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Abstract
We experimentally test a recently proposed holographic method for imaging coherent light scatterers which are distributed 
over a two-dimensional grid. In our setup, the scatterers consist of a back-illuminated, opaque mask with submicron-sized 
holes. We study how the imaging fidelity depends on various parameters of the set-up. We observe that a few hundred scat-
tered photons per hole already suffice to obtain a fidelity of 96% to correctly determine whether a hole is located at a given 
grid point. The holographic method demonstrated here has a high potential for applications with ultracold atoms in optical 
lattices.

1 Introduction

In recent years, ultracold atoms in optical lattices have 
become a promising platform for fundamental research of 
many-body and solid-state physics as well as for applica-
tions in quantum information. Quantum gas microscopes 
have been developed which use fluorescence imaging to 
detect atomic distributions in 2D optical lattices, resolv-
ing single atoms at individual lattice sites, see e.g. [1–6]. In 
these quantum gas microscopes, an individual atom typically 
scatters thousands of photons. This leads to heating, and 
therefore, additional cooling techniques such as Raman side-
band cooling [5] are typically required to prevent the atom 

from leaving its lattice site during imaging. A main motiva-
tion for the work presented here was to test a site-resolved 
imaging method with small numbers of scattered photons 
so that additional cooling is not needed. Indeed, fluores-
cence imaging with small photon numbers and single-atom 
sensitivity has been recently demonstrated [7], but only for 
atoms propagating in free space. Furthermore, other imaging 
methods for atoms exist which are not based on fluorescence 
imaging. For example, these include spatially resolved ioni-
zation of atoms followed by ion detection [8, 9]. A review 
on various single-atom imaging techniques can be found in 
Ref. [10]. Holographic imaging of cold atomic clouds has 
been developed and demonstrated in recent years, see e.g. 
[11–13], but not yet with μ m- and single-atom-resolution.

We have recently proposed a novel approach to site-
resolved detection of atoms in a 2D optical lattice which 
is based on holographic techniques   [14]. The main idea is 
schematically illustrated in Fig. 1. An ensemble of atoms 
is exposed to a near-resonant laser beam from which they 
coherently scatter light via fluorescence. The scattered light 
is collimated by a lens and then superimposed with a col-
limated reference laser beam of the same frequency. The 
resulting interference pattern is recorded by a digital cam-
era sensor. A fast Fourier transform (FFT) of the recorded 
interference pattern ID(x, y) yields a site-resolved image of 
the atomic distribution in the lattice. The role of the refer-
ence beam is to amplify the weak atomic signals and to shift 
the information on the atomic distributions in the hologram 
to the FFT positions where technical background noise 
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is small. Our calculations predicted that this holographic 
imaging is better than 99% error-free already for about 200 
scattered photons per atom. Therefore, as a rough estimate, 
for a lattice which is deeper than a few times 200 photon 
recoil energies, holographic imaging might work without 
additional cooling. For example, for 6 Li where the recoil 
energy is 3.5 μK×kB for the resonant wavelength of 671 nm, 
a trap depth of about 2 mK×kB should be sufficient to keep 
the atoms trapped in their respective lattice sites. Here, kB is 
the Boltzmann constant.

In this work, we take a first experimental step to test our 
proposed holographic detection scheme. For this, we replace 
the atomic scatterers by an array of circular submicron-
sized holes in an opaque flat mask, see Fig. 2. The mask is 
homogeneously back-illuminated with laser light which is 
diffracted when passing through the holes. The holes are ran-
domly arranged in a square lattice with 1μ m lattice constant, 

similar to the distribution of real atoms in a partially occu-
pied 2D optical lattice1. Clearly, this setup is much simpler 
than working with an array of cold atoms, yet it offers all 
necessary ingredients for the scheme.

Besides experimentally demonstrating holographic 
imaging, we measure the fidelity of reconstructing the hole 
positions of the known mask. We study how this recog-
nition fidelity depends on various parameters such as the 
scattered photon number, the reference laser power and the 
incidence angle of the reference laser. We discuss various 
noise sources and resolution limits and we investigate how 
to optimize the setup given these limits. We find that about 
200 diffracted photons per hole are sufficient to reconstruct 
the hole positions in the masks with a fidelity of 96%.

2  Experimental setup

The hole masks were fabricated in the cleanroom of the 
Microelectronics Technology Center, University of Ulm, 
via e-beam lithography. Details of the fabrication can be 
found in Appendix A.

A scheme of the holography setup is depicted in Fig. 3. It 
resembles the one for digital holographic microscopy which is 
based on a Mach-Zehnder interferometer [15, 16]. The beam 
of a laser with wavelength � = 671 nm and ≈ 1 MHz linewidth 
is split by a polarizing beam splitter (PBS) into a probe beam 
and a reference beam. The probe beam is attenuated by the 

Lens CameraLens Camera

Fig. 1  Coherent light scattered by the atoms is superimposed with a 
reference laser beam of the same frequency. For clarity, only the scat-
tered light of one atom is shown. The atomic array is located in the 
objective’s front focal plane. The digital camera sensor is the detec-
tion plane

  

 

x

y

Fig. 2  Pictures of various hole masks taken with an optical micro-
scope. Each hole is circular and has a radius of 0.3±0.03 μ m. For 
each mask, the holes are positioned on a 9 × 9 square lattice with a 
lattice constant of 1 μ m. The hole pattern within each mask is arbi-
trary

Fig. 3  Scheme of the experimental setup. The 671 nm laser beam 
(red color) is split by a PBS into a probe beam (upper path) and a ref-
erence beam (lower path). A �∕2 plate and PBS control the intensity 
of the probe beam which illuminates the hole mask. The diffracted 
light is collected by an infinity-corrected microscope objective lens 
and hits the sensor of a digital camera as a collimated beam. A tilted 
NPBS is used to superimpose this probe beam light with the colli-
mated reference beam. The resulting interference pattern is recorded 
by the camera sensor

1 We note that many optical lattice set-ups in the literature exhibit 
lattice constants of about 500  nm. Performing holography with a 
smaller lattice constant as compared to ours might require an optical 
lens with a correspondingly larger NA than ours.
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combination of a �∕2 plate and a second PBS. It is diffracted 
at the hole mask and the diffracted light is collected by an 
infinity-corrected microscope objective with numerical aper-
ture (NA) between 0.5 and 0.75, (e.g. Zeiss Epiplan Neofluar 
50x, 0.75 HD Dic, 44 23 55 with an effective focal length 
of about f = 4 mm). The distance between the back side of 
the objective lens and the sensor is 16 cm. Since the distance 
between mask and objective equals the focal length f, light 
scattered from a hole in the mask is collimated by the lens and 
subsequently propagates as a plane wave with a beam diameter 
of about 5 mm towards the camera. The diffracted probe beam 
and the reference beam are merged at a tilted non-polarizing 
beam splitter (NPBS) such that they overlap well at the camera 
in the detection plane. While the diffracted probe beam hits 
the camera approximately under vertical incidence, the refer-
ence beam has a small tilt angle � ≈ 1◦ . The reference beam 
is roughly Gaussian with a waist of 5.3 mm and a power of 
120 μ W behind the NPBS. A cross section of the beam profile 
is shown in Fig. 4, labelled as IR . The beam illuminates the 
CMOS sensor chip (13.3 mm × 13.3 mm) of the digital camera 
pco.edge 4.2LT which has 2048×2048 pixels. Further details 
on the camera can be found in Appendix B. We verified that 
measurements with a broader and thus more uniform refer-
ence beam profile did not produce a higher recognition fidelity. 
The exposure time texp was typically 144 μ s and the intensity 
of the reference beam was set such that the linear detection 
range of the camera sensor was optimally used while avoiding 

saturation. This intensity corresponds to a peak photon number 
per pixel of about 40,000. In the following, we show how the 
hole pattern of the mask is reconstructed via FFT from the 
holographic image taken by the digital camera.

3  Reconstruction of the hole pattern 
of the mask

The light intensity distribution ID(x, y) in the sensor plane of 
the digital camera is given by

where ES and ER are the electric fields (in complex notation) 
of the diffracted and reference beams in the detection plane, 
respectively. c is the speed of light in vacuum and �0 is the 
permittivity of free space. In the limit of a very weak scat-
tered light field we can neglect the term |ES|2 . Ideally, the 
term |ER|2 is just a constant. The information about the hole 
pattern is contained in the third term, the interference term.

For simplicity, we first consider a single hole n in the mask 
at position rn = (xn, yn) which emits a scattered, spherical 
light wave. The lens at the focal distance f collimates the wave 
into a plane wave with the wavevector component kn in (x, y) 
direction,

where k = 2�∕� is the wavenumber of the light. The origin 
of the coordinate system is located on the optical axis of the 
microscope lens. The approximation in Eq. (2) is valid for 
holes close to the optical axis, i.e. xn, yn ≪ f  . At the camera 
sensor, this plane wave interferes with the plane wave of the 
reference beam with wavevector kR , leading to a 2D sinusoi-
dal fringe pattern ∝ cos((kn − kR) ⋅ r + �) . Here, r = (x, y) 
is the position vector in the sensor plane of the camera and 
� is a constant phase. The FFT of this pattern produces an 
output that only contains two single peaks at ±(kn − kR) , 
corresponding to opposite momenta. After subtraction of 
the constant vector kR we obtain kn which, according to Eq. 
(2), corresponds to the hole position �

�
 , apart from a factor 

−k∕f  . The constant vector kR depends on the incidence angle 
of the reference beam with respect to the detection plane. In 
spherical coordinates, we have

where � and � are the polar and azimuthal angles of the 
reference beam, respectively.

(1)
ID(x, y) =

c�0

2
||ES(x, y) + ER(x, y)

||
2
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R
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Fig. 4  Line profiles of the digital images of the hologram ID(x, y) and 
the reference beam IR(x, y) = c�0|ER|2∕2 , as well as their difference 
ID − IR . Here, x and y are positions in units of pixels. The profiles 
are taken along the x-direction around the y-center (i.e. y = 0 ) of the 
image. In order to reduce noise, we have averaged over 11 pixel rows 
in a diagonal fashion. This is because the interference fringes for the 
given hologram are at an angle of 45◦ (see also Fig. 5a), as set by the 
chosen angle � of the reference beam. Concretely, the diagonal aver-
aging is calculated as 

∑5

i=−5
ID,R(x + i,+i)∕11 over 11 pixel rows
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If there is more than one hole in the mask, each hole 
contributes a corresponding sinusoidal pattern. All these pat-
terns add up linearly under the condition that the reference 
beam has much higher intensity than the scattered probe 
beam. Since the FFT is a linear operation it reproduces the 
hole pattern of the mask.

In practice, the |ER|2 term in Eq. (1) is not just a constant, 
but it exhibits corrugations e.g. due to diffraction from dust 
on top of optical surfaces. This hampers the reproduction 
of the hole pattern. We find that most of these perturbations 
can be removed by subtracting an image IR taken with only 
the reference beam by blocking the probe beam ( ES = 0 ) 
and averaging over 30 recordings to reduce noise. Figure  4 
shows line profiles of the hologram before (red) and after 
the IR-subtraction (yellow). The blue line is the profile of the 
reference signal. The line profiles run along the x-direction 
through the y-center of the hologram.

Figure 5a depicts a hologram after IR-subtraction, along 
with a magnified section. For this, the default mask shown 
in Fig. 2a and an objective with a NA of 0.75 was used. 
The angles of the reference beam were � = 0.84◦ , � = 45◦

2 and about 40,000 photons were transmitted through each 
hole of the mask. We only show the section of the hologram 
that contains the relevant features. It exhibits five dominant 

spots, arranged in a cross-like fashion, with weaker signals 
in between.

The origin of the five dominant interference peaks can be 
understood as follows. To a first approximation, the holes in 
the mask form a 2D square lattice. The far-field diffraction 
pattern of a 2D square lattice is again a square lattice. The 
spot in the center of the hologram is the zeroth-order dif-
fraction peak of this square lattice, while the surrounding 
spots are first-order peaks. The array of holes in the mask, 
however, is not a perfect square lattice since a number of lat-
tice sites are not occupied. As a consequence, the intensity 
in between the major diffraction peaks is non-zero and this 
is most relevant for the reconstruction of the hole positions. 
The hologram is modulated with high spatial frequency by 
a sinusoidal wave at an angle � = 45◦ . This oscillatory pat-
tern is due to the interference of the reference beam with 
the scattered probe beam. In the FFT, it leads to a diagonal 
shift of the reconstructed hole pattern of the mask from the 
center, see Fig. 5b. Mathematically, this shift is equivalent 
to the shift of the vectors kn by kR , as previously discussed 
in the paragraph following Eq. (2). As a result, the recon-
structed hole pattern after the FFT is located in the upper 
left and lower right corners. The two patterns are inverted 
with respect to each other, as they correspond to opposite 
momenta ±(kn − kR).

The shift of the reconstructed pattern is advantageous 
because it reduces noise. Without the shift, both patterns 
would be located in the center where they would overlap 
with each other, with the noisy signal from the reference 
beam, and with the |ES|2 term in Eq. (1). We find that a 
shift in diagonal direction is helpful because there the noise 
background is particularly small 2.

The FFT in Fig. 5b clearly reproduces the hole pattern of 
mask a) in Fig. 2, which shows that the holographic imaging 
scheme works.

4  Numerical aperture

According to Abbe’s theory of imaging, the first order dif-
fraction peaks of a lattice need to be recorded in order to 
clearly resolve the individual lattice sites. Therefore, the 
numerical aperture (NA) of the microscope objective needs 
to be large enough. Figure  6 shows a calculated hologram 
for our default hole mask from Fig. 2a. If the hole mask is 
centered on the optical axis, the NA of the objective can be 

Fig. 5  a Section of the recorded hologram ID − IR . For this recording, 
each hole of the mask scattered roughly 40,000 photons. The panel 
below is a magnification. The color bar gives the number of counts 
per pixel. This count number can be negative as we are dealing with a 
difference of two images. b Section of the FFT of the hologram with 
a magnified view of the reconstructed hole pattern of the mask

2 We choose � = 45◦ in the experiment because this has technical 
advantages. For one, diagonal pixel lines have a distance which is 
reduced by a factor of 

√
2 as compared to the horizontal and vertical 

pixel lines. This increases the spatial resolution for measuring fringes. 
Second, the angle of � = 45◦ shifts the holographic signal away from 
spurious horizontal and vertical lines running through the center of 

the hologram. These lines stem from clipping of the reference beam 
at the edges of the camera chip. Figure 5b shows such a line which is 
weak and runs vertically through the center of the hologram.

Footnote 2 (continued)
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represented by a circle in k⃗ momentum space. In Fig. 6a such 
circles are drawn for NA = 0.5, 0.6, and 0.75. The relevant 
sections of the FFTs of the inner parts of the circles are dis-
played in Fig. 6b. The sharpness of the hole pattern increases 
with increasing NA.

When the mask is centered on the aperture of the 
objective with NA = 0.6 (green solid line), none of the 
first-order peaks are caught. By shifting the mask diag-
onally, however, one can include two first-order peaks 
while still retaining the central area which includes 
most of the hologram’s information (green dashed line). 
(We note that for a small displacement of the mask, the 
solid angle at which light is collected by the objective 
decreases only minimally and the resulting ellipse can 
be still approximated by a circle.) This inclusion of the 
first-order peaks can help to better resolve individual lat-
tice sites. However, because the positions of the sites of 
the regular lattice are known, the hole pattern can still be 
clearly determined even for the centered case and low NA.

5  Photon shot noise

We now investigate how the reconstruction quality of the 
hole pattern decreases as the probe light power is lowered. 
From Eq. (1), it is clear that the holographic signal scales 
with the electrical field amplitude of the diffracted laser 
beam ES and, therefore, with the square root of the number 
of scattered photons per hole. The noise, on the other hand, 
is fundamentally dominated by the shot noise of the light 

of the reference beam, corresponding to the |ER|2 term in 
Eq. (1).

As a consequence, for a fixed value of the reference 
beam power, signal to noise diminishes for a lower probe 
beam power, or in other words, for a smaller number of 
scattered probe beam photons Nph per mask hole.

We find that once Nph is reduced to below about 500, the 
signal to noise ratio is so weak that a simple determination 
by eye of the hole pattern is no longer possible. Figure 7a 
shows the FFT image for an extreme case where the aver-
age photon number per hole was only about 100. With the 
following algorithm, we can still decide with high fidelity 
whether a lattice site is occupied or empty. For this, we 
make use of the known positions of the lattice sites in the 
Fourier plane. A black pixelmask consisting of a 2D array 
of circular slots (see Fig. 7b) is overlaid with the FFT 
image such that the midpoints of the slots coincide with 
the positions of the lattice sites. Within each slot, the FFT 
signal is added up, yielding a value Sn where the index n 
labels the respective slot, see Fig. 7c. If the value Sn of a 
lattice site is larger than an appropriate threshold value, 
Sn > Sthr , the site is declared to be occupied, otherwise 
empty. The threshold value Sthr needs to be determined 

Fig. 6  a The circles drawn on the calculated diffraction pattern rep-
resent various numerical apertures: NA = 0.5 (purple), NA = 0.6 
(green), and NA = 0.75 (red). For a given NA, only the pattern inside 
the circle ends up on the camera sensor. Continuous lines correspond 
to a hole mask that is centered on the optical axis of the lens, while 
for the green dashed line it is off-center. b The relevant sections of the 
corresponding Fourier transforms are shown

Fig. 7  Reconstruction of the mask for Nph = 100 photons per hole. a 
Region of interest in the FFT. b Processing via overlaying of a digital 
template. c Binning of the pixels assigned to each lattice site. d Sub-
sequent application of a threshold to distinguish between occupied 
and empty sites. For simplicity, we chose here an experimental sam-
ple for which the hole pattern was correctly reproduced. For 100 pho-
tons, we typically only assign 90% of the holes correctly, see Fig. 8
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independently, e.g. by using a known hole pattern or 
by another statistical method3. With this discrimination 
method, the assignment of the occupation of the lattice site 
becomes a probabilistic process. We define the recognition 
fidelity F as the probability that the assignment for the 
lattice site is correct.

Figure 8 shows this fidelity F as a function of Nph for the 
hole masks in Fig. 2a–e. Experimental data are shown as cir-
cles. From the diagram, we infer that 300 diffracted photons 
per hole are sufficient to obtain a nearly perfect reconstruc-
tion of the hole arrays. By lowering the probe beam inten-
sity, the signal-to-noise ratio degrades and finally, below 
Nph ≈ 300 , the fidelity F starts to decline. The characteristics 
of the decline is similar for all masks under study.

In addition to measuring experimental fidelities, we 
also calculated them, using simulations as layed out in the 
Appendix C. While the calculations confirm the trend that 
the fidelity suddenly drops below a critical photon number, 
the absolute agreement with the experiment is not good. 
For a given fidelity, the calculated required photon number 
Nph is about a factor of 10 smaller than for the experiment. 

In order to conveniently compare the trends of experiment 
and theory in Fig. 8, we have rescaled the theoretical Nph 
values, multiplying them by 10. These data points are shown 
as diamonds. At this point, it is not clear what the reason for 
the discrepancy between theory and experiment is. Possibly 
wavefront distortions of the light passing through optical 
lenses might play a role. This will be subject of future work.

In the following, we investigate in how far the onset of 
the decline depends on certain parameters of the set-up. This 
will provide us with the minimal number of photons that 
need to be scattered per hole to still achieve a high fidelity 
in the reconstruction of the hole pattern.

6  Minimal photon number

In order to quantify the onset of the decline in fidelity, we 
introduce the quantity N96 which is the required number 
of photons per hole to achieve a fidelity of 96%. It can be 
extracted from Fig. 8 by reading off the photon number Nph 
for which the data interpolations (colored lines) cross the 
96% fidelity line (gray dashed line).

In Fig. 9a–d, N96 is plotted as a function of four param-
eters. Figure 9a shows N96 as a function of the number of 
holes Nh in a mask. A first glance at the measured data seems 
to indicate a decrease of N96 with Nh . However, we note 
that given the error bars this decrease is statistically not 
significant.

Figure 9b shows that N96 only moderately depends on the 
angle � between the reference beam and the z-axis within the 
range 0.4◦ < 𝜃 < 2◦ . As already discussed in section 3, an 
angle � that is too small leads to a reconstructed hole pattern 
which is overshadowed by noise in the vicinity of the center 
of the FFT. For a � that is too large, the fringes in the holo-
gram are too closely spaced and therefore cannot be resolved 
by the camera sensor. Using the Nyquist-Shannon sampling 
theorem, we estimate that this limit sets in at a critical angle 
of � = 4◦ for our experimental set-up. Therefore, if we reach 
angles that are either too small or too large, the experimen-
tally determined numbers for N96 strongly increase. This 
can be seen in the inset where we show a coarse scan from 
� = 0.2◦ to 4◦ . For optimized settings in our experiment, we 
chose the angle � = 0.7◦.

With Fig. 9c, we return to our discussion in Sec. 4 on how 
the reconstruction quality of the hole pattern depends on the 
numerical aperture NA of the objective lens. For these data, 
the mask was centered on the optical axis of the microscope 
lens. We plot N96 for NA = 0.75, 0.6, and 0.5. The first-order 
peaks in the hologram are only included for NA = 0.75 (see 
also Fig. 6). The experimental data show that N96 strongly 
increases as the NA is lowered. This is in contradiction to 
our simulations in Fig. 6b where we found that that despite 

Fig. 8  Recognition fidelity F for different masks (see Fig. 2) and pho-
ton numbers per hole. Circles are experimental data. The settings for 
the measurements were NA = 0.75, � = 0.64◦ , and texp = 144 μ s. For 
each experimental data point we took ∼ 14 images and determined the 
fidelity for each image. From this list of values, the mean value and 
standard deviation were obtained. Diamonds are simulations which 
have been rescaled for better comparison with the experimental data. 
Namely, for a given calculated data point the actual photon number 
Nph is 10 times smaller than indicated in the plot. For the simulations 
we use over 50 images per data point. Each image has a different 
(random) photon shot noise. The 96% fidelity benchmark, which we 
chose arbitrary, is represented by the black dashed line

3 For a variety of lattice sites many measurements of the occupation 
signals are taken and a histogram of the occupation signals is gener-
ated. Ideally, the histogram will exhibit two peaks, corresponding to 
an empty and occupied site. The minimum between the two peaks can 
then be used to set the threshold value S

thr
 , see also [14].
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the blurring the the overall signal of a site did not strongly 
change.

Finally, in Fig. 9d, we study the dependence of N96 on the 
exposure time of the digital camera. Here, the light inten-
sity is adjusted such that the total numbers of photons from 
the probe and reference beams hitting the camera are kept 
constant. We do not observe a significant dependence on 
exposure time for the shown time window. This is expected 
as long as, e.g., mirror vibrations and long-term interfero-
metric drifts, as well as accumulated thermal camera noise 
do not strongly affect the hologram.

7  Summary and conclusion

We have successfully tested a recently proposed holographic 
method for imaging μm-scale patterns which are arranged 
on a 2D grid. Such patterns consist of a random array of 
submicron holes in an opaque mask. We experimentally and 
theoretically searched for the minimum number of photons 

that need to be scattered off the pattern in order to recon-
struct the pattern holographically with high fidelity. After 
optimization, we found experimentally that about 200 dif-
fracted photons per hole are sufficient to reconstruct the hole 
positions in the masks with a fidelity of 96%. Our simula-
tions predict that this number can still be improved by about 
a factor of 10. We anticipate that this method can be applied 
to image ultracold atoms in optical lattices with single-site 
and single-atom resolution, without the need of additional 
cooling.

Appendix A: Fabrication of the hole mask

Circular areas were exposed by means of a Leica EBPG 5 
HR electron beam writer applied on fused silica photo mask 
blanks. The mask blanks (size: 100×100 mm2 , thickness: 
2.3 mm) were coated with chrome (thickness: 90 nm, opti-
cal density: 3.0) and a positive e-beam resist. After e-beam 
exposition and developing the round holes were produced 

Fig. 9  Required photon number N96 per hole for 96% recognition 
fidelity, plotted as a function of a the number of holes in the mask, 
b the angle � between reference beam and z-axis (see Fig. 1), c the 

numerical aperture NA of the microscope lens, and d the camera 
exposure time (for constant total photon number). N96 and the corre-
sponding error bars are derived from an interpolation, see Fig. 8
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by wet chemical etching. The finished structures were 
controlled by means of optical microscopy. Atomic force 
microscopy revealed a typical hole radius of 300±30 nm. 
After fabrication the masks were protected with the polymer 
CrystalbondTM and cut into square pieces ( ≈ 25 × 25 mm2).

Appendix B: Properties of the digital camera

The CMOS sensor of the pco.edge 4.2LT camera has a pixel 
size of 6.5 μ m × 6.5 μ m. It has a digital resolution of 16 
bit, 37,500:1 dynamic range, and 73% quantum efficiency 
at 671 nm. The full well depth is about 30,000 electrons. 
Therefore, the signal saturates at about 40,000 photons/pixel. 
There is a signal conversion of 0.46 e−/count. Dark current 
is negligible for our experiments. A short exposure without 
light has a constant offset of 100.3 ±0.6 counts and the cor-
responding rms-noise is 2.2 counts. The nominal readout 
noise is 1.3 e− (rms) which agrees roughly with the 2.2 count 
noise. The noise of our holographic signals is generally 
dominated by the photon shot noise. According to the Pois-
son distribution, if the average number of incoming photons 
is N, then the shot noise on that number is 

√
N  (standard 

deviation). Since the conversion of photons into electrons is 
probabilistic with probability p = 0.73 , the Poisson distri-
bution for the photons is thinned out to produce a Poisson 
distribution for the electrons with an expectation value (and 
variance) of Np, i.e. a shot noise of 

√
Np.

Appendix C: Details of the simulation

In the simulation shown in Fig. 8, the hole mask is represented 
by a matrix of pixels, each with 160 nm × 160 nm size. A 
pixel which is located within a hole has a transmission of 1. A 
pixel which is located on the edge of a hole has a transmission 
lower than one, as only a part of its area is covered by the hole 
aperture. We calculate the FFT of the electrical field amplitude 
of the transmitted light and clip off parts which lie outside the 
numerical aperture of the lens. This results in the electrical 
field amplitude of the probe laser at the plane of the CCD 
sensor. This field is superposed with the electrical field ampli-
tude of the Gaussian beam of the reference laser. We take into 
account signal loss due to the finite quantum efficiency of the 
camera, the finite transmission of the NPBS, and reflections 
on optical surfaces. Next, we calculate the expectation value 
of the photon count for each pixel on the CCD chip and add 
photon shot noise. Photon shot noise strongly dominates over 
other noise sources such as the read-out and thermal noise of 
the CMOS camera and speckle noise. Speckle noise takes into 
account interference fringes originating from dust particles 

on the optics and from apertures and we use a speckle noise 
model as described in [14].
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