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Abstract
We theoretically, numerically, and experimentally investigate new types of laser beams with autofocusing, rotating and/or 
transformation properties. A spatial light modulator generates these laser beams as clusters/sets of shifted vortex Laguerre-
Gaussian beams and their superpositions with additional phase distribution. We demonstrate the formation of the clusters 
of rotating beams with controlled individual autofocusing trajectories as well as different transformations (topological/
positional and interference redistribution) and rotation of the entire clusters as complex structures. Moreover, we investigate 
the possibility of astigmatic transformation of the propagating laser beams clusters. Thus, the proposed techniques provide 
additional control of the three-dimensional trajectories of the structured laser beams with predetermined intensity and phase 
distributions and can be used in laser manipulation, laser material processing, and optical microscopy.

1  Introduction

Today, spatial light modulators (SLMs) [1, 2] as a tool for 
the realization of computer-generated holograms (CGHs) 
provide a wide range of opportunities for three-dimensional 
control of structured laser beams in laser material processing 
[3–6], optical trapping and manipulation [7–9], optical com-
munications [10–12], optical microscopy [13–15], optical 
imaging [16, 17], etc. [18].

SLMs allow one to shape light fields with the desired 
distribution of amplitude, phase, or polarization state as well 
as to simultaneously control all three mentioned characteris-
tics for the generation of vector fields with different features 
[19–21]. Although SLMs can manipulate light by modulat-
ing the amplitude, phase, or polarization of the light fields 
in the two dimensions of space and time, most of the SLMs 
are phase-only elements, which are mainly used to shape the 
spatial phase distribution of the light beam directly without 
touching the amplitude distribution [22]. In this case, such 
algorithms as the Gerchberg-Saxton algorithm [23] and its 

modifications [24, 25] are widely used for the design phase 
diffractive optical elements (DOEs) generating predeter-
mined amplitude distributions. The amplitude encoding 
techniques give the possibility to additionally control the 
phase distribution of the generated light fields [26]. Also, 
different interferometrical methods using both one and two 
pure-phase SLMs allow one to tailor polarization distribu-
tion and generate vector beams [27, 28].

Such a wide spectrum of approaches of the generation of 
structured radiation with SLMs led to the demonstration of 
the SLM-based generation of laser beams with such proper-
ties as non-diffraction, rotation during propagation, propaga-
tion along curved trajectories, and autofocusing.

Among various structured beams, beams with autofo-
cusing properties are of considerable interest to researchers 
[29–31]. Such interest is associated with the application of 
autofocusing beams in various fields, such as optical manip-
ulation [32, 33], multiphoton polymerization [34], nonlinear 
effects [35], polarization conversion [36], and sharp focus-
ing [37].

The formation of beams with abrupt autofocusing is 
based on the use of accelerating beams with a nonlinear 
propagation trajectory, such as the Airy and Pearcey beams 
[38–40], which are well known from the catastrophe theory 
[41, 42]. It is also possible to form other beams with arbi-
trary trajectories or caustics [43, 44]. Note, the abrupt auto-
focusing is provided by mirror or circular symmetrization of 
accelerating beams [45–48].
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The demand for autofocusing beams in various appli-
cations stimulates scientists to search for new modifica-
tions and generalizations of such beams [49–52]. One of 
the approaches to expanding the types and diversity of the 
structure of autofocusing beams is the formation of sets or 
clusters of different shifted beams [53–56].

Note that clusters of shifted Gaussian or Laguerre-Gauss-
ian (LG) beams [53, 54, 56] demonstrate linear (i.e. without 
acceleration) propagation trajectories. However, clusters of 
shifted Airy beams with acceleration propagation properties 
can demonstrate more complex 3D propagation scenarios 
[55].

An additional degree of freedom for controlling the 3D tra-
jectory is the additional individual deflecting phase (spatial 
carriers) to each cluster’s beam [48, 56]. For example, in [56], 
rotating clusters of LG beams were formed due to such deflect-
ing phases. Note, however, that the intensity of each LG beam 
in the cluster did not rotate. In this paper, we expand the types 
of beams under consideration, so we use in clusters various 
superpositions of LG beams, including those whose intensity 
rotates during propagation. Thus, it is possible to form not only 
clusters rotating as whole structures, but also ensure the rota-
tion of their individual components, which expands the range 
of beams used for optical trapping and manipulation.

Moreover, we consider another approach, when a set of 
shifted beams is supplemented by a common phase function 
that ensures a change in the propagation trajectory of the 
entire cluster. We considered functions with a power-law 
dependence on the radius, including a linear one, which cor-
responds to a diffractive axicon. In this case, it is possible 
not only to change the propagation trajectory of cluster’s 
beams, but also their additional transformations, such as 
topological/positional and interference redistribution, and 
also astigmatic distortion. In particular, a diffractive axicon 
[57–59], which in binary form is a ring grating [60, 61], can 
be used for astigmatic transformation of beams [62] which 
makes it possible to measure the orbital angular momentum 
(OAM) of vortex beams [63, 64].

For numerical simulation, the fractional Fourier transform 
(FrFT) [65–67] was used, which describes the propagation of 
beams in lens systems [68], in media with a gradient refrac-
tive index [69], and also in nonlocal nonlinear media [70, 71].

Both approaches were experimentally implemented using 
a SLM, which makes it possible to dynamically control the 
3D structure of the formed beams by changing both the 
propagation trajectory and the distribution of the transverse 
intensity of each cluster’s element during propagation.

2 � Theoretical background

To simulate the propagation of light beams, we use the frac-
tional Fourier transform [65–67]:

where k = 2�∕� , λ is the light wavelength, f is the focal 
length of a lens, � = �∕(2f ) , z is the distance from the input 
plane, D is the aperture domain in the input plane, (x,y) and 
(u,v) are transverse coordinates in the input and output plane, 
accordingly.

Expression (1) is a convenient tool for modeling field g(x, y) 
propagation after a focusing lens.

First, we consider the field in the input plane (z = 0) as a set 
of shifted light beams Ψp(x, y):

where cp are complex coefficients, 
(
xp, yp

)
 are displacement 

coordinates.
In this paper, as beams Ψp(x, y) , we consider various super-

positions of LG modes [72]:

where (r, φ) are polar coordinates, Lm
n
(x) is the generalized 

Laguerre polynomial, �0 is the radius of the Gaussian beam 
in the input plane, Anm is the normalization coefficient.

It is known that LG beams are modes of resonators [73], 
gradient media [69] and demonstrate invariance up to scale 
when propagating in free space and passing through lens sys-
tems [74–76].

In particular, the LG mode defined by Eq. (3) when propa-
gating in free space at a distance z takes the following form:
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where �f = �f
/(

��0
)
 is the effective beam radius in the 

focal plane.
As can be seen from Eqs. (4) and (5), the intensity dis-

tribution of LG modes is preserved on a scale. However, 
this is only true for single LG modes. If the beam contains 
a superposition of LG modes, then the intensity pattern of 
the beam will change during propagation depending on the 
mode indices in the superposition:

where bnm are complex coefficients, Ω is the set of indices.
The intensity of the beam defined by Eq. (6) at different 

distances z has the following form:

where

It was shown in [75, 76] that by imposing special con-
ditions on the set of indices Ω in Eq. (6), it is possible to 
form beams with different properties, including an invari-
ant and rotating intensity distribution during propagation. 
In particular, the rotation condition for a multimode beam 
defined by Eq. (6) has the following form:

Note that expressions (7)–(8) describe the propagation 
of superposition LG modes defined by Eq. (6) along the 
optical axis. When the beam defined by Eq. (6) is dis-
placed in the input plane in accordance with Eq. (2), the 
propagation trajectory will change, however, the rotational 
nature of the beam as a whole will remain, since each 
mode in superposition defined by Eq. (6) travels the same 
distance.

A similar result will be obtained when each shifted 
beam is supplemented with a deflecting phase (spatial 
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carriers). However, in this case, the formation of more 
complex propagation trajectories is possible [48, 56]

More complex transformations of individual beams in 
a cluster will occur if a common phase function is intro-
duced in the input plane with a power-law dependence on 
the radius:

where r =
√
x2 + y2 , α is a dimensionless parameter.

Note that additional radial phase functions exp
[
i(k�r)q

]
 

were used to generate autofocusing chirp-beams [77] and 
aberration beams [51].

In this paper, we consider two types of such functions 
for 1 ≤ q < 1, which corresponds to sublinear chirp [30, 
37, 51] (q = 1 for a diffractive axicon), and q > 2, which 
corresponds to superlinear chirp [77].

Next, using Eq. (1), we study in detail various proper-
ties of shifted beams of the form defined by Eqs. (2) and 
(10).

3 � Analysis and simulation results

3.1 � Clusters of shifted beams with deflecting 
phases (spatial carriers)

Let us consider a set of beams defined by Eq. (2) displaced 
from the center in the input plane. The propagation of 
such a set of beams using operator defined by Eq. (1) is 
described as follows:
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interference pattern in different planes as cluster’s beams 
propagate.

In addition, it is possible to change the beam’s propaga-
tion trajectory by supplementing each cluster’s beam with a 
deflecting phase (spatial carriers) sp(x, y):

where

(13)g(x, y) =

P∑

p=1

cpΨp

(
x − xp, y − yp

)
sp(x, y),

(14)sp(x, y) = exp
[
ik
(
spxx + spyy

)]
,

where spx, spy are dimensionless parameters corresponding 
to spatial carrier frequencies.

Then the propagation of a set of beams of Eq. (13) is 
described as follows:

where

(15)
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2�f sin (�z)

exp
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ik
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)

2f tan (�z)

}

P
∑
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(

u − up(z), v − vp(z)
)

,

Fig. 1   Simulation results of two-mode LG beam with Ω: (n1,m1) = (0, 1) , (n2,m2) = (0,−2)
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Fig. 2   A quadric of shifted rotated two-mode LG beam with 
Ω:(n1,m1) = (0, 1) , (n2,m2) = (0,−2) with individual carriers: input 
a amplitude and b phase; intensity at different distance from input 

plane: c z = 50  mm, d z = 75  mm, e z = 100  mm, f z = 125  mm, g 
z = 150 mm (each individual beam of the cluster is specially colored).

Fig. 3   Simulation results for a triple of two-mode LG beams with Ω: (n1,m1) = (0, 1) , (n2,m2) = (0, 2) 
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where up(z) = spxf sin (�z) , vp(z) = spyf sin (�z).
(16)

Gp
(
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)

= ∬
D
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[

ik
(

u2 + v2
)

2f tan (�z)
−

ik
[

x
(

u − up(z)
)

+ y
(

v − vp(z)
)]

f sin (�z)

]

dxdy,

Figure 1 shows the results of a comparative simulation of 
the propagation of a rotating two-mode LG beam defined by 
Eq. (6) with indices Ω: (n1,m1) = (0, 1) , (n2,m2) = (0,−2) in 
the presence of a displacement and a deflecting phase. The 
following parameters were used for modeling: wavelength 
λ = 532 nm, input field size is 2 mm × 2 mm, focal length 
f = 100 mm.

Fig. 4   Simulation results for clusters of superposition LG beams



Clusters of rotating beams with autofocusing and transformation properties generated by a…

1 3

Page 7 of 14  50

As can be seen from the results shown in Fig. 1, when the 
rotating beam is shifted (the second row of Fig. 1) or/and a 
deflecting phase is added (the third row of Fig. 1), only the 
beam’s propagation trajectory changes compared with the 
axial propagation (the first row of Fig. 1). The dynamics of 
rotation is preserved. This property makes it possible to form 
various clusters from rotating beams with controlled rear-
rangement of the cluster configuration during propagation.

Figure 2 shows the propagation simulation results for a 
cluster of four shifted rotating two-mode LG beams defined 
by Eq. (6) with indices Ω: (n1,m1) = (0, 1) , (n2,m2) = (0,−2) 
in the presence of individual deflecting phases for each clus-
ter’s beam. We highlighted each cluster’s beam in a separate 
color to show not only the rotation of the cluster as a whole, 
but also of each of its components.

Thus, Fig. 2 clearly shows that the change in the struc-
ture of the cluster (its rotation as a whole) is achieved by 
introducing deflecting phases defined by Eq. (13) [shown in 

Fig. 2(b)], which allow one to control the trajectory of each 
individual beam in the cluster. This approach is similar to 
the methods considered earlier in [48, 56]. However, in these 
works, the intensity of each individual beam in the cluster 
was not rotated. In this paper, we have extended the types of 
cluster’s beams due to various superpositions of LG beams 
defined by Eq. (6), including beams with intensity rotates 
during propagation in accordance with the condition defined 
by Eq. (9).

Figures 3 and 4 show various examples of clusters of dif-
ferent LG beams defined by Eq. (6).

Figure 3 shows the results of a comparative simulation 
of the propagation of a triple of shifted rotating two-mode 
LG beams with indices Ω: (n1,m1) = (0, 1) , (n2,m2) = (0, 2) 
without (the first row of Fig. 3) and with the presence of 
deflecting phases (the second row of Fig. 3) for each beam 
in the cluster.

Fig. 5   Simulation results for propagation and transformation of a couple of shifted vortex LG beams (n, m) = (0, 3)
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As can be seen from the comparative results given 
in Fig. 3, the presence of individual carriers (deflecting 
phases) in each cluster’s beam makes it possible to con-
trol the 3D rotating dynamics of the cluster configuration 
during propagation. This property can be in demand in 
3D imaging where rotating point spread functions (PSFs) 
are used to 3D tracking of fluorescent microparticles in 
microscopy [78–80].

Thus, it is possible to form not only clusters rotating as a 
whole, but also ensure the rotation of their individual com-
ponents, which expands the range of beams used for optical 
trapping and manipulation of microparticles, laser material 
processing, and optical microscopy.

Fig. 6   Simulation results for propagation and transformation clusters with shifted composed LG beams with additional axicon [q = 1, α = 0.0025 
in Eq. (10)]

Fig. 7   Experimental setup for the investigation of the designed rotat-
ing and autofocusing laser beams: Laser is a solid-state laser, PH is 
a pinhole (aperture size of 40  μm); L1, L2, L3, and L4 are lenses 
(f1 = 250, f2 = 500, f3 = 150 mm, and f4 = 150 mm, respectively), D is 
a circular aperture, SLM is a spatial light modulator (HOLOEYE, 
PLUTO VIS with a 1920 × 1080 pixel resolution), and CAM is a 
video camera (TOUPCAM UHCCD00800KPA, 3264 × 2448 pixels)
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3.2 � Clusters of shifted beams with transformations 
at propagating

In the previous section, we considered clusters of shifted 
beams with individual deflecting phases (spatial carriers) 
that allow one to control the trajectory of each cluster’s 
component.

In this section, we consider a different approach, when a 
set of displaced beams is supplemented in the input plane by 
a common phase function defined by Eq. (10) that ensures 
a change in the propagation trajectory of the entire cluster.

Moreover, in this case, it is possible provide additional 
transformations of cluster’s beams. In particular, for q = 1 
in Eq. (10), the total complementary phase function cor-
responds to a diffractive axicon, which was used in [62] 
for the astigmatic transformation of vortex beams in order 
to measure OAM.

In this paper, we consider the possibility of using for 
this purpose not only the diffractive axicon (q = 1), but 
also other phase functions, in particular, q = 1.5 and q = 3 
in Eq. (10).

Figure 5 shows the results of a comparative simulation 
of the propagation and transformation of a couple of shifted 
vortex LG beams (n,m) = (0, 3) whose OAM value is pro-
portional to the value of the topological charge (TC) m = 3 
[63, 64].

As can be seen from the results given in Fig. 5, in all 
cases there is an astigmatic transformation of the vortex 
beams. Note that the focusing plane shifts from z = 100 mm 
to z = 125 mm because the input field is supplemented by a 
scattering chirped phase function. This shift is controlled by 
the parameter α, which was chosen so that in the considered 

cases the plane of focus shifted by approximately the same 
distance.

Note that for 1 ≤ q < 2 (sublinear chirp) and q > 2 (super-
linear chirp) the nature of the astigmatic transformation 
before and after the new focusing plane is different. The 
astigmatic intensity patterns which make it possible to 
unambiguously determine the beam’s TC m = 3 (equal to the 
number of zero lines) [62, 81, 82] are most clearly observed 
for q = 1 at z = 100 mm (the first row of Fig. 5, highlighted 
in green color, i.e. before the new focal plane), and for q = 3 
at z = 150 mm (the third row of Fig. 5, highlighted in green 
color, i.e. after the new focal plane). At q = 1.5, the astig-
matic transformation is insufficient.

The possibility of simultaneously changing the trajec-
tory and transforming the intensity of cluster’s beams dur-
ing propagation due to the common phase function provides 
diversity of the 3D structures of the considered beams. Some 
examples are shown in Fig. 6.

As can be seen from the comparison of the simula-
tion results presented in Figs. 3, 4 and 6, the autofocusing 
dynamics of the clusters with shifted beams and the trans-
verse intensity distribution are significantly different for the 
two considered approaches.

In the first approach (Sect. 3.1), when each individual clus-
ter’s beam is supplemented with individual deflecting phases 
(spatial carriers), the structure of these beams is preserved 
during propagation (Figs. 3, 4).

In the second approach (Sect. 3.2), when the entire cluster 
is completed by a chirped phase, in addition to changing the 
trajectory, an astigmatic transformation of each individual ele-
ment of the cluster occurs (Fig. 6).

Both approaches can be implemented using SLM, which 
will make it possible to dynamically control the 3D structure 

Fig. 8   The intensity distributions of laser beams formed in the 
case of the triple of two-mode LG beams with Ω: (n1,m1) = (0, 1) , 
(n2,m2) = (0, 2) at different distances from the plane of the lens 

L4: a f—50  mm, b f—25  mm, c the focal plane, f, d f + 50  mm, e 
f + 50 mm. The top row shows the distributions for shifted beams and 
the bottom row—for shifted beams with individual carriers
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of the formed beams by changing both the propagation trajec-
tory and the distribution of the transverse intensity of each 
cluster’s element during propagation.

4 � Experimental results

For the investigation of the designed rotating and auto-
focusing laser beams, we used pure phase masks with 
encoded complex amplitude distributions [83] and real-
ized with a reflective SLM PLUTO VIS (1920 × 1080 pixel 
resolution, 8 μm pixel pitch).

The experimental optical setup is shown in Fig.  7. 
The output laser beam of solid-state laser (λ = 532 nm) 

was expanded with a system composed of a pinhole PH 
(aperture size of 40 μm) and a lens L1 (f1 = 250 mm) to 
illuminate the SLM. A diaphragm D was used to sepa-
rate the central spot of the Airy disk resulting from the 
wave diffraction of the pinhole. Then, after the SLM with 
the encoded phase masks, lenses L2 and L3 with focal 
lengths f2 = 500 mm and f3 = 150 mm, respectively, formed 
an image of the plane conjugated to the SLM display in 
the plane of the lens L4 with a focal length f4 = 150 mm. 
The intensity distributions of the investigated laser beams 
formed at various distances from the plane of the lens L4 
were captured with a video camera CAM (TOUPCAM 
UHCCD00800KPA, 3264 × 2448 pixels) mounted on the 
optical rail.

Fig. 9   The intensity distributions of laser beams formed in the case 
of clusters of superposition LG beams at different distances from the 
plane of the lens L4: a f—50 mm, b f—25 mm, c the focal plane, f, d 
f + 50 mm, e f + 50 mm. The distributions for triple of shifted rotating 

beams with carriers (a “spinner”), a quadric of shifted rotating beams, 
a quadric of shifted rotating beams with carriers (rotating cluster), 
and a quadric of shifted stable beams with carriers are shown from 
the top row to the bottom row
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The experimentally obtained results for numerically 
investigated laser beams are shown in Figs. 8, 9 and 10. 
Figure 8 shows intensity distributions formed in the case of 
the triple of two-mode LG beams with Ω: (n1,m1) = (0, 1) , 
(n2,m2) = (0, 2) according to simulations results of Fig. 3. 
Figure 9 shows intensity distributions formed in the case of 
clusters of superposition LG beams according to simulations 
results of Fig. 3. Figure 10 shows intensity distributions 
formed in the case of a couple of shifted vortex LG beams 
(n,m) = (0, 3) according to simulations results of Fig. 5.

All experimental results are in good agreement with the 
numerically obtained results.

5 � Conclusion

We investigated theoretically, numerically and experimen-
tally generation of clusters of beams which are LG beams 
superpositions with individual deflecting phase (spatial car-
riers). The possibility of forming autofocusing beams when 
not only clusters rotating as a whole, but also ensuring the 
rotation of their individual components is shown. This pro-
vides complex 3D propagation scenarios which expands the 
range of beams used for optical trapping and manipulation 
of microparticles.

We have considered another approach to control the auto-
focusing trajectory and astigmatic transformation cluster’s 
beams based on the introduction of a common phase func-
tion with a power-law dependence on the radius. It is shown 
that for 1 ≤ q < 2 (sublinear chirp) and q > 2 (superlinear 
chirp) the nature of the astigmatic transformation before and 
after the focusing plane is different. In this case, astigmatic 
intensity patterns, which make it possible to unambiguously 

determine the TC of the beam, are most clearly observed 
for q = 1 before the focal plane and for q = 3 after the focal 
plane.

For experimental generation of structured light beams 
clusters with autofocusing properties and astigmatic-like 
transformation, we used SLMs. It should be noted that 
the SLM application makes it possible to dynamically 
control the 3D structure of the formed beams by chang-
ing both the propagation trajectory and the distribution 
of the transverse intensity of each cluster element during 
propagation.

The proposed techniques provide additional control of 
the three-dimensional trajectories of the structured laser 
beams with predetermined intensity and phase distribu-
tions. Such types of laser beams can be used for laser 
guiding of optically-trapped particles, including the laser 
guiding of microparticles along curves around various 
obstacles [7–9], for laser fabrication of three-dimensional 
microstructures inside an isotropic polymer materials [4, 
5], and for precisely measuring the single-molecule locali-
zation and orientation [78–80].
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Fig. 10   The intensity distributions of laser beams formed in the case 
of a couple of shifted vortex LG beams (n,m) = (0, 3) at different dis-
tances from the plane of the lens L4: a f—50 mm, b f—25 mm, c the 

focal plane, f, d f + 50 mm, e f + 50 mm. The top row shows the dis-
tributions for sublinear chirp (q = 1, α = 0.0025), the bottom row—for 
superlinear chirp (q = 3, α = 0.0033)
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