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Abstract
To explain the dynamics of the population of a quantum system excited by an ultrashort laser pulse, the generalized kinetic 
model is proposed and tested. It is shown that this model is accurate within the constraints of the applicability of the pertur-
bation theory for any values of the laser pulse's duration and carrier frequency. By comparing the outcomes of our model 
to the two conventional methods and by precisely resolving the Bloch equations, we can assess the effectiveness of them. It 
is demonstrated that the usual techniques considerably overestimate the population values of the higher state of the excited 
quantum system outside the boundaries of their applicability. When using the Bloch equations is problematic or impossible, 
the suggested model can be utilized to characterize the population kinetics in the general situation.

1 Introduction

There are unique characteristics that distinguish the interac-
tion of ultrashort laser pulses (USLP) with matter from those 
of lengthy pulses [1]. It was demonstrated, for instance, 
in [2–4] that the dependency of the probability of a pho-
toprocess on the pulse duration might be non-linear even 
when the first order of the perturbation theory is appropriate. 
Additionally, the pulse characteristics (length, carrier fre-
quency, envelope shape) largely dictate how this probability 
depends on the current time and might take on a linear or 
oscillatory form [5, 6].

It is required to create theoretical approaches that accu-
rately take into account the features indicated above to 
characterize photoprocesses in the realm of such short laser 
pulses, which is related to the development of technology for 
producing laser pulses with particular parameters [7–9]. It is 
helpful to create straightforward methods that are universal, 
physically transparent, and predictive in addition to com-
plex computation techniques like the numerical solution of 
the temporal Schrödinger equation [10, 11]. Such a strategy 

was first presented in [12] and subsequently generalized in 
[13] to account for the likelihood of photoprocesses caused 
by USLP in the context of perturbation theory. To calculate 
the rate of photoprocesses, which is a factor in the kinetic 
equations for the populations of a quantum system controlled 
by USLP, one might extend the strategy presented in the 
mentioned publications.

The purpose of this paper is to propose and verify a sim-
ple model for the population kinetics of a quantum system 
excited by a short laser pulse based on the previously derived 
expression for time-dependent probability [13]. This model 
accounts for specifics of ultrashort electromagnetic interac-
tion and can be applied particularly for description of the 
photoexcitation of spectral line with different types of broad-
ening taking into account the impact of various perturbations 
of the excited system.

2  Models for photoprocesses rate

Let us consider the interaction of laser pulse with dipole-
allowed transition between stationary states of quantum 
system �1⟩ ↔ �2⟩ with energies E1 < E2 , matrix element 
of dipole momentum operator d0 , and eigenfrequency 
�0 =

(
E2 − E1

)/
ℏ . For simplicity, we assume that these 

energy levels are non-degenerate. The kinetic equations for 
populations N1,2 of these levels can be written as follows
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where w(t) is the rate of photoprocesses (absorption and 
stimulated emission) induced by laser pulse, T1l,u are popu-
lation relaxation times of lower and upper levels, Ne

1l,u
 are 

equilibrium populations (without the action of laser pulse). 
Note that lower level can be both ground or excited.

It is usually assumed that the rate of the photoprocess 
w(t) is proportional to the square of the electric field 
strength at the given time moment, namely [14]:

where �c is carrier frequency of the pulse, τ is pulse dura-
tion, �(�) is photoexcitation cross-section of dipole-allowed 
transition, jphot is photon flux density, E(t, �) is the electric 
field strength in laser pulse, c is light velocity.

We will call the equality (2) the firstt standard approach 
to describing the population kinetics. Equation (2) may be 
rewrite as follows

where Ω0 = d0 E0

/
ℏ is  Rabi frequency, E0 and 

Ẽ(t) = E(t)
/
E0 are amplitude and dimensionless electric 

field strength of the pulse, G(�) is spectral profile of the 
photoexcitation cross-section.

In the case of monochromatic radiation, photoexcitation 
rate (3) is constant in time and after averaging over oscil-
lation period: T = 2�∕� equal to

Sometimes, instead of (2), another photoprocess rate is 
used [15], which is determined by Einstein equality

where B =
4�2

ℏ2
d2
0
 is Einstein coefficient for induced process, 

�(t,�) is spectral density of laser pulse energy at given time 
moment. In terms of the Rabi frequency, formula (5) can be 
rewritten as

Here and below, it is assumed that the laser pulse is 
spectrally limited, so that the width of its spectrum is com-
pletely determined by its duration. We will call the use 

(1a)
dN1

dt
= w(t)

[
N2 − N1

]
−

N1 − Ne
1l

T1l

(1b)
dN2

dt
= −w(t)

[
N2 − N1

]
−

N2 − Ne
2u

T1u

(2)wst(t) = �
(
�c

)
jphot(t, �) = �

(
�c

) c E2(t, �)

4� ℏ�c

,

(3)w1st(t) = 𝜋 G
(
𝜔c

)
Ω2

0
Ẽ2(t, 𝜏),

(4)wmon =
�

2
G(�) Ω2

0
= const.

(5)wE(t) = B �(t,�),

(6)w2st(t) = B
𝜌(t)

Δ𝜔L

= 𝜋Ω2
0

𝜏

𝜋
Ẽ2(t).

of the photoprocess rate (6) in the kinetic equations the 
second standard approach.

In our generalized kinetics model, the rate of the photo-
process is expressed through dimensionless probability of 
the process at given time W(t) according to the relation

We have previously derived the expression for the photo-
excitation probability [13] which in terms of Rabi frequency 
has the form

where

is squared modulus of the incomplete Fourier transform 
of the dimensionless electric field strength in a laser pulse 
(D-function for short). Taking into account (7) and (8), we 
have, for the photoprocess rate in our model, the following 
expression

Thus, the time dependence of the photoprocess rate is 
determined by the time derivative of the D-function.

It is simple to numerically solve the system of Eqs. (1) 
and determine how populations vary on time within the con-
text of various approaches using the expressions (4)–(6) and 
(10). It is helpful to derive an integral representation of the 
solution to system (1) in the case of a two-level quantum 
system. In particular, this representation makes it possible 
to find analytical limiting cases.

3  Two‑level system

In the case of two-level quantum system, the normaliza-
tion condition N1(t) + N2(t) = 1 is satisfied, and instead of 
the system of Eqs. (1), we have the following equation for 
the population of the upper level under the assumption that 
Ne
2
= 0 and T1l = T1u = T1

The solution of Eq. (11) is equal to

(7)w(t) =
d

dt
W(t).

(8)W(t, 𝜏) = 𝜔0 Ω
2
0

∞

∫
0

G(𝜔)
D̃(t, 𝜏,𝜔)

𝜔
d𝜔,

(9)D̃(t, 𝜏,𝜔) =

|||||||

t

∫
−∞

dt� exp
(
i𝜔 t�

)
Ẽ
(
t�, 𝜏

)|||||||

2

(10)w(t) = 𝜔0 Ω
2
0

∞

∫
0

G(𝜔)

𝜔

d

dt
D̃(t, 𝜏,𝜔) d𝜔.

(11)
dN2

dt
+

N2

T1
= w(t)

[
1 − 2N2

]
.
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where W(t) = ∫ t

−∞
w
(
t
�
)
dt

� . It should be noted that (12) 
includes only the dimensionless probability W, and not the 
photoexcitation rate w.

It is interesting to consider a couple of various limiting 
cases of the expression (12). Neglecting the upper level 
relaxation, from equality (12) we have

Note that within the framework of the validity of per-
turbation theory (when W(t, 𝜏) << 1 ), it follows from (13) 
that N2(t, �) ≅ W(t, �).

In monochromatic case (4), it follows from formula (12) 
for laser pulse which turns on at zero time the expression

where �(t) is Heaviside step-function. Thus, for 
t >> T1

/(
1 + wmon T1

)
 one has from (14) well-known rela-

tion [14]

which describes the saturation effect if wmon T1 >> 1.
The system of Eqs. (1) also provides a simple analytical 

solution if both levels are excited with the same popula-
tion relaxation times T1l = T1u = T1 and zero equilibrium 
populations Ne

1l,u
= 0 . Then we have

4  Verification of the model

Let us verify our model by comparing it with the exact 
solution of the Bloch equations for a two-level system. 
Then we can use expression (12) for the population of the 
upper level and (9) for excitation probability. We also use 
expressions (3) and (6) for the photoprocess rate in the 
framework of standard approaches for comparison with 
the exact solution and the result of our generalized kinet-
ics model.

(12)N2(t, �) =
1

2

⎧
⎪⎨⎪⎩
1 −

1

T1
exp

�
−

t

T1
− 2W(t, �)

� t

∫
−∞

exp

�
t�

T1
+ 2W

�
t�, �

��
dt�

⎫
⎪⎬⎪⎭
.

(13)N2

(
t, �, T1 → ∞

)
=

1

2
{1 − exp [−2W(t, �)] }.

(14)

Nmon
2

(t) = �(t)
wmon T1

1 + 2wmon T1

(
1 − exp

(
−

t

T1
− 2wmon t

))
,

(15)Nmon
2

(
t >> T1

)
=

wmon T1

1 + 2wmon T1

(16)N2(t, �) =
1

2
exp

(
−t∕T1

)
{1 − exp [−2W(t, �)] }.

The findings of the integral representation (12) and the 
solution of the system of kinetic Eqs. (1) for a two-level 
system are identical, according to numerical analysis.

The equations for the optical Bloch vector R in terms 
of Rabi frequency have the form [16]

Here, T2 is phase relaxation time, Re
3
 is equilibrium 

value of the third component of the Bloch vector. The third 
component of the optical Bloch vector is related to the 
population inversion and is equal by definition to

Taking into account the normalization condition, we 
have for the population of the upper level

Substituting the solution of the system of Eqs. (17) for 
the third component of the optical Bloch vector into for-
mula (19), we find the exact value for the population of the 
upper level of a two-level system excited by laser pulse.

5  Comparison of approaches

The homogeneous broadening of the spectral line is con-
sistent with the Bloch Eqs. (17). We must, thus, employ 
the Lorentzian for the spectral profile of cross-section to 
compare the results of our model with those of traditional 
methodologies.

For calculation simplicity, consider excitation by an 
exponential pulse of the form

(17a)
dR1

dt
= �0 R2 −

R1

T2
,

(17b)
dR2

dt
= −𝜔0 R1 −

R2

T2
+ 2Ω0 Ẽ(t)R3,

(17c)
dR3

dt
= −2Ω0 Ẽ(t)R2 +

Re
3
− R3

T1
.

(18)R3 = −N ≡ N1 − N2.

(19)N2 =
1 − R3

2
.

(20)G(�) =
1

� T2

1(
� − �0

)2
+ T−2

2

.
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Then for multi-cycle pulse ( 𝜔c 𝜏 >> 1 ), we have from 
definition (9), the following expression for D-function

In the context of the suggested model of generalized 
kinetics, we derive the excitation probability by substitut-
ing this function into formula (8). This excitation probabil-
ity is then used to determine the population of the upper 
level (12).

Within framework of standard approaches (3) and (6), 
we have the following formulas for excitation probability

These probabilities should be substituted in the expres-
sion (12) to obtain population of an upper energy state of 
quantum system in the framework of standard approaches.

For exponential pulse (21), we have

It is crucial to note that, in contrast to probability (23) 
which comprises the spectrum profile, probability (24) 
only faintly depends on the carrier frequency of the multi-
cycle laser pulse.

Note that at resonance �c = �0 for the Lorentzian spec-
tral profile (20), equality (23) gives

Thus, in this case, the probabilities (23) and (24) differ 
by the factor T2∕�.

(21)EEP(t, �) = �(t)E0 exp (−t∕�) cos
(
�c t

)
.

(22)

D̃EP(t, �,�) ≅
1
4
�(t) �2

1 + exp (−2 t∕�) − 2 exp (− t∕�) cos
[(

� − �c
)

t
]

1 + �2
(

� − �c
)2 .

(23)

Wst1(t, 𝜏) =

t

∫
−∞

wst

(
t�
)
dt� = 𝜋 G

(
𝜔c

)
Ω2

0

t

∫
−∞

Ẽ2
(
t�, 𝜏

)
dt�

(24)Wst2(t, 𝜏) =

t

∫
−∞

wE

(
t�
)
dt� = 𝜏 Ω2

0

t

∫
−∞

Ẽ2
(
t�, 𝜏

)
dt�

(25a)

t

∫
−∞

Ẽ2
(
t�, 𝜏

)
dt� = 𝜃(t)

𝜏

4

{
1 − exp

(
−
2 t

𝜏

)
+

1 + exp (−2 t∕𝜏)
[
𝜔c 𝜏 sin

(
2𝜔c t

)
− cos

(
2𝜔c t

)]
1 + 𝜔2

c
𝜏2

}
≅

(
𝜔c 𝜏 >> 1

)
≅ 𝜃(t)

𝜏

4

{
1 − exp

(
−
2 t

𝜏

)}
.

(25b)Wst1(t, 𝜏) = T2 Ω
2
0

t

∫
−∞

Ẽ2
(
t�, 𝜏

)
dt�.

Comparing the photoprocess probabilities determined 
using different techniques in two limiting circumstances, 
namely the monochromatic and ultrashort limitations, is 
interesting. Analytically, such a comparison may be cre-
ated for an exponential laser pulse (21).

In the monochromatic limit 𝜏 >> T2 and for times t ≥ � , 
using formulas (8), (9), and (22), we can obtain the fol-
lowing expression for the probability in the framework of 
our approach [6]:

The same expression is obtained in the framework of 
the first standard approach after substituting the integral 
(25) (for multi-cycle pulse 𝜔c𝜏 >> 1 ) into formula (23).

The second standard approach (24) overestimates the 
probability in this limit by �∕T2 times.

The opposite situation occurs in the ultrashort limit, 
when 𝜏 << T2 . Our approach in this case gives [6]

The second standard approach (24), taking into account 
(25), gives

(26)
WEP

(
t ≥ 𝜏, 𝜏 >> T2

)
≈

𝜋

4
Ω2

0
G
(
𝜔c

)
𝜃(t) 𝜏

(
1 − e−2t∕𝜏

)
.

(27)

WEP
(

t, � << T2
)

≅ 1
4

�(t) Ω2
0 �

2

1 + �2
(

�0 − �c
)2

×

{

(

1 − e−t∕�
)2 + 4 e−t∕� sin2

(
(

�0 − �c
)

t
2

)}

.

Hence, in the limit of long times, we obtain

The same asymptotic value for probability is obtained 
from (27) in the actual frequency range ||�c − �0

|| ≤ T−1
2

 . 
The first standard approach in this case overestimates the 
probability of a photo process by T2∕� times.

As a result, the first standard technique produces good 
results for long laser pulses, but the second standard 
approach is asymptotically correct for short laser pulses 
in the long time limit.

(28a)Wst2(t) =
1

4
�(t)Ω2

0
�2

(
1 − exp

(
−
2 t

�

))
.

(28b)Wst2(t >> 𝜏) =
1

4
Ω2

0
𝜏2.
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6  Numerical results and discussion

Let us compare the generalized kinetics, standard 
approaches, and the exact solution of the Bloch equations 
for the following values of parameters T2 = 0.1–0.2 ps, 
T1 = 1 ps, ħω0 = 0.155 eV (λ0 = 8 μm). These values are 
typical for transitions between energy states in quantum 
cascade lasers [17].

To compare the results of approximative computa-
tions with the precise solution of the Bloch equations, we 
assume that the spectral profile is Lorentzian (20).

The graphs shown in Figs. 1, 2, 3 illustrate how the pop-
ulation of the upper level of a two-level system changes 
over time in response to exponential pulses of different 
lengths, depending on the resonant carrier frequency and 
the above-mentioned relaxation times. The precise solu-
tion of the Bloch equations and the computation in the 
generalized kinetics model are extremely well in agree-
ment for the values of the parameters employed, and this 
is true for all pulse lengths.

Figure 1 shows that for short pulses (τ < T2), the second 
standard approach gives a better result than the first one. 
In this case, the coincidence with the exact solution occurs 
for times greater than population relaxation time.

For the case τ =  T2 (Fig. 2), the results of using the first 
and second standard approaches coincide (for ωc = ω0) and 
considerably exceed the exact result. For long times, all 
four approaches in this case give the same result.

Finally, as it can be seen from Fig. 3, in the case of 
long pulses (τ >  > T2), the best agreement with the exact 
solution and generalized kinetics model is given by the 
first standard approach, which is especially pronounced at 

times of t > τ. The second standard approach significantly 
overestimates the exact result, N2.

It should be noted that in all three cases considered, the 
standard approaches significantly overestimate the exact 
dependences N2(t) for times shorter than the time at which 
the maximum population of the upper level is reached. It fol-
lows from formulas (23)–(25) that, at short times t <  < τ, the 
standard approaches give a linear dependence of the popula-
tion of the upper level on time, while the exact solution is 
a quadratic function of time both for short pulses and long 
pulses.

The analysis of the performed calculations, in particular, 
shows that in the case of short pulses ( 𝜏 < T2 ), the results 
of exact calculation and of the standard approach coincide 
at times several times longer than the pulse duration (see 
Figs. 1, 2). In the case of long pulses ( 𝜏 > T2 ), this coinci-
dence takes place already for times longer than the duration 
of the exciting pulse itself as one can see from Fig. 3.

Figure 4 displays the temporal dependencies N2(t) for a 
large detuning of the laser pulse's carrier frequency from 

0,0 0,2 0,4 0,6 0,8 1,0
0,0

0,1

0,2

N
2

t, ps

Fig. 1  Population of upper level of two-level system excited by expo-
nential laser pulse as function of time: solid line—solution of Bloch 
equations, dotted line—generalized kinetics model, dashed line—
first standard approach, dash-dotted line—second standard approach. 
Ultra-short pulse: τ = 0.024  ps, ωc = ω0 = 155  meV, T2 = 0.1  ps, 
T1 = 1 ps, Ω0 = 14 meV
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N
2
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Fig. 2  The same as in Fig. 1 for τ = T2 = 0.1 ps and Ω0 = 2.72 meV
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0,1

0,2

0,3

0,4

0,5

N
2

t, ps

Fig. 3  The same as in Fig. 1 for long pulse case (τ >  > T2): τ = 1 ps, 
ωc = ω0 = 155 meV, Ω0 = 2.72 meV
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eigenfrequency of quantum system. The exact solution 
of the Bloch equations and the result of the generalized 
kinetics model also demonstrate excellent agreement, and 
in this case, population oscillations in time have been 
identified, whereas they are not in the data from conven-
tional techniques. These oscillations, although they are 
not Rabi oscillations, are connected to the contribution to 
the quantum system's excitation at the different frequency 
||�c − �0

|| . Additionally, the Bloch equations' solutions 
include high-frequency oscillations at the sum frequency 
||�c + �0

|| , which are harder to identify in Fig. 4.
The case of strong saturation is shown in Fig. 5. At the 

value of large times, the three dependencies practically 
coincide, except for the one obtained in the framework 
of the second standard approach, which gives a slightly 
overestimated result. One can see the Rabi oscillations 
in the dependence obtained with the exact solution of the 

Bloch equations for t < τ. These oscillations decay at times 
determined by the phase relaxation time T2.

7  Conclusion

We developed and tested a generalized kinetics model that 
describes the dynamics of the population in a quantum sys-
tem when a laser pulse acts on a dipole-allowed transition. It 
is demonstrated that this model is correct within the frame-
work of perturbation theory's application to laser pulses of 
any duration and carrier frequency, including monochro-
matic and ultrashort pulses. In particular, it correctly repro-
duces the population oscillations at off-resonance carrier 
frequency of the laser pulse, which are caused by the per-
turbation of the quantum system at the difference frequency 
�osc =

||�c − �0
||.

Our model is compared with the results of standard 
approaches for calculation of time dependence of upper level 
population of two-level system using two expressions for the 
rate of photo-induced processes. It is shown, that the first 
standard approach, which takes into account the spectral profile 
of the photoexcitation cross-section, corresponds to the exact 
solution in the monochromatic limit, when the pulse duration 
is much longer than the phase relaxation time of the excited 
transition. The second standard approach, based on using the 
Einstein's formula for the photoprocess rate, is adequate for 
the opposite limit of ultrashort pulses. Outside the ranges of 
their applicability, the standard approaches significantly over-
estimate the population of the upper energy level for ωc = ω0.

It is also demonstrated that, in the case of strong satura-
tion, all procedures taken into consideration produce results 
that are about the same for periods of time that are consider-
ably longer than the timeframes required for phase relaxation 
and population relaxation.

When using the Bloch equations is difficult or impos-
sible, the proposed model can be used to calculate the time 
dependence of the populations of quantum systems in the 
field of short laser pulses for various types of spectral broad-
ening of the excited transition and in the presence of other 
types of excitation/ionization of the quantum system.
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dash-dotted line is reduced by ten times
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Fig. 5  Saturation effect for long pulse case: τ = 1  ps, T2 = 0.2  ps, 
T1 = 1 ps, Ω0 = 20.4 meV
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