
Vol.:(0123456789)1 3

Applied Physics B (2023) 129:45 
https://doi.org/10.1007/s00340-023-07991-3

RESEARCH

Experimentally simulating the beam shaping capabilities 
of piston‑type deformable mirrors using a liquid crystal spatial light 
modulator

Stirling Scholes1 · Lehloa Mohapi2 · Jonathan Leach1 · Andrew Forbes2 · Angela Dudley2

Received: 7 November 2022 / Accepted: 15 February 2023 / Published online: 28 February 2023 
© The Author(s) 2023

Abstract
The number of mirror segments, mirror geometry and orientation are essential parameters when assessing the beam-shaping 
capabilities of deformable mirrors. Here, we use a Liquid Crystal on Silicon Spatial Light Modulator (LCoS-SLM) to mimic 
the mechanical design of a deformable mirror and quantitatively analyse the effect of the number of mirror segments and their 
geometrical structure on resulting structured modes. Our approach can be used as a test bed prior to designing a deformable 
mirror for high power beam shaping.

1 Introduction

Adaptive optics with deformable mirrors have predominately 
been used in astronomy to correct for atmospheric aberra-
tions in order to rectify and produce clearer more visible 
images [1, 2]. Various types of deformable mirrors exist, 
the most widely adopted are the bimorph and piston-based 
deformable mirrors. Bimorph deformable mirrors consist 
of two poled piezoelectric ceramic wafers, covered with a 
thin glass membrane that is deformed in order to achieve 
wavefront control. Piston-based deformable mirrors, classi-
fied as segmented deformable mirrors, consist of arrays (of 
a variety of geometries - square, circular, hexagonal, etc.) 
of rigid, segmented mirrors [3]. In order to achieve sur-
face deformation with such segmented mirrors, a voltage is 
applied to each mirror electrode, giving rise to a controlled 
actuator stroke [4]. Predominately, deformable mirrors have 
been used in adaptive optics setups to correct for optical 
aberrations present in incoming wavefronts [5, 6].

Apart from wavefront correction, both forms of deforma-
ble mirrors have found applications in beam shaping. Due to 
their high-power handling capabilities, they are particularly 

useful for the spatial control of high power beams. These 
mirrors have been applied to intra-cavity compensation of 
low-order wavefront aberrations to improve beam quality [7, 
8], achieve mode matching [9] and perform fast switching 
between stable and unstable resonator configurations [10]. 
It has been shown that these mirrors can be engineered to 
withstand radiation power densities up to 3 kW/cm2 for 
continuous sources and roughly 1010 W/cm2 for pulsed 
sources [11]. External to the laser cavity, these deformable 
mirrors have also shown wavefront correction and distri-
bution compensation with both wide and small aperture 
mirrors [12–15]. Extending this to spatial-profile control, 
these mirrors have been demonstrated to produce elliptical 
and rectangular super-Gaussian and annular beam-shapes 
[16–18] and Bessel modes via a magnetic fluid-based liquid 
deformable mirror [19].

Although segmented deformable mirrors cause light to 
diffract due to the spacing between the segments [20], they 
are ideal for phase singularity beam shaping since the seg-
ments can be individually controlled to reproduce a spiral 
configuration. For example, Robert et al reported the crea-
tion of optical vortices by using an Iris AO S37-X deform-
able mirror consisting of 37 hexagonal actuators [21], where 
they formed a discontinuous reflective surface by altering 
each actuator to form a spiral configuration in a piston-tip-
tilt fashion. The topological charge carried by the resulting 
modes was verified with the use of a Michelson interfer-
ometer to produce an interference pattern with a reference 
plane [22]. The generation of both zero and higher-order 
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Bessel-Gauss beams have also been reported, whereby a seg-
mented deformable mirror having 37 hexagonal segments in 
a honeycomb configuration was used. First the deformable 
mirror was used as a reflective axicon to generate the zero-
order Bessel beam, and then it was programmed to produce a 
2 � spiral phase for the creation of higher-order Bessel beams 
[23]. However, these spatial modes are often not of a high 
fidelity (or correlation) with their desired “true” spatial pro-
file. Spatial Light Modulators (SLMs), on the other hand, 
have been used extensively to produce spatial modes [24–28] 
of very high-fidelity for a variety of applications. These 
applications range from mode-division multiplexing [29], 
quantum information protocols [30–32], advanced adaptive 
optics systems [33], laser material processing [34–36], and 
brightness enhancement [37]. The advantage of SLMs is 
that they span a wide range of wavelengths (from visible 
through to near-infrared and in some cases mid-infrared), 
while offering instantaneous and rewritable amplitude, phase 
and polarization control, allowing for the creation of high-
purity modes [38–42], independent wavelength control [43], 
as well as hundreds of structured modes from a single device 
[44], ranging from LG [45, 46] HG [17], IG [47], BG [48, 
49], azimuthal OAM modes [50, 51] and non-diffracting 
beams [52, 53]. SLMs have also been applied to intra-cavity 
beam-shaping [54], as well as interferometrically combining 
resulting modes to create vector beams [55–59].

Since only a few publications have been dedicated to 
the implementation of deformable mirrors for low-fidelity 
beam-shaping, we propose first understanding the effect of 
the various deformable mirror parameters on the resulting 
spatial profile capabilities. In order to investigate such, we 
implement a dynamically addressable technology (in the 
form of a SLM) to act as a test-bed in simulating the various 
deformable mirror parameters (as depicted in Fig. 1). SLMs 
are well suited to this task since their discrete pixel arrange-
ment and finite number of phase steps is exactly analogous 
to the discrete number of mirror segments and finite actua-
tor positions associated with deformable mirrors. Here, we 
investigate the effect the mirror segment arrangement [such 
as, the number of mirror segments and their geometrical 
orientation (namely, Cartesian or radial)] has on the fidelity 
of the resulting structured mode. This assists in accelerating 
the decision-making process in determining which deform-
able mirror arrangement is best suited to achieve the desired 
spatial profile.

2  Theory and experimental realization

Figure 1 illustrates the conceptual implementation of the 
experimental simulator. An ideal phase profile, (shown in 
Fig. 1 as exp(i��) with � = 3 ) is divided into N segments 
of arbitrary geometry with each segment corresponding to 

a single simple linear actuator within the deformable mirror 
array. Each actuator is assumed to have a stroke S and preci-
sion p allowing for a total phase modulation (in reflection) of 
4�S∕� in S/p discrete steps (where � is the wavelength of the 
illuminating light). Each region of the segmented phase profile 
is assigned a value from the list of S/p allowed actuator posi-
tions which results in a phase nearest the average value of the 
region. The discretized phase map is converted to a phase only 
hologram and displayed on an SLM.

To quantify the impact of segment number and geometry on 
beam quality we define a Figure of Merit (FoM) as:
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Fig. 1  The modulator simulation process depicted conceptually. 
The ideal phase profile is divided into a given number of segments 
according to the selected geometry. Each segment is assigned the 
nearest allowed phase based on the simulated modulators actuator 
stroke S and actuator precision p. The final phase map, discretized 
both transversely and in amplitude, is converted to a phase only holo-
gram and displayed on an SLM
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 where Ir
0
 and Ir

m
 are the desired and measured intensity pro-

files within a region of interest r. 
∑

 represents the sum over 
all coordinates and, Īr

0
 and ̄Ir

m
 are the average intensities. 

The first term of Eqn. 1 defines the transverse correlation 
between the measured and desired intensity profiles within 
some region r. The second term defines the efficiency i.e., 
the ratio between the ideal and measured total energy within 
the region of interest. A deformable mirror capable of per-
fect beam shaping would result in beams with a FoM of 1.

Figure 2 depicts the effect of segment stroke S and seg-
ment number on Eq. 1 for a vortex beam with � = 3 . As 
the stroke of each segment is increased from 0.25� to 0.5� 
(effectively increasing the modulation from � to 2� ) the 
FoM improves, as indicated by the plot corresponding to 
the dashed red trace line (Fig. 2B). This is further illustrated 
by comparing Figs. 2E and D. In Fig. 2E, the limited stroke 
S of the modulator is unable to produce the required phase 
(despite the relatively large segment number) resulting in an 
output which is essentially unmodulated. Additionally, the 
FoM improves as the number of transverse segments com-
prising the modulator increases (Fig. 2A). Figure 2C shows 

that for low segment numbers near S = 0.5� the modulator 
is able to introduce an optical vortex, but the final beam 
remains highly distorted. Together these findings are consist-
ent with the intuition that the highest fidelity beam shaping 
(Fig. 2D) is achieved by modulators with at least a 2� modu-
lation capability and a large number of transverse segments.

An advantage of our approach is its ease of implemen-
tation as shown conceptually in Fig. 3. The SLM (a Hol-
oEye Pluto 2) is illuminated by a Gaussian beam from a 
HeNe laser with the beam being sufficiently small so as to 
avoid the edges of the hologram. The first order diffraction 
is passed through a lens of focal length f = 500 mm and 
the resultant intensity profile recorded by a Spiricon SP300 
camera at the focal plane. For the remainder of this work, we 
assign values of 5 � m and 1 nm to S and p, respectively, in 
line with commercially available devices, and assume inde-
pendent modulator segments.

In the following section we examine the effect of seg-
ment number and geometry on the FoM for a selection of 
transverse beam profiles specifically, a Cartesian flattop, an 
Orbital Angular Momentum (OAM) free annular, and, an 
� = 3 vortex beam.

3  Results and discussion

Figure 4 illustrates how as the number of transverse seg-
ments comprising the modulator increases so too does 
the figure of merit. At low segment numbers the modula-
tors ability to reproduce complex phase profiles is limited 
as evidenced by the aliasing in the left most phase panel 
of Fig. 4. This aliasing both directs energy away from the 

50
Number of segments

40302010
0.25

ekortS
MoF

FoM0

1

0 0.5 1

0 10.25 0.5 0.75

0.3

0.35

0.45

0.5

e

0.4

0

0.5

Figure of Merit (FoM)

C D

E

0

1EDC

A

B

0 10 25 0 5 0 75

Figure of Merit (FoM)

Fig. 2  Eq. 1 as a function of the segment stroke S and the number of 
segments for a vortex beam with � = 3 . The subpanels A and B illus-
trate the trace of Eqn. 1 along each axis at the positions indicated by 
the solid green and red dashed lines respectively. C, D, and E, show 
the simulated transverse intensity profiles of the modulated beam at 
the points indicated in the density plot

Fig. 3  The experimental setup depicted conceptually for the case of 
a 4 × 4 Cartesian modulator. The hologram representing the modu-
lator is displayed on an SLM illuminated by a Gaussian beam from 
a HeNe laser. The first order diffraction is passed through a lens of 
focal length f and the resultant intensity profile recorded by a camera 
at the focal plane
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region of interest and distorts the transverse intensity profile 
of the beam resulting in a low figure of merit. As the num-
ber of segments is increased (and the phase profile better 
approximated), the fidelity of the beam within the region 
of interest increases while the energy lost to side lobes 
decreases, resulting in a figure of merit which asymptoti-
cally approaches one.

Figure 5 illustrates that the number of modulator seg-
ments required to achieve a beam with a specific FoM is 
contingent on the compatibility between the segment geom-
etry and the phase profile. Specifically, modulators having 
segment geometries which match the underlying phase pro-
file can produce beams of either, comparable quality with 
fewer segments, or, higher quality with the same number of 
segments. In the Cartesian configuration, although the final 
FoM is slightly higher, a large number of segments (101×
101) are required to reduce the aliasing in the phase (Fig. 5 
middle row left panel) to acceptable levels. By contrast, 

since the desired phase profile is radially symmetric, a 
modulator comprised of only concentric rings is able to 
accurately reproduce the phase profile with a relatively low 
number of total segments (50 concentric rings).

To further examine the effect of segment geometry a sec-
ond radially symmetric case (depicted in Fig. 6) was consid-
ered. Specifically, a modulator with 50 radial segments (as 
with the radial case in Fig. 5) was constructed however, each 
radial segment was further divided into a number of azi-
muthal segments. The inner most disk of the modulator com-
prised 9 azimuthal segments with the number of azimuthal 
segments per concentric ring increasing linearly towards the 
perimeter of the modulator. The ability of this modulator to 
produce a vortex beam (with � = 3 ) is depicted in Fig. 6.
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Fig. 4  The influence of the number of mirror segments on the fig-
ure of merit. The theoretical and measured results are shown as solid 
black and red dashed lines respectively. The offset between the two 
curves is due to the limited dynamic range of the camera and can be 
accounted for using a constant offset correction of 0.13. The top pan-
els illustrate the measured intensity and hologram phase at the loca-
tions indicated by the risers, 32, 64, and, 112 transverse segments 
respectively. The lines in the intensity panels illustrate the agreement 
in the transverse structure between the measured (red dashed) and 
simulated (solid black) beams

OAM free annulus

Cartesian Radial

101×101 (x×y) 1×50 (azimuthal×radial)

P
ha

se

79
5

0

In
te
ns

it
y

FoM = 0.91

0

1FoM = 0.90

Fig. 5  The minimum number of segments required to produce an 
OAM free annulus with a FoM ≥ 90% in the Cartesian (left) and 
radial (right) arrangements. The top row illustrates the relevant seg-
ment geometry, note that the number of segments depicted has been 
reduced to aid in visualisation. The middle row shows the ideal phase 
profile when mapped to the segments in each configuration. The bot-
tom row shows the measured intensity profile with the insets in the 
upper corner showing the ideal beam profile. The text indicates the 
FoM for each beam. The lines in the intensity panels illustrate the 
agreement in the transverse structure between the measured (red 
dashed) and simulated (solid black) beams
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There are two important findings contained in Fig. 6. 
First, whilst the vortex and OAM free annular beams (Fig. 5) 
have comparable radial symmetry in their intensity profiles, 
the azimuthal discontinuities in the phase of the vortex beam 
necessitate the use of a modulator with at least some degree 
of azimuthal control. This further highlights that the abil-
ity of a modulator to produce a given beam type is closely 
related to the compatibility between the segment geometry 
and the underlying phase profile, rather than the ultimate 
intensity distribution. Second, the alignment of phase dis-
continuities with discontinuities between the modulator seg-
ments can have a significant impact on the FoM of the final 
beam. Figure 6 illustrates how as the phase profile for the 
vortex beam (with � = 3 ) is rotated the discontinuities in the 
phase profile move into (and out of) alignment with the dis-
continuities between segments. This alignment then changes 
the degree of aliasing in the phase profile and by extension 
the FoM of the measured beam. This effect is cyclic with a 

periodicity controlled by the relationship between the num-
ber of azimuthal segments in the modulator and the number 
of discontinuities in the phase profile. We stress that whilst 
we have demonstrated this effect for radial geometries, it 
can be readily extended to any combination of phase profile 
and segment structures. Further, the effect emphasises how 
careful selection, and implementation, of modulator geom-
etries is key in realising high quality structured beams from 
modulators with limited (often low) numbers of segments.

4  Conclusion

We have examined how the ability of a segmented deform-
able mirror to produce structured beams is impacted by 
the number of mirror segments it comprises as well as by 
their geometry. We have demonstrated a simple and flexible 
deformable mirror simulator (based on an LCoS-SLM) capa-
ble of producing beams in close agreement with theoretical 
predictions. Finally, we have highlighted the importance 
of the compatibility between the segment structure and the 
underlying phase profile of the desired beam. We expect 
this work to be a valuable reference point for the implemen-
tation of deformable mirrors in the context of high power 
structured light.
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