interaction, 
the mechanical mode and optical field swap energy to each 
other with sinusoidal and cosine oscillation in the closed 
system case when the coupling coefficient is constant [34, 
35], in which case the state conversion happens periodically. 
Therefore, to obtain the best state conversion, the target time 
must be chosen precisely by beam-splitter type interaction 
with a constant coupling coefficient [36, 37]. Moreover, it 
is not conducive to storing quantum states carried by cavity 
fields on the oscillator since the oscillation. In order to store 
the state of the cavity field stably on the mechanical oscilla-
tor, the optomechanical coupling needs to be cut off quickly 
enough at the target time, which may be hard owing to the 
difficulty of turning on and off the optomechanical interac-
tion sufficiently quickly [38, 39].

Quantum control is a technology that can use the time-
varying control field to realize specific tasks, such as maxi-
mizing optomechanical entanglement [40, 41], generating 
non-classical states [42, 43], realizing optomechanical 
squeezing [44, 45], cooling [46, 47] and quantum synchro-
nization [48]. In this paper, we aim to design a proposal 
for transferring quantum states stably from cavity mode 
to mechanical oscillator without sinusoidal and cosine 
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oscillation in a standard optomechanical system via quantum 
control method. Stimulated by the previous researches that 
propose to realize an efficient population transfer in two-
level systems [49], as well as energy transfer from mirror 
to the cavity field [50], by a chirped pulse, we examine how 
a pulsed interaction can transfer the quantum state, instead 
of energy, from the cavity field to mechanical oscillator. 
Through analyzing all the second-order moments of the 
system, a general condition for stable optomechanical state 
transfer is derived. As an example, we choose the Gaussian-
type coupling-pulse to discuss the state transfer proposal, we 
demonstrate that the initial state in the cavity field can be 
transferred to the mechanical mode gradually without oscil-
lation. Moreover, the influences of cavity decay, mechanical 
damping, thermal noise on state conversion are researched. 
The experimental realization of pulsed coupling and influ-
ences of control errors on our proposal are discussed as 
well. We find that our scheme is robust against thermal 
fluctuations of mechanical mode and uncertainties in the 
control fields. Furthermore, we discuss the application of 
our scheme, especially on cat state generation.

This paper proceeds as follows. We shall first briefly 
introduce the model and give approximated solutions of 
motion equations in Sect. 2. In Sect. 3, the conditions for 
optomechanical state transfer are analyzed, and the param-
eters of the pulse are discussed and optimized. In Sect. 4, 
we numerically verify our analysis and discuss the effects 
of decoherence processes and control errors on the proto-
col. Sect. 5 discusses the applications of our scheme, espe-
cially on cat state generation. The last conclusion is given in 
Sect. 6. In addition, two appendices are attached to show the 
solution processes of Langevin equations and the equation 
of covariance matrix, respectively.

2 � Model and solution

As shown in Fig. 1a, we consider a standard cavity optom-
echanical system, where a cavity field with eigenfrequency 
�c is coupled to a movable mechanical oscillator via radia-
tion pressure. Assuming a laser with frequency �L driv-
ing the cavity, the Hamiltonian in the rotating frame with 
respect to the laser frequency �L is

where a and b represent the annihilation operators of cav-
ity mode and mechanical mode, respectively; Δc = �c − �L 
is the cavity detuning frequency from the driving field; g 
denotes the coupling strength between mode a and b; |Ω(t)| 
describes the driving amplitude of the laser. Here we set Ω(t) 
time-varying, so as to design the time-dependent coupling in 
the following. Taking into account the dissipation � , � and 
corresponding noise terms ain , bin , the Heisenberg–Langevin 
equations of the system are

For strong laser driving amplitude |Ω(t)| and weak single-
photon optomechanical coupling strength g, we can linearize 
the system by expanding operators a and b around their clas-
sical amplitude � and � , i.e., a → a + � , b → b + � . The 
linearized motion equations for this system then read

(1)
H∕ℏ =Δca

†a + �mb
†b − ga†a(b† + b)

+ Ω∗(t)a + Ω(t)a†,

(2)ȧ =(−iΔc −
𝜅

2
)a + iga(b† + b) − iΩ(t) +

√
𝜅ain,

(3)ḃ =(−i𝜔m −
𝛾

2
)b + iga†a +

√
𝛾bin,

(a) (b)

(c)

Fig. 1   Schematic of the system for state transfer. Here (a) is a stand-
ard optomechanical system with pulse modulation, and (b) shows the 
time evolution of fidelity of optomechanical quantum state transfer 

without pulse modulation, where the inset presents F(t) for � = 0 . (c) 
is the rectangular pulsed coupling that can ensure stable state transfer
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 when the nonlinear term is neglected under strong driving 
and weak coupling conditions. Here, Δ(t) = Δc − g(� + �∗) , 
G(t) = g� , with

For the thermal bath, ain and bin in Eqs. (4) and (5) are zero-
mean Gaussian noises operators, whose correlation func-
tions satisfy

where n̄th
j
=
[
exp

(
�𝜔j∕kBT

)
− 1

]−1 ( j = c,m ) is the mean 
thermal excitation number from the bath. For cavity mode, 
nth
c
≈ 0 due to the high frequency of the optical mode. From 

G(t) = g�(t) , we see that the effective coupling G(t) can be 
controlled by modulating Ω(t) since �(t) is related to Ω(t) . 
Hence, any desirable time-dependent G(t) can, in principle, 
be achieved by adjusting the corresponding Ω(t) . If the effec-
tive coupling strength G(t) is constant, cavity mode and 
mechanical resonator will oscillate in the evolution process. 
To visually demonstrate this analysis, we can simulate the 
fidelity of state transfer from cavity to mechanical mode with 
Uhlmann fidelity [51]:

where �1 means the state to be transferred that is initially 
prepared in cavity mode. �2 is the final state of mechani-
cal oscillator. Without loss of generality, we assume that �1 
and �1 are Gaussian states with the non-zero mean values 
⟨a†a⟩ = 1 and ⟨b†b⟩ = 10 to exhibit the state transfer with 
constant coupling G. As shown in Fig. 1b, the quantum 
state transfer fidelity is oscillated with time evolution, which 
means the information carried in the light field will not be 
stably stored by the oscillator after being transferred to the 
oscillator. To store state in mechanical mode, the effective 
coupling G should turn off immediately at a fixed time when 
fidelity F  reaches maximum, shown in Fig. 1c. In what fol-
lows, we propose an alternative scheme to transfer state from 
cavity field to mechanical mode stably by setting G(t) time 
dependent.

(4)ȧ =(−iΔ −
𝜅

2
)a + iG(t)(b† + b) +

√
𝜅ain,

(5)ḃ =(−i𝜔m −
𝛾

2
)b + i[G∗(t)a + G(t)a†] +

√
𝛾bin

(6)𝛼̇ = − iΔ𝛼 − iΩ(t) −
𝜅

2
𝛼,

(7)𝛽̇ = − i𝜔m𝛽 + ig0|𝛼|2 − 𝛾

2
𝛽.

(8)
⟨
ain(t)ain

†
(
t�
)⟩

=
(
n̄th
c
+ 1

)
𝛿
(
t − t�

)
,

(9)
⟨
bin(t)bin†

(
t�
)⟩

=
(
n̄th
m
+ 1

)
𝛿
(
t − t�

)
,

(10)F
�
�1, �2

�
=

�
trace

�√
�1�2

√
�1
� 1

2

�2
,

In principle, Δ(t) is also time-dependent since 
Δ(t) = Δc − g(�(t) + �(t)∗) . Actually, we can modulating Δc 
with time to ensure Δ(t) time-independent [52]. To realize 
state conversion, we select the parameters in the red sideband 
regime Δ = �m , which can be done by PDH cavity locking 
technology [53]. Then we can obtain the approximate solu-
tion of Langevin equations Eqs. (4) and (5) as (see Appendix 
for details)

under the conditions of 𝜅, 𝛾 ≪ 𝜔m , where h(t) = ∫ t

0
G(�)d� 

and h(t, ��) = ∫ t

��
G(�)d�.

To find the state conversion condition, we can calculate the 
second-order moments or covariance matrix of cavity mode 
and mechanical oscillator. By Eqs. (11) and  (12), we can 
derive the mean values of all second-order moments of the 
system N̄a(t) , N̄m(t) , ⟨a(t)a(t)⟩ , ⟨b(t)b(t)⟩ , ⟨a†(t)b(t)⟩ , ⟨a(t)b(t)⟩ . 
Here we assume that the oscillator and the cavity field are not 
initially correlated. Then, the mean values of second-order 
moments of the system are derived as

(11)

a(t) ≈e−(i�m+
�

4
+

�

4
)t{cos[h(t)]a(0) + i sin[h(t)]b(0)}

+ ∫
t

0

d��e−(i�m+
�

4
+

�

4
)(t−��)

�√
� cos[h(t, ��)]

× ain(�
�) + i

√
� sin[h(t, ��)]bin(�

�)
�
,

(12)

b(t) ≈e
−
�
i�m+

�

4
+

�

4

�
t
{i sin[h(t)]a(0) + cos[h(t)]b(0)}

+ ∫
t

0

d��e
−
�
i�m+

�

4
+

�

4

�
(t−��)

�
i
√
� sin[h(t, ��)]

× ain
�
��
�
+

√
� cos[h(t, ��)]bin

�
��
��

,

(13)

⟨a†(t)a(t)⟩ =e−(
�
2+

�
2 )t
{

cos2[h(t)]⟨a†(0)a(0)⟩

+ sin2[h(t)]⟨b†(0)b(0)⟩
}

+ ∫

t

0
d�′

× e−(
�
2+

�
2 )(t−�

′){� cos2[h(t, �′)]n̄thc
+� sin2[h(t, �′)]n̄thm

}

,

(14)

⟨b†(t)b(t)⟩ =e−(
�
2+

�
2 )t
{

sin2[h(t)]⟨a†(0)a(0)⟩

+ cos2[h(t)]⟨b†(0)b(0)⟩
}

+ ∫

t

0
d�′

× e−(
�
2+

�
2 )(t−�

′){� sin2[h(t, �′)]n̄thc
+ � cos2[h(t, �′)]n̄thm

}

,

(15)
⟨a(t)a(t)⟩ =e−(2i�m+

�

2
+

�

2
)t
�
cos2[h(t)]⟨a(0)a(0)⟩

− sin2[h(t)]⟨b(0)b(0)�,
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3 � Analytical analysis and parameters 
optimization

Now, we explore what kind of time-dependent G(t) can make 
the system transfer state stably between the cavity and mechan-
ical oscillator. If both the diagonal and non-diagonal elements 
of covariance matrix for the cavity mode and oscillator are 
exchanged with each other through dynamical process, state 
conversion between cavity field and mechanical oscillator are 
achieved. Here, we temporarily set � = � = 0 (We can also 
understand this condition as 𝜅 << 𝜔m,G and 𝛾 << 𝜔m,G ) for 
simplicity to analyze the result, and then discuss the influences 
of � and � on the scheme in the simulation of state transfer. 
Then, we can derive from Eqs. (13) to (18) that

when h(t) satisfies

The above analysis suggests that the diagonal elements of 
covariance matrix for the cavity mode and oscillator can be 
exchanged with each other through dynamical process under 
the condition expressed by Eq. (24). For the non-diagonal 
elements, a time-dependent phase e−2i�mt−i� occurs before 

(16)
⟨b(t)b(t)⟩ =e−(2i�m+

�

2
+

�

2
)t
�
− sin2[h(t)]⟨a†(0)a(0)⟩

+ cos2[h(t)]⟨b†(0)b(0)⟩�,

(17)

⟨a†(t)b(t)⟩ =e−(
�
2+

�
2 )t
{ i
2
sin[2h(t)](⟨a†(0)a(0)⟩

− ⟨b†(0)b(0)⟩)
}

+ ∫

t

0
d�′e−(

�
2+

�
2 )(t−�

′)

×
{ i
2
sin[2h(t, �′)](�n̄thc − � n̄thm)

}

,

(18)
⟨a(t)b(t)⟩ =e−2(i�m+

�

2
+

�

2
)t
�
i

2
sin[2h(t)](⟨a(0)a(0)⟩

+⟨b(0)b(0)⟩)}.

(19)N̄a(t)|t→∞ ≈N̄m(0),

(20)N̄m(t)|t→∞ ≈N̄a(0),

(21)⟨a2(t)⟩t→∞ ≈ − e−2i�mt⟨b2(0)⟩,

(22)⟨b2(t)⟩t→∞ ≈ − e−2i�mt⟨a2(0)⟩,

(23)⟨a†b(t)⟩t→∞ ≈⟨ab(t)⟩t→∞ = 0,

(24)h(t)|t→∞ =
�

2
.

⟨b2(0)⟩ and ⟨a2(0)⟩ . These time-dependent phases are van-
ished when we consider the state to be transferred satisfies 
⟨a2(0)⟩ = ⟨b2(0)⟩ = 0 , such as vacuum state or thermal state, 
in which case the second-order moments of cavity mode and 
mechanical mode can be exchanged completely through the 
dynamical process. For the states, such as cat states, that 
⟨a2(0)⟩ ≠ 0 and ⟨b2(0)⟩ ≠ 0 , we will discuss it in Sect. 5 for 
details.

Generally speaking, there are many kinds of functions, 
such as Gaussian error function �Erf (t)∕2 , hyperbolic 
tangent function � tanh(t)∕2 , that can satisfy the above 
conditions. Therefore, we can select the envelope of G(t) 
as Gaussian pulse or hyperbolic secant pulse to meet the 
requirement. Without loss of generality, we choose Gauss-
ian pulse:

as an example to discuss the state conversion in our system. 
Here G0 , � and T are parameters to be optimized. By Eqs. (6) 
and (25), we can deduce that

Therefore, we can use the time-varying driving strength 
expressed above to achieve the pulsed coupling G(t) shown 
in Eq. (25). In addition, the time-varying Ω(t) can be real-
ized by modulating the laser power P(t) with time since 
�Ω(t)� = √

P(t)�∕ℏ�L  . In experiments, the method of 
intensity modulation to the optical driving power has been 
employed [54]. Therefore, our pulse modulation method is 
technically feasible.

To optimize the Gaussian pulse expressed in Eq. (25), we 
simulate |h(t) − �∕2| in a long time limit in Fig. 2a, b. Fig-
ure 2a shows that � has little effect on |h(t) − �∕2| in the long 
time limit for fixed T; therefore, we set � = 0 to optimize 
the other parameters in Fig. 2b for simplicity. We see that 
there exits a dark blue region in Fig. 2b that |h(t) − �∕2| ≈ 0 , 
which means h(t) can tend to �∕2 by selecting the points 
(G0, T) located in the dark blue curve. In Fig. 2c, we show 
the time evolution of h(t) by three optimized parameters 
pointed out in Fig. 2b, i.e., A, B, and C. It is obvious that the 
curves of h(t) at different optimized (G0, T) can tend to �∕2 
with different time scales. In Table 1, we present five sets of 
optimized values (�,G0, T).

In priciple, a larger G0 means a shorter time costing for 
h(t) reaching �∕2 , which may be useful for protecting the 
system from dissipation and thermal noise. However, it does 
not means the larger G0 , the better for the state transfer pro-
posal since the above analyses are based on the RWA. The 
larger G0 , the more obvious anti-rotating-wave effect. To 

(25)G(t) = G0 exp[−(t − �)2∕T2],

(26)Ω(t) =
ie

−(t−�)2

T2 G0(T
2(2iΔ + �) − 4(t − �))

2gT2
.
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examine the validity of RWA, we numerically present the 
time evolution of fidelity F(t) = ��⟨� exact (t) ∣ � RWA (t)⟩��2 in 
Fig. 2d with different optimized parameters by using Qutip 
[55, 56], where �� RWA (t)⟩ means the state with RWA and 
�� exact (t)⟩ is obtained without RWA. The results show that 
the fidelity F(t) decreases with the increase of G0 . In the 
weak coupling regime, F(t) is close to 1, which implies the 
result without RWA agrees well with that of with RWA. 
On the contrary, F(t) is far from 1 in the strong coupling 
regime. In the following, we set G0 = 0.1�m , T = 17.72∕�m 

to reduce the influence of anti-rotating-wave effect, so as to 
obtain high-fidelity optomechanical quantum state transfer.

4 � Optomechanical quantum state transfer 
in open quantum system

To examine the above analysis, in Fig. 3, we present the time 
evolution of fidelity for the state transferring from cavity mode 
to mechanical oscillator with different kinds of initial states for 
mechanical mode using Uhlmann fidelity. The results show 
that F  gradually increases as time evolves, and a stable fidelity 
as high as approximately 1.0 is reached in both Fig. 3a and b, 
which means the quantum state of mechanical mode both 
eventually becomes a vacuum state (i.e., the initial state of 
cavity mode), no matter whether the initial state of mechanical 
mode is thermal state or superposed one. In the inset of 
Fig. 3b, we present the dynamical trajectory in the Bloch 
sphere, where the red arrow describes the initial state of the 
oscillator 1√

5
(�0⟩ + 2�1⟩) , the blue arrow represents the desired 

Fig. 2   Plots of |h(t) − �∕2| as functions of � , T in (a), and G0 , T in (b) 
in long time limit; Time evolution of h(t) in (c) for three optimized 
parameters pointed out (A,  B,  C) in (b); Time evolution of Fidelity 

F(t). Here we set the initial state of the system as the Fock state with 
N̄a(0) = 0 and N̄b(0) = 1 in (d)

Table 1   Optimized values 
(�,G

0

,T) for the Gaussian pulse
Opti-
mized 
values

�
m
� G

0

∕�
m

�
m
T

Set 1 0 0.1 17.72
Set 2 0 0.2 8.86
Set 3 0 0.3 5.91
Set 4 0 0.4 4.43
Set 5 0 0.5 3.54
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state, which is the same as the initial state of the cavity field. 
Green balls in the Bloch sphere stand for quantum states at 
different times. It is intuitive that the state of the oscillator 
gradually tends to be the same as the initial state of the cavity 
mode as time evolution, which suggests that the state transfer 
is succeed.

Now, we turn to research the robustness of the state transfer 
protocol. If n̄th

m
 is large, cutoff of the density matrix is inaccu-

racy. To avoid errors caused by truncation when n̄th
m

 is large, 
it is convenient to assume the cavity mode and mechanical 
oscillator are both initially in Gaussian states, in which case, 
we can use the covariance matrix instead of density matrix 
for further simulation. From the Uhlmann fidelity defined by 
Eq. (10), one can further express the fidelity between two arbi-
trary Gaussian states with covariance matrix as [57–60]

where Λ = det
(
Ṽ1 + Ṽ2

)
 , � =

(
detṼ1 − 1

)(
detṼ2 − 1

)
 and 

� = �1 − �2 , with �j = (⟨Xj⟩, ⟨Pj⟩)T ( j = 1, 2 ) the column vec-
tor and Ṽj∕2 the corresponding covariance matrix of quan-
tum state �j . Employing Eq. (39) and (40) to Eq. (27), one 
can simulate precisely the protocol’s fidelity for Gaussian 
state conversion.

In Fig. 4, we investigate the influence of cavity decay, 
mechanical dissipation, and thermal noise on the state 
transfer protocol. As shown in Fig.  4a, Fidelity F(tf ) 
decreases with the increase of the cavity decay � and 
mechanical dissipation � . Compared with cavity decay 
� , mechanical dissipation � has a greater influence on 
F(tf ) . To make F(tf ) > 0.99 , �∕�m should be less than 

(27)F =
2√

Λ + � −
√
�
exp

�
−�T

�
Ṽ1 + Ṽ2

�−1

�

�
,

0 20 40
0.2

0.4

0.6

0.8

1

0 20 40
0.2

0.4

0.6

0.8

1> 0.9(a) (b)

Fig. 3   Time evolution of fidelity F(t) for optomechanical quantum 
state transfer. The initial states of cavity mode and mechanical oscil-
lator are vacuum state and thermal state with mean phonon number 

10 in (a), Fock state �0⟩ and superposition state 1√
5
(�0⟩ + 2�1⟩) in (b). 

The other parameters are G0 = 0.1�m , T = 17.72∕�m , � = 0.01�m , 
� = 10−6�m , and n̄th

m
= 10

Fig. 4   Fidelity F(tf ) as functions of � and � in (a), n̄th
m

 and � in (b) at fixed time tf = 50∕�m . We set � = 10−4�m in the inset of (a) and (b). The 
other parameters are the same with Fig. 3
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10−3 . Fortunately, it is possible to achieve 𝛾∕𝜔m < 10−3 
in current experiments. Unlike mechanical dissipation, 
cavity decay seems to have less influence on F(tf ) . When 
cavity decay �∕�m is less than 0.1, F(tf ) can be larger 
than 0.95 with appropriate mechanical dissipations, while 
when 𝜅∕𝜔m > 0.1 , F(tf ) drops rapidly as �∕�m increases, 
shown in the inset of Fig. 4a, which means the state con-
version scheme works well in the deeply resolved side-
band regime. Although it is still challenging to achieve 
the deep resolved sideband regime for the cavity optom-
echanical system with cavity mode in optical frequency, 
𝜅 < 𝜔m has been reported in electromechanical systems 
(i.e., optomechanical system with cavity mode in micro-
wave frequency) [61]. Besides cavity decay and mechani-
cal dissipation, Fig. 4b shows that the thermal excitation 
numbers n̄th

m
 harms the state conversion process. Luckily, 

F(tf ) is relatively tolerant of n̄th
m

 . Currently, the n̄th
m

 reported 
in many experiments is less than 100 (such as n̄th

m
≈ 57.3 in 

[62], n̄th
m
≈ 41.2 in [63], and n̄th

m
≈ 38.6 in [64]). In the inset 

of Fig. 4b, we see that F(tf ) can be greater than 0.95, even 
when n̄th

m
 exceeds 100, which suggests that our scheme may 

be experimentally feasible.

In addition to the influences of open system, in experi-
ments, it is also a challenge to control the waveforms of the 
pulse precisely. The control errors, including random noises 
and systematic errors, are important factors affecting the 
state transfer. First, we consider the influences of random 
noises on our state conversion protocol. For convenience, 
we assume that the random fluctuation satisfies the Gauss-
ian distribution with mean value of 0 and variance of 1. 
Therefore, the actual pulse Ωr(t) with random fluctuation 
can be written as

where N(0, 1) is a function for generating a Gaussian random 
number at an arbitrary time, and Γ is a constant for modulat-
ing the values of random numbers. By setting Γ = 0.1 , we 
present the waveforms of Ωr(t) in Fig. 5a with red line, and 
the corresponding time evolution of fidelity in Fig. 5b. We 
see that high fidelity ( F(t) ≃ 0.99 at �mt = 400 ) is reached 
even when Γ = 0.1 , which means our protocol is tolerant 
to classical random noises owing to the fact that random 
fluctuations possess random plus-minus signs, thus the time 
average effect of these random noises can be neglected.

(28)Ωr(t) =Ω(t)[1 + ΓN(0, 1)],
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Fig. 5   (a) Waveforms of driving strength |Ω(t)| with Gaussian random 
noises ΓN(0, 1) mixed during each time duration. (b) Time evolu-
tion of fidelity F(t) with Γ = 0.1 . (c) Waveforms of driving strength 
|Ω(t)| with relative deviation �Ω∕Ω=0.2. (d) Time evolution of fidel-

ity F(t) with relative deviation �Ω∕Ω = 0.2 . We set g = 10−5�m , 
�m∕2� = 2 × 106 Hz. The inset figure in (b) and (d) are the fidelity in 
a long time. The other parameters see Fig. 3
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In addition to random noises, systematic errors induced 
by Ω - drifts, which may result from the imprecise appara-
tus and imperfect operations [65], is another factor that can 
influence the state transfer. Assuming that actual pulse Ωr 
deviates from the ideal Ω by �Ω , we can define the deviation 
as �Ω = Ωr − Ω . In Fig. 5c, the waveforms of Ωr(t) with 
relative deviation �Ω∕Ω = 0.2 are displayed with blue error 
bars. We see that the fidelity for state exchanging remains 
larger than 0.9 in a long time even when the relative devia-
tion �Ω∕Ω = 0.2 , as shown in the inset of Fig. 5d. This result 
means our scheme is robust to Ω - drifts. Moreover, the fidel-
ity F(t) remains larger than 0.95 for a wide time span, as 
displayed in Fig. 5d. Anyhow, our scheme is robust to the 
uncertainty of Ω(t) , whether the uncertainty is caused by 
random noises or systematic errors. And accurately selecting 
the target time is not a must-do in our scheme for examining 
the state transfer since F(t) remains high with a wide time 
regime.

5 � Discussion

In previous optomechanical systems, several works, such 
as double-swap protocol and adiabatic passage proposed to 
achieve state transfer based on a dual cavity optomechanical 
system. The advantage of these schemes is that the oscilla-
tor is used as a medium to achieve state transfer between 
fields of different frequencies. However, the double-swap 
protocol will suffer dissipation from all modes, including 
two cavities and one oscillator, and the swap time must be 
precisely controlled. For adiabatic state transfer schemes, the 
evolution of the system should not be too fast, otherwise it 
will be affected by intermediate mode noise and dissipation. 
Therefore, our solution is relatively simple and has fewer 
noise sources compared to state transfer in the dual cavity 
optomechanical system.

On the other hand, the preparation of mechanical oscilla-
tors in nonclassical states is an important topic in the field of 
quantum optics [66–69]. In optomechanical system, the radi-
ation-pressure-induced interaction describes the conditional 
displacement process, therefore it is a good platform for gen-
erating mechanical oscillator in macroscopic Schrödinger-
cat state [70]. However, the weak coupling between cavity 
and mechanical oscillator limits this application. It is hard 
to generate mechanical oscillator directly in distinguishable 
macroscopic Schrödinger-cat state in optomechanical system 
[71, 72]. Compared to mechanical mode, cavity field is a lit-
tle easier to be generated in Schrödinger-cat state, and has 
been experimentally realized [73, 74]. Thus an alternative 
method to generate mechanical mode in cat state is employ-
ing state conversion protocol: First generate Schrödinger-
cat state of cavity field, then transform it to mechanical 
mode. For the cavity mode initially prepared in a cat state, 

i.e., ⟨a2(0)⟩ ≠ 0 , the off-diagonal elements of covariance 
matrix for mechanical oscillator in long time limit will be 
⟨b2(t)⟩t→∞ = −e−2i�mt⟨a2(0)⟩ through the dynamical process 
in our scheme, which makes the obtained state at time t dif-
ferent from the desired state to be transferred. Actually, for 
the mechanical oscillator, by using Eq. (22), we can derive 
the relation between the desired state ��m⟩ and obtained state 
��m⟩ in the long time limit as

If the cavity is initially prepared in Schrödinger-cat state 
N+(��⟩ + � − �⟩) , the state for mechanical mode will be

in long time limit. Although the above state is different 
from the desired state ��m⟩ = N+(��⟩ + � − �⟩) , ��m⟩ is still 
a Schrödinger-cat state, which implies we can prepare mac-
roscopic Schrödinger-cat state in mechanical oscillator with 
our scheme by first generating cavity mode in cat state. Fig-
ure 6a shows the process of cat state generation by Qutip. 
It is obvious that the state of mechanical mode gradually 
becomes a cat state from the initial thermal state, and the 
phase of obtained cat state is changing with time evolution. 
In addition, the fidelity for cat state generation of mechanical 
mode is high with current parameter conditions, as shown 
in Fig. 6b.

In addition, one of the most important tasks in the opto-
mechanical system is to cool mechanical mode to its ground 
state to reduce thermal fluctuation. Sideband cooling and 
feedback cooling are two powerful tools that can be used 
to meet this goal and have been widely discussed in many 
previous works. Actually, the cooling process is not the 
only way that can achieve the ground state of the mechani-
cal oscillator. By using the pulse modulation method dis-
cussed in this paper, the vacuum state in the cavity field can 
be transferred to the mechanical oscillator, which can also 
realize the ground state of mechanical mode. Compared with 
sideband cooling and feedback cooling, the pulse modula-
tion method may be much more quick to prepare mechanical 
mode in its ground state because there is no oscillation in 
the evolutions with the pulse modulation method proposed 
above. And since the strong mechanical squeezing and 
entanglement can be realized by joining the cooling pro-
cess with parametric process [75–77], the protocol may also 
be extended to generate mechanical squeezing by adding a 
parametric driving to the mechanical mode, and entangle-
ment by adding another non-degenerate parametric interac-
tion to the system.

(29)��m⟩ = exp{−i(�mt − �∕2)b†b}��m⟩.

(30)��m⟩ = N+(� − ie−i�mt�⟩ + �ie−i�mt�⟩)
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6 � Conclusion

In summary, we have proposed a robust proposal for trans-
ferring quantum states in optomechanical system. In our 
scheme, the pulsed coupling is introduced to the system. By 
analyzing the equations of all the second-order moments 
of the optomechanical system, we give a general condition 
that the pulsed coupling should satisfy for quantum state 
conversion. As an example, we choose the Gaussian-type 
pulsed coupling to discuss the state conversion from the 
cavity fields to the mechanical oscillator. Results show that 
optomechanical state transfer can be accomplished with high 
fidelity under the optimized parameters used in the main 
text. Moreover, the system will not oscillate when the state 
transfer is completed in our protocol, which on the one hand 
makes it possible for the oscillator to play the role of mem-
ory: store the quantum state stably, on the other hand makes 
our scheme allow a wide range of target time for detecting 
the stored states. Even considering the influence of cavity 
decay rate, mechanical dissipation, thermal noise, and error 
of control fields, high fidelity can be still obtained. Espe-
cially, the scheme is robust against thermal fluctuation of 
mechanical oscillator and variation of control field, which is 
experimentally friendly, and may have potential application 
in quantum devices such as quantum memory.

Appendix A: Approximate solutions 
of Langevin equation

In this appendix, we present a detailed derivation of the 
approximate solution a(t) and b(t) given in the main text 
(i.e., Eqs. (11) and (12)). We start from Eqs. (4) and (5). 
In red-detuned sideband regime Δ = �m , the b† term in 
Eq. (4) and a† term in Eq. (5) can be ignored due to the 

rotating-wave approximation (RWA), thus Eqs. (4) and (5) 
can be approximated as

where we have chosen the phase reference of the classical 
driving field to ensure that G(t) is real. To solve Eqs. (31) 
and  (32), we rewrite it in the compact form

for simplicity, where �0 = (a, b)T , �0,in = (
√
�a in ,

√
�b in )

T , 
and

One of the general methods to solve the matrix differential 
equation is to diagonalize the coefficient matrix A0 . How-
ever, the eigenstates of the coefficient matrix contain G(t). 
Since G(t) is assumed to be time-dependent, the above equa-
tion is hard to be solved accurately. Here, we consider the 
scheme worked in deep-resolved-sideband regime 𝜅 ≪ 𝜔m , 
in which case, we can neglect � and � temporarily, thus the 
eigenmodes of the coefficient matrix A0 are

Then, we can define the quasi-mode A and B by transform 

(A,B)T = S(a, b)T  ,  where  S = (�1,�2) =
1√
2

�
−1 1

1 1

�
. 

(31)ȧ =
�
−iΔ −

𝜅

2

�
a + iG(t)b +

√
𝜅ai n,

(32)ḃ =
�
−i𝜔m −

𝛾

2

�
b + iG(t)a +

√
𝛾bin,

(33)
d

dt
�0(t) = A0�0(t) + �0,in(t),

(34)A0 =

(
−iΔ −

�

2
iG(t)

iG(t) − i�m −
�

2

)
.

(35)�1 =
1√
2
(−1, 1)T , �2 =

1√
2
(1, 1)T ,

(a) (b)
F > 0.9

Fig. 6   (a) Wigner function of mechanical mode for different t. (b) Fidelity for cat state generation
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Therefore, the Langevin equations Eq. (33) can be expressed 
with quasi-mode A and B as

where �̃0 = (A,B)T , �̃0,in = (Ain,Bin) , and

H e r e  Ain = (
√
�bin −

√
�ain)∕

√
2  a n d 

Bin = (
√
�bin +

√
�ain)∕

√
2 . Under the condition of 

𝜅, 𝛾 ≪ 𝜔m , we can ignore the off-diagonal elements of the 
coefficient matrix, in which case, the differential equations 
of A and B are decoupled, and we can get

By apply ing  the  inverse  un i t a r y  t ransfor m 
(a, b)T = S−1(A,B)T , we can obtain the final expression of a 
and b in the main text (see Eqs. (11) and (12)).

Appendix B: Equation of Covariance matrix

To give the equation of covariance matrix, we first write 
Eqs. (4), (5) and their Hermite conjugate in the compact 
form as

b y  i n t r o d u c i n g  � = (a, a†, b, b†)T   , 

� in =
�√

�a in ,
√
�a†

in
,
√
�b in ,

√
�b†

in

�T

 , and

For the linearized system, the dynamics can be completely 
characterized by the covariance matrix V, whose element 
is defined as Vij =

⟨
�i�j + �j�i

⟩
∕2 . According to Eq. (37), 

one can obtain

(36)
d

dt
�̃0(t) = Ã0�̃0(t) + �̃0,in(t),

Ã0 =

(
−i
(
�m + G(t)

)
−

�

4
−

�

4
,

�

4
−

�

4
�

4
−

�

4
, i

(
G(t) − �m

)
−

�

4
−

�

4

)
.

A(t) ≈e−(i�m+
�

4
+

�

4
)t−i ∫ t

0
G(�)d�

A(0)+

�
t

0

d��Ain(�
�)e−(i�m+

�

4
+

�

4
)(t−��)−i ∫ t

��
G(�)d� ,

B(t) ≈e−(i�m+
�

4
+

�

4
)t+i ∫ t

0
G(�)d�

B(0)+

�
t

0

d��Bin(�
�)e−(i�m+

�

4
+

�

4
)(t−��)+i ∫ t

��
G(�)d� .

(37)
d

dt
�(t) = A�(t) + �in(t)

(38)A =

⎛
⎜⎜⎜⎜⎝

−iΔ −
�

2
0 iG(t) iG(t)

[6pt]0 iΔ −
�

2
− iG(t) − iG(t)

[6pt]iG(t) iG(t) − i�m −
�

2
0

[6pt] − iG(t) − iG(t) 0 i�m −
�

2

⎞
⎟⎟⎟⎟⎠
.

by a simple der ivation, where D = diag
(
Dc,Dm

)
 

with Dc = ��x∕2 ,  and Dm = 𝛾
(
n̄th
m
+ 1∕2

)
𝜎x  (  �x  is 

the Pauli matrix). By introducing Xc = (a + a†)∕
√
2 , 

Pc = (a − a†)∕
√
2i   ,  Xm = (b + b†)∕

√
2  a n d 

Pm = (b − b†)∕
√

2i , the covariance matrix Ṽ  defined as 
Ṽij =

⟨
OiOj + OjOi

⟩
∕2 ( O = (Xc,Pc,Xm,Pm)

T  ) can be 
expressed as

where R = diag
(
R1,R2

)
 with Rj =

1√
2

�
1 1

−i i

�
.
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