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Abstract
High-repetition-rate ultrafast lasers are needed for diverse applications. Harmonic modelocking, where multiple identical, 
equidistant pulses circulate in the cavity, reaches beyond the practical limitations of reducing the cavity length. However, it 
suffers from stochastic deviations that manifest as supermodes in the radio-frequency spectrum and difficulties in maintaining 
the same harmonic state, often coupled with trade-offs in pulse energy, duration, or noise performance. Here, we first show 
that deviations in the temporal positions of the pulses contribute disproportionately more to the supermodes than deviations 
in their amplitudes. Then, we argue that these fluctuations are analogous to those of trapped Brownian particles. This analogy 
reveals that supermodes are suppressed by stronger spectral filtering, which corresponds to fluid viscosity, and higher pulse 
energy reduces the noise, akin to lower temperature. Guided by this intuitive picture, we construct a Yb-fibre laser incorpo-
rating strong filtering and high intracavity energies by limiting nonlinear polarisation evolution to a short section of ordinary 
fibre. The rest of the all-fibre cavity comprises polarisation-maintaining fibre, which additionally improves environmental 
robustness. We report record-high supermode suppression ratios, reaching 80 dB, excellent long-term and environmental 
stability, and pulse energy, duration, and noise characteristics that are similar to fundamentally modelocked lasers.

1  Introduction

The first time a laser was modelocked in 1964, it had a rep-
etition rate of 56 MHz [1]. Over the six decades that fol-
lowed, every parameter of a typical modelocked laser except 
the repetition rate has improved by orders of magnitude. 
Today, the vast majority of modelocked lasers continue to 
operate with repetition rates within a factor of two or three 
of the historical value of 56 MHz. Yet, applications like 

ablation-cooled material processing [2] or nonlinear bioim-
aging [3] require much higher repetition rates.

In conventional or fundamental modelocking, there is a 
single pulse in the cavity; the repetition rate is given by the 
speed of light divided by the cavity length. Therein lies the 
limitation: The cavity cannot be shrunk easily due to practi-
cal considerations. Many applications demand nanojoule-
level pulse energies, and the average power is the product 
of the pulse energy and the repetition rate. This makes scal-
ing without sacrificing the pulse energy even more difficult 
because high-power cavities cannot be very short. The com-
mendable progress in bulk solid state and semiconductor 
lasers [4] notwithstanding, the prospects of high-power, 
high-repetition-rate fundamental modelocking are argu-
ably limited. Microchip resonators reach extremely high 
repetition rates, but fundamentally, they are not lasers, and, 
practically, they offer no realistic paths to high powers [5, 
6]. The alternative to shortening the cavities is harmonic 
modelocking, where the cavity simultaneously harbours 
multiple, ideally identical and equidistant, pulses [7]. In 
active harmonic modelocking, an externally driven modu-
lator placed in the cavity localises the pulses equidistantly 
[7], but these lasers generate long pulses with low energies 
[8]. In passive harmonic modelocking [9], the pulses are 
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self-organised through mutual nonlinear interactions that 
lead them to attract or repel each other, but the interaction 
mechanisms need to be better understood and are evidently 
only weakly binding [9–11]. Consequently, such lasers suffer 
from various instabilities. Even when the laser momentarily 
operates as intended, its harmonic state is easily disrupted 
by environmental perturbations. Harmonic modelocking has 
had a limited impact outside the laser research laboratory to 
date, but its utility can be improved significantly if its reli-
able, repeatable, and stable operation can be ensured.

We start by scrutinising how the different pulse fluctua-
tions affect the purity of the harmonic operation. After find-
ing out that deviations from equidistant temporal positions 
are more critical than variations in their energies, we relate 
the evolution of these deviations to the intrinsic laser noise 
by building an intuitive analogy to the motion of a Brownian 
particle trapped in a potential well. This model reveals how 
to suppress the deviations and improve the harmonic state, 
as quantified by the supermode suppression ratio, SSR, by 
implementing a band-pass filter (BPF) and increasing the 
intracavity pulse energy. Finally, we build a laser guided by 
these findings and experimentally attain record-high SSR. 
As we embark on a research programme to scale the repeti-
tion rates well into the high gigahertz levels with nanojoule-
level pulse energies, the present contribution is a first step 
toward understanding the physics of the current paradigm. 
The achieved repetition rates are consequently modest, as 
no particular attempt was made to reach higher. Neverthe-
less, this may well be the first harmonically modelocked 
laser to perform comparably to a fundamentally modelocked 
fibre laser when judged by the purity of its repetition fre-
quency, pulse energy, duration, noise characteristics, seem-
ingly indefinite long-term stability of its harmonic state and 
excellent robustness against environmental perturbations.

2 � Concept

2.1 � Supermodes

We begin our exploration by analysing how imperfections 
in a harmonic state manifest. A pure harmonic state cor-
responds to perfectly equidistant and identical pulses. Let 
the number of such pulses be N. In such an ideal state, the 
harmonic operation is indistinguishable from fundamental 
modelocking. In the radio-frequency (RF) spectrum, the 
signals at the cavity’s fundamental repetition rate, fc , and 
its harmonics up to and excluding the N  th vanish. Only 
the operational repetition rate, fR = Nfc , and its harmon-
ics remain. In practice, there are always deviations in the 
amplitude (pulse energy) or temporal positions of the pulses. 
These induce additional signals at fc because the deviation 
is generally repetitive at each round-trip but also at the other 

harmonics, which appear in the form of supermode noise 
spurs [8]. As an example, the emergence of supermodes 
caused by a 0.1% deviation of only one pulse from the others 
in pulse energy and temporal position (in ratio to the ideal 
pulse-to-pulse distance) is illustrated in Fig. 1a. In general, 
all N pulses suffer different deviations. The supermode sup-
pression ratio (SSR) is a convenient measure of the degree 
of deviation from the ideal harmonic state. Not all authors 
define it precisely or in the same way. We define it as the 
ratio of RF intensity at the harmonic repetition rate to that of 
the strongest supermode below the harmonic repetition rate, 
fR . Reported SSR values in the literature are commonly in 
the range of 30–50 dB [10–15], although higher SSR values 
of 60 dB [16] and 70 dB [17] have been reported.

We first inquire about the respective contributions of 
temporal and amplitude deviations to the SSR. Their rela-
tive effects can be assessed perturbatively using the Fourier 
transform, which is given in Appendix 1, which shows that 
temporal deviations contribute significantly more for the 
same fractional amount. This is easy to appreciate: While a 
deviation of the pulse energy, �E , gives rise to supermodes 
with powers that depend on the ratio of the energy mismatch 
relative to the energy of all the pulses, the deviation in the 
pulse position, �� , creates supermodes in the order of beating 
with an additional pulse in the pattern. This is easily verified 
by a numerical evaluation of the Fourier transform of the 
pulse pattern, as illustrated in Fig. 1a.

The temporal fluctuations not only contribute more to the 
SSR than amplitude variations, but also tend to be larger. 
Unlike pulse energy variations, which are controlled and 
suppressed effectively by self-amplitude modulation of the 
saturable absorber, deviations in the temporal positions can 
only be corrected by the pulse-to-pulse interactions, which 
are weak and act over nanoseconds-long delays. The weak-
ness of these interactions is experimentally evidenced by the 
slow evolution of the pulse positions. The reorganisation of 
a perturbed pulse pattern can easily last many seconds [18] 
or even minutes [19]. This large timescale implies that the 
pulse-to-pulse interactions allow the pulse position displace-
ments to accumulate from noise over typically millions or 
billions of roundtrips. In contrast, even a weak saturable 
absorber with a modulation depth of a few percent, sup-
presses the energy deviations within tens of roundtrips. 
Therefore, the main focus for improving the harmonic mode-
locking must lie on the damping of the fluctuations of the 
temporal positions of the pulses.

2.2 � Analogy to a Brownian particle in an optical 
trap

One of the best-understood examples of a stochastic sys-
tem at thermal equilibrium is a Brownian particle, i.e., a 
microscopic particle suspended in a fluid [20–22]. In recent 
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decades, the dynamics of optically trapped Brownian parti-
cles have been studied [23]. Their motion is described by a 
Langevin equation of the form,

where m is the mass, � is damping due to fluid viscosity, � 
is the stiffness of the restoring force due to the trap, simpli-
fied to be harmonic, kB is the Boltzmann constant, T is the 
temperature, and �(t) is a stochastic term describing white 
noise. The strength of the random collisions of the fluid 
molecules with the particle scales with T. A free Brownian 
particle undergoes a random walk, and as such, its mean 
square displacement, MSD, increases with time linearly, 
as opposed to quadratically for non-random motion, which 
is known as ballistic motion. A trapped particle explores a 
limited range around the centre of the trap. The MSD still 

(1)mẍ = −𝛾 ẋ + 𝜅x +
√
2kBT𝛾𝜉(t),

increases linearly with time early on but plateaus at later 
times as higher displacement encounters a stronger restoring 
force. The MSD plateau is given by kBT∕� , i.e. the stiffer 
the trap, the more subdued the particle’s random motion is, 
as to be expected intuitively.

The analogy between the Brownian particle and the tem-
poral fluctuations in a harmonically modelocked laser is pre-
sented in Fig. 1b. For simplicity, we focus on a single pulse 
out of the N pulses, but the same picture holds independently 
for any and every pulse. The deviations from the ideal har-
monic state, especially the random temporal displacement 
from the pulses’ positions of equal distance, are analogous 
to the Brownian motion of a trapped particle. Passive har-
monic modelocking is onset by pulse-to-pulse interactions. 
Despite the decades-long interest, there is no consensus on 
their mechanisms. It is likely that multiple of the proposed 
ones are, respectively, valid for the laser cavities for which 

Fig. 1   a The supermodes are generated through the temporal dis-
placement of one or more pulses in the harmonic pulse train (indi-
cated red) or, less significantly, through an amplitude deviation 
(yellow). In the frequency domain, the supermodes show up  at the 
fundamental repetition rate  and its harmonics less than the  Nth. 
Shown is the numerical evaluation of 0.1% deviation in amplitude 
and temporal position  for one pulse. b Similar to the damping of 
the motion of a Brownian particle in a potential well  (orange), an 

optical pulse is kept in its temporal position through pulse-to-pulse 
interactions and the spectral filter, damping  temporal deviations that 
could add up over multiple round trips due to dispersion. c The laser 
cavity  is completely fibre-integrated and  consists  of polarisation-
maintaining components except for the gain fibre  for environmental 
robustness. BPF band-pass filter, LD pump laser diode, PBS fibre-
integrated polarising beam splitter, PC polarisation controller, SPC 
signal-pump combiner
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they were proposed. For our purposes, the exact mechanism 
is not critical. The important point is that the interactions act 
like a trap, working to restore any deviating pulse towards 
its ideal temporal position, whereas laser noise continuously 
causes their positions to fluctuate. The result is a stochas-
tic and dynamic steady state, where the average position of 
the pulse is the centre of the trap but the pulse undergoes 
random variations around it. The strength of the pulse-to-
pulse interactions corresponds to the trap stiffness, � . The 
laser noise causing the temporal fluctuations is analogous 
to the white noise of the Brownian motion and could be 
characterised by an effective temperature. There are multiple 
noise sources affecting the pulse position, including quan-
tum fluctuations or amplified spontaneous emission (ASE), 
thermal noise, coupling of amplitude or shape fluctuations 
to temporal fluctuations through nonlinear pulse shaping, 
and possibly even environmental noise, although the latter is 
unlikely to affect pulses differently due to its slow time scale.

In Brownian motion, diffusivity characterises the strength 
of the random walk, and it is inversely proportional to the 
viscosity in the famous Einstein relationship, and for a 
trapped particle, increasing stiffness limits the range of walk-
offs to smaller values. This analogy clarifies, in an intuitive 
manner, how to reduce the temporal walk-offs and increase 
the SSR in a laser: stronger pulse-to-pulse interactions and 
stronger filtering. The former would help the most directly, 
but in practice, we lack control over the interactions, which 
are not well understood at present. We would venture that 
synthetic pulse-to-pulse interactions based on well-known 
nonlinear optical processes could be conceived of in the 
future, and they could be highly effective, similar to how 
artificial saturable absorbers such as nonlinear polarisa-
tion evolution [24] or nonlinear optical loop mirrors [25] 
are more readily configurable and offer deeper modulation 
and faster recovery than saturable absorbers based on actual 
absorption in materials such as semiconductors. However, 
here, we focus on exploiting strong filtering as an effective 
path to higher SSR.

There is a long tradition of attributing particle-like prop-
erties to pulses, as portrayed by the suffixes of solitons and 
similaritons. Despite their certain particle-like characteris-
tics, pulses are, of course, not particles and can undergo an 
evolution that has no counterpart in particles. The present 
analogy renders the fluctuations intuitive through the more 
familiar concepts of a Brownian particle, but the aspects 
through which the analogy deviates are also informative. 
One of them is that a pulse can be created and annihilated, 
unlike a Brownian particle. The former is the mechanism 
of the onset of harmonic modelocking, and together with 
the latter, it allows switching between harmonic states. It 
appears to be possible to precisely control the annihilation 
and creation of the pulses, but it requires a different laser 

cavity design and this is a direction that will be explored in 
a future article.

2.3 � A Langevin equation for the pulse fluctuations

A major contribution to pulse position displacement is a 
fluctuation, �� , of the central wavelength (in wavelength 
units) of the pulse induced by noise. A wavelength displace-
ment of one pulse with respect to the others causes a rela-
tive temporal displacement, �� (dimensionless), due to the 
total integrated dispersion of the cavity, D (in ps/nm), by an 
amount given by the dispersion equation [26]. A wavelength 
shift due to optical noise, mainly from ASE, is akin to veloc-
ity added to the Brownian particle by the collisions with 
the fluid molecules. Dissipative fluid viscosity reduces the 
velocity. For the optical pulse, spectral filtering is the vis-
cous effect, reducing the wavelength shift. Stronger filtering 
dissipates the wavelength shift faster, just as a more viscous 
fluid dampens the Brownian particle’s movement. A narrow 
spectral BPF in the cavity resets the spectral evolution each 
round-trip and, thus, minimises the spectral fluctuations, �� . 
This minimisation is a dissipative damping of the temporal 
position deviations, �� , each round-trip (see also Fig. 1b).

Next, we build up the qualitative analogies discussed 
above more formally. Although noise can cause temporal 
displacement directly by asymmetric reshaping of the pulse 
in the time domain, the dominant effect is due to deviations 
in their central wavelengths for a laser cavity with non-zero 
net dispersion, because the temporal displacement accumu-
lates as long as the wavelength remains shifted with respect 
to the other pulses, even without further contributions from 
noise, just as a Brownian particle until an impulse into the 
opposite direction occurs. Ignoring the former, the speed of 
the temporal walkoff per roundtrip, 𝛿̇𝜏 , is given by

where �� is the deviation of the pulse position relative to TR , 
which is the temporal distance between consecutive pulses 
in the ideal harmonic modelocking state, Tc = 1∕fc is its 
roundtrip time, and fc is the fundamental repetition rate. The 
central wavelength deviation, �� , evolves under the effect 
of the noise, the spectral filtering, and the pulse-to-pulse 
interactions. We will discuss each of these.

We consider the principal noise source affecting the cen-
tral wavelengths of the individual pulses differently to be 
ASE, which has a minimum value mandated by quantum 
fluctuations. There are numerous other noise sources, includ-
ing environmental, but most of them simply affect all the 
pulses equally, as their amplitudes are weakened very 
strongly at the 100 MHz or even higher frequencies that 
are needed to cause differences between the individual 

(2)TR𝛿̇𝜏 =
D

Tc
𝛿𝜆,
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pulses. The interaction between ASE photons and the coher-
ent pulses is analogical to the collisions of fluid molecules 
with a Brownian particle. Accordingly, we model the con-
tribution of the noise to �� as Δ�p

√
h�∕EpTc�(t) , where Δ�p 

is the spectral width of the pulse, h is Planck’s constant, � is 
the central frequency, Ep is the pulse energy at the entrance 
of the gain segment, and �(t) is white noise with a variance 
of unity (with the unit s−1/2). The noise strength is inversely 
proportional to the number of photons contained within a 
pulse.

The filter reshapes the pulse spectrum of a wavelength-
deviated pulse asymmetrically, pulling its centre toward that 
of the BPF. Even if there is no band-pass filter as an optical 
element, gain filtering fulfills this role, albeit weakly. For 
small deviations, the filter’s effect is given by −��� , where 
� depends on the width of the filter and the spectrum. 
Assuming both to be Gaussians, � ≈ Δ�2

p
∕(Δ�2

f
+ Δ�2

p
)T−1

c
 

with Δ�f being the filter width.
We incorporate the effect of the pulse-to-pulse interac-

tions phenomenologically with the term −���TR , because 
their exact nature is not known; for the cases of chirped 
pulses, any position adjustment by temporally asymmetric 
modulation (as would be by an amplitude modulator) nec-
essarily creates a position-dependent wavelength shift for 
chirped pulses. Additionally, most pulse-to-pulse interac-
tion mechanisms proposed in the literature involve direct 
position-dependent wavelength shifts. Here, � is a propor-
tionality constant that determines the strength of the interac-
tions as the rate of shift of the central wavelength per unit of 
temporal displacement (with the unit nm/(ps s)).

Considering all of the three contributions, we arrive at a 
Langevin equation for the position of the central wavelength,

Recasting this equation in terms of the temporal shift,

Here, we note that � corresponds to the trap stiffness, 
� = �Tc∕D , which sets the filter strength, is the equivalent of 
fluid viscosity in Brownian motion. One difference from the 
Brownian case is that the strength of the noise is independ-
ent of the filtering for the pulses, whereas both the viscosity 
and the noise source are due to collisions with the fluid mol-
ecules for a Brownian particle. The factor Tc∕D is equivalent 
to the effective mass. The smaller the mass, i.e. the larger the 
cavity dispersion, the less time is needed for the wavelength-
shifting forces on the right-hand side to change the speed. 
This inertial term is commonly assumed to be negligibly 

(3)𝛿̇𝜆 = −𝛼𝛿𝜆 − 𝜅𝛿𝜏TR + Δ𝜔p

√
h𝜈

TcEp

𝜉(t).

(4)
Tc

D
𝛿𝜏 = −𝛾𝛿̇𝜏 − 𝜅𝛿𝜏 +

Δ𝜔p

TR

√
h𝜈

TcEp

𝜉(t).

small for Brownian particles. We will assess the validity of 
this assumption for pulses by comparing the coefficients of 
the inertial and viscous terms in adimensional forms, which 
we obtain by dividing by � and expressing the time-deriva-
tives in terms of the characteristic time t0 ≡ �∕� , which is 
the timescale of the evolution of the pulse positions. Then, 
the coefficient of the viscous term becomes one, while the 
coefficient of the inertial term becomes Tc∕(D�t20) = 1∕(�t0) . 
Usually, the evolution of the pulse positions is slow enough 
that it can be observed on the oscilloscope or the RF spec-
trometer in real time. This means that the timescale of this 
evolution, t0 , is on the order of a second, which is typically 
on the order of 107 Tc . The parameter � varies with the spec-
tral and filter widths, but even if the gain is the only filter 
and the pulse spectrum is as narrow as 10% of the gain band-
width, � remains on the order of 0.01 T−1

c
 or larger. Then, the 

(adimensionalised) coefficient of the inertial term is on the 
order of 10−5 ; the inertial term is negligibly small. Physi-
cally, because the relative speeds of the pulses are typically 
very low, the positions of the pulses change only negligibly 
within the time it takes for a pulse to accelerate through 
the evolution of its wavelength. Consequently, the speed is 
determined by the pulse position and the noise at all times, 
except for negligibly brief transient acceleration.

After neglecting the inertial term, we arrive at our Lan-
gevin equation for the temporal fluctuations of a pulse in a 
harmonic modelocked laser,

This equation establishes our analogy formally. It is easy 
to see that in the absence of the noise term (valid for large 
deviations), the deviation experiences exponential decay 
with the time constant, t0 = �∕�.

2.4 � Temporal fluctuations of a harmonic pulse 
and laser design considerations for their 
suppression

The temporal position fluctuations of a single pulse turn out 
to be formally like that of a trapped Brownian particle within 
our simple model (Eq. 5). The mean square displacement is,

Here, t is the measurement time, and t = 0 corresponds to 
an instantaneous measurement, for which the MSD van-
ishes because the particle has not yet deviated from its 
position, which does not necessarily correspond to �� = 0 . 
Over longer times, the pulse position deviation increases, on 

(5)𝛾𝛿̇𝜏 = −𝜅𝛿𝜏 +
Δ𝜔p

TR

√
h𝜈

TcEp

𝜉(t).

(6)
⟨(

��(t) − ��(0)
)2⟩

=
Δ�2

p

2T2
R
��Tc

h�

Ep

(
1 − e−t∕t0

)
.
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average with the square root of the elapsed time (measure-
ment duration), but the deviation plateaus at a finite value 
given by,

As expected from the trapped Brownian particle analogy, 
temporal fluctuations will be subdued if the trap created by 
the particle-to-particle interactions is stronger (large � ). 
However, this is difficult to manipulate experimentally, 
partly because the mechanism is not well known and further, 
assuming that the most likely candidate, namely acoustic 
interactions, is the mechanism responsible, material proper-
ties severely limit the possibilities. Nevertheless, we identify 
two other practical means of suppressing the fluctuations, 
both of which we will exploit experimentally. The first is that 
stronger filtering (large � ) dampens the fluctuations. The 
physical reason is straightforward; filtering reduces the rate 
of deviations. The second is that the intrinsic noise causing 
the central wavelength fluctuations scales inversely with the 
number of photons in a pulse. Thus, the higher the intracav-
ity pulse energy, the smaller the fluctuations in the first 
place. Decreasing the cavity loss increases the pulse energy 
at the entrance of the gain, thus decreasing the sensitivity of 
the pulses to ASE. Once again, the physical reason is quite 
clear. Each random ASE photon perturbs the pulse, like fluid 
molecules hitting the Brownian particle. The larger the num-
ber of photons per pulse, the less is the impact on the pulse 
characteristics, including its central wavelength. Increasing 
the pulse energy might also indirectly help by increased non-
linear spectral broadening, which, in turn, is equivalent to 
stronger filtering, since � ∝ Δ�2

p
∕(Δ�2

f
+ Δ�2

p
) , but a 

broader spectrum also strengthens the noise term, and its 
benefits are not clear. However, increasing the intracavity 
pulse energy may further help by strengthening the pulse-
to-pulse interactions (increasing � ). This is to be expected 
even though we do not know the pulse-to-pulse interaction 
mechanisms precisely, because any pulse-to-pulse interac-
tion must necessarily be nonlinear in origin.

Guided by the trapped Brownian particle analogy, we 
now discuss design considerations for and their practi-
cal implementation in a fibre laser cavity. The modelock-
ing regimes that allow high pulse energies are similariton 
[27–30] and all-normal-dispersion (dissipative soliton) 
[31] regimes. However, the pulse energy can be limited 
also by overdriving the saturable absorber. In fact, a har-
monic state is achieved precisely by pulse breakup that 
occurs by overdriving, so the laser’s operation must neces-
sarily be near such a point. But also, the pulses must expe-
rience strong nonlinearity to achieve broader pulse spectra 
for stronger filtering, without excessive overdriving of the 
saturable absorber. We have chosen nonlinear polarisation 

(7)
⟨
�2
�

⟩
=

Δ�2
p

2T2
R
��Tc

h�

Ep

.

evolution (NPE) as the artificial saturable absorber due to 
its ease of implementation, nearly instantaneous response, 
strong modulation depth, and high peak transmission. 
NPE occurs only in non-polarisation-maintaining (non-
PM) fibres, which we exploited to partially decouple NPE 
from the nonlinear evolution of the pulse by limiting the 
non-PM fibre to be short and building the rest of the cavity 
from PM fibres. The shorter the non-PM fibre, the higher 
the pulse energy must be to accumulate sufficient polari-
sation rotation for maximum transmission. This way, the 
pulse energy that overdrives NPE is set to considerably 
higher values. The polarising beam splitter in the NPE 
scheme functions both as a saturable absorber and as an 
output coupler, thus limiting the linear losses of the cavity.

There is a further practical benefit of this design. Much 
of the cavity comprises PM fibre, which is insensitive to 
thermal or vibrational environmental effects [32, 33]. These 
only affect the non-PM fibre by randomly inducing birefrin-
gence through mechanical stress. We chose the only non-PM 
fibre, where NPE occurs, to be the gain fibre, which was 
coiled to occupy a smaller area. The cavity is also entirely 
fibre-integrated to improve long-term stability by avoiding 
the possibility of mechanical misalignment. As will be dis-
cussed in the next section, this design results in self-starting 
operation with excellent long-term and environmental stabil-
ity during harmonic modelocking.

Before discussing our experimental implementation, we 
finally remark on the alternative or complementary approach 
of setting the net cavity dispersion to zero, in which case the 
central wavelength fluctuations would not translate to tempo-
ral fluctuations. Apart from the practical difficulty that this 
can be accomplished only at a single wavelength due to the 
presence of large third-order dispersion in any fibre cavity, 
most cavities to date that achieved strong filtering and high 
pulse energies also had a high amount of net dispersion. 
There have been exceptions, including a laser design we 
have developed previously [34]. However, none were all-
fibre-integrated nor particularly practical. We have decided 
to focus on a simple, compact, all-fibre implementation, but 
we remark that reducing the net dispersion is another likely 
improvement that could be explored in the future.

3 � Experimental results

The setup is shown in Fig. 1c. As mentioned above, the Yb-
doped double-clad gain fibre (nLight, Yb1200-6/125DC) is 
the only non-PM component in the oscillator cavity, has a 
length of 1.6m and is coiled and isolated by immersion in 
a soft polymer (Momentive, RTV6136-D1). The polarisa-
tion state is manipulated through two fibre-based polarisa-
tion controllers (PC) at the two ends of the gain fibre. The 
Yb-doped fibre is cladding-pumped through a signal-pump 
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combiner by a wavelength-stabilised multimode pump diode 
operating at 976 nm wavelength. A fibre-integrated polaris-
ing beam splitter acts as a polarisation discriminator and the 
only output coupler. A fibre-based isolator sets the direction 
of signal propagation. A fibre-based Gaussian-shaped BPF 
with full-width at half-maximum (FWHM) width of 10 nm, 
centred at 1030 nm, provides the spectral filtering required 
for the dissipative soliton modelocking regime and dampens 
the Brownian-like temporal fluctuations of the pulses, as 
discussed above. The total fibre length of the cavity accumu-
lates to 3.4  m with a corresponding fundamental repetition 
rate of 60.4 MHz.

We readily obtain self-starting modelocking, and can 
subsequently reach as high as the ninth harmonic repetition 
rate by an appropriate setting of the pump power and the 
PCs. The fact that the adjustment of the PCs lacks a clear 
algorithm is the most important shortcoming of this imple-
mentation, but it is common to all NPE-based lasers. All 
harmonic states are achieved at nearly the same pulse energy 
of 0.9 nJ, and higher harmonics are accessed by progres-
sively increasing the pump power and overdriving the pulse 
energy to create one new pulse, accompanied by tiny correc-
tions on the PCs. Once these settings are correctly adjusted, 
the pulse pattern approaches the new harmonic state, and 
the supermodes decay in the timescale of about a second. 
In one case, we recorded the settling of the pulse pattern in 
video and measured the rate of decay of the supermodes 
to be around 60 dB/s . Given the dependence of the super-
mode power on the temporal deviation (see Appendix 1), 

this decay rate implies the time constant for the attenuation 
of the deviation, t0 , to be around 0.14 s−1.

The immediate limitation to the maximum harmonic 
number is due to the average power, which corresponds to 
an intracavity value of about 1 W for the ninth harmonic. 
This is already substantially higher than the power rating 
(300 mW) of the fibre-integrated components, which we did 
not want to strain any further and made no attempts to reach 
higher harmonics. For prolonged operation in our labora-
tory over the course of several months, we have settled at 
the sixth harmonic. An updated design using high-power 
components should readily reach higher harmonics.

The performances of the harmonic states of different 
orders are summarised in Fig. 2a. We adjusted the pump 
power for each harmonic state, such that the pulse ener-
gies are around 0.9 nJ for each harmonic state. The SSR 
roughly follows the measured spectral width of the respec-
tive harmonic state, as well as the FWHM of the AC dura-
tion. While the latter is apparently due to uncompressible 
nonlinear phase accumulated in the output fibres [35], the 
correlation of spectral width and the SSR implies the cor-
relation of intracavity pulse energy with SSR since the larger 
spectral width requires higher pulse energies. This corre-
lation is theoretically expected. The measured SSR values 
differ among the harmonic modelocking orders. In the har-
monic order N = 2 , we obtained a record value for the SSR 
of 80 dB (Fig. 2b).

The optical characteristics are broadly similar for all 
harmonic states. For the sake of brevity, we discuss the 

Fig. 2   Comparison of the operation parameters of different harmonic 
modelocked states (a). The supermode suppression values are taken 
from individual measurements at the different harmonic states. The 

respective RF traces are plotted in (b), spurious noise marked in 
orange for easier distinction



	 M. Laçin et al.

1 3

46  Page 8 of 11

eighth harmonic, at 484  MHz, in detail (Fig.  3). The 
root-mean-square (RMS) spectral bandwidth is 16.4 nm 
(Fig.  3a). Using a pair of 900  lines/mm-gratings, the 
output pulses can be compressed from 7.7 ps to 233 fs 
of autocorrelation (AC) duration (Fig. 3b), correspond-
ing to a FWHM of 165 fs, assuming a Gaussian pulse 
shape, which is 31% longer than the transform-limited 
duration (126 fs). We also characterized the short-term 
stability by relative intensity noise (RIN) and phase noise 
measurements.  For the former, we used a photodiode 
with 150 MHz bandwidth and additionally filtered the 
electrical signal with a low-pass filter with 1.9 MHz cut-
off, which was analysed with a baseband spectrum ana-
lyser (Rohde & Schwartz UPV). The integrated noise is 
obtained by integrating the measured noise spectrum over 
the desired bandwidth, multiplying by 2 (to account for the 
double sidebands), and taking the square root. The dou-
ble-sided RIN integrated from between 3 HZ to 250 kHz 
amounts to 0.034% (Fig. 3c). This value is comparable 

to fundamentally modelocked fibre oscillators pumped 
in core by singlemode diodes [36] and remarkably low 
considering the higher noise of multimode pump laser 
diodes [37]. The wider-range RF spectrum (Fig. 3d) shows 
smoothly decaying maxima, indicating the absence of 
bound pulses, which were also ruled out by long-range AC 
measurements. When the laser operates in the eighth har-
monic state, the intensity of the supermodes is suppressed 
by at least 65 dB compared to the first beat node (Fig. 3e). 
Phase noise was measured at the second harmonic of the 
free-running (harmonic) repetition frequency (968 MHz) 
in the RF spectrum using a signal source analyser (Rohde 
& Schwartz FSUP26). The timing jitter in the eighth har-
monic is calculated to be 106 fs (Fig. 3f) by integrating the 
phase noise from 100 MHz down to 1 kHz. In this state, 
the average output power of the laser was 450 mW, cor-
responding to 0.9 nJ pulse energy. The output was stable, 
seemingly indefinitely; a continuous measurement over the 
course of two days is provided in Fig. 3g.

Fig. 3   Operation parameters at the eighth harmonic repetition rate, 
at 483  MHz: a spectral width, ranging over 16  nm in linear scale, 
with semi-logarithmic scale in the inset, b the autocorrelation trace 
of the compressed pulse (blue), with the calculated trace of the Fou-
rier-transformed pulse in orange, c the relative intensity noise (blue) 
and the integrated relative intensity noise (orange), d the long-range 
radiofrequency trace, e a shorter radiofrequency trace to evaluate the 

suppression of supermodes, and f the phase noise measurement (blue) 
and the integrated timing jitter between 1  kHz and 100  MHz. The 
laser has a stable output power g over the course of more than 50 h. 
We confirmed independently that the spikes in the signal result from 
a systematic error in the pump diode that causes spikes in its output 
power
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Benefiting from the all-fibre design, the isolation of the 
gain fibre and the dominance of PM fibres, the oscillator 
also shows excellent long-term stability and environmental 
robustness. The output power varied less than 0.07% over a 
duration of 50 h in the eighth harmonic state (Fig. 3g). We 
also deliberately induced large changes in the temperature of 
the laser to verify its environmental stability. While the laser 
was operating in the sixth harmonic state, the temperature 
was varied by 6 ◦ C over the course of 90 min by apply-
ing a heat source externally. Such a temperature variation is 
much more than expected in a laser laboratory. Despite that, 
the harmonic state was never interrupted. The results are 
depicted in Fig. 4. While the output power (Fig. 4b) shows 
a slight dependence on the temperature (Fig. 4a), there is 
no measurable effect on the laser performance. The AC 
and optical spectrum measurements did not indicate any 
changes. Despite the large temperature change, the pulse 
energy remained constant at 0.9 nJ with a standard deviation 
of less than 0.2%. Even these small changes in power appear 
to be originating entirely from the pump laser’s output wave-
length varying with temperature despite being nominally 
wavelength stabilised. Over time, the relative strength of the 
supermodes changes randomly between the noise floor of 
our measurement and the SSR 60 dB, but always remaining 
high, with a mean value of 67.9 dB (Fig. 4c). These fluctua-
tions in the supermodes’ powers largely reflect the stochastic 
nature of the pulse position deviations but also, to a lesser 
extent, the measurement capability of our equipment. Over-
all, the purity of the harmonic state, as quantified by the 

supermode suppression, shows no discernable dependence 
on environmental disturbances.

4 � Conclusion

In summary, we present a theoretical analysis of the origins 
of fluctuations in harmonic modelocking, which reveals a 
formal and intuitive analogy to a trapped Brownian particle. 
Guided by the insights provided by the analogy, we built 
a passively harmonic modelocked fibre laser that achieved 
excellent operational characteristics. It is an entirely fibre-
integrated laser, employing mostly polarisation-maintaining 
fibres everywhere except the gain fibre, where the nonlinear 
polarisation evolution is confined to a non-polarisation-
maintaining short section. This way, higher intracavity pulse 
energies are tolerated by increasing the energy that over-
drives the saturable absorber. The laser achieves record-high 
supermode suppression ratio values up to 80 dB, but even 
more importantly, its harmonic state is completely robust 
over prolonged operation measured over more than 50 h. 
Even in the presence of unusually large changes in the envi-
ronmental temperature of 6 ◦ C, the harmonic state remains 
unperturbed. The measured timing jitter is 106 fs, based on 
integrating the phase noise between 100 MHz and 1 kHz. 
This level of timing jitter is also an order of magnitude 
below that of other passively harmonic modelocked lasers. 
The present laser’s optical power was limited by the power 
handling in the fiberised components, specifically the polari-
sation beam splitter and the band-pass filter. With superior 
components, higher repetition rates should be reachable.

Overall, we present what we believe to be the first har-
monically modelocked laser to operate similarly to a typical 
fundamentally modelocked fibre laser without notable trade-
offs in any important aspect, namely, short-term stability, 
quantified by phase and relative intensity noise, long-term 
stability, including being subjected to temperature varia-
tions, pulse energy, pulse duration, and average power (up 
to 1 W). The design does not rely on special components, 
making it easy to duplicate. We expect it to find use in appli-
cations requiring high repetition rates, including as a stable 
seed source for ablation-cooled material processing in the 
GHz regime [2, 38].

Contributions of energy and position 
deviations to the supermode suppression 
ratio

The radio-frequency (RF) signal is the Fourier transform of 
the time signal. The RF trace, at frequency f in logarithmic 
scale, is

Fig. 4   Long-term environmental test of the laser oscillator, operating 
in the 6th harmonic state, at 362 MHz. The temperature is cycled for 
around 6◦ C over 90 min (a). Despite the deliberately applied strong 
environmental temperature change, the output power (b), normalised 
around the mean value, fluctuates with a standard deviation of 0.17%. 
The ratio from the first beat node in the RF spectrum to the strong-
est supermode maximum (c) has an average of 67.9  dB and shows 
no dependency on the temperature. RBW resolution bandwidth, SWT 
sweep time, VBW video bandwidth
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Here, P̃(f ) is the Fourier transform of the photocurrent from 
the photodiode, C is a proportionality constant adding a verti-
cal shift to the RF trace, Tc is the cavity round-trip time, n is a 
positive integer enumerating the maxima in the RF trace such 
that fn = n∕Tc represents all frequencies allowed by the perio-
dicity of the cavity. Furthermore, � is the delay coordinate, N 
is the number of pulses in the cavity, Ej and �j are the energy 
and temporal position of the j th pulse, respectively, and u 
describes the temporal profile of the electrical current pulse 
generated by the photodetector in response to an optical pulse 
as measured by the RF spectrum analyser. Approximating the 
electrical pulse shape u as a delta function leads to

With N identical pulses in the cavity ( N  th harmonic 
state), each with an energy E, and positioned equidistantly 
( �j = jTc∕N ), the Fourier transform becomes

if n/N is an integer, otherwise zero. The maxima in the 
RF trace at frequencies n∕Tc other than integer multiples 
of N∕Tc result from supermodes. The supermode-maxima 
only appear in case of deviations from the ideal pulse train. 
A relative (fractional) energy deviation of �E in one pulse 
(e.g., the first pulse, j = 1 ) leads to

The supermode suppression ratio (SSR) (in logarithmic scale) 
due to the energy deviation is the ratio between Eqs. A4 and A5:

(A1)

RF(f ) = 10 log10
(
C × |P̃(f )|2)

||P̃(f )||2 =
||||||
1

Tc ∫
Tc

0

exp

(
−2𝜋i

n

Tc
𝜏

) N∑
j=1

Eju
(
𝜏 − 𝜏j

)
d𝜏

||||||

2

.

(A2)||P̃(f )||2 =
||||||
1

Tc

N∑
j=1

Ej exp

(
−2𝜋i

n

Tc
𝜏j

)||||||

2

.

(A3)||P̃(f )||2 =
(
NE

Tc

)2

,

(A4)
||P̃(f )||2 =

(
E

Tc
𝛿E

)2

,

if n∕N is not an integer (at supermodes),

(A5)

||P̃(f )||2 =
(

E

Tc

(
N + 𝛿E

))2

,

if n∕N is an integer (at the harmonic repetition rate).

(A6)

SSR = 10 log10

(|P̃(N∕Tc)|2
|P̃(n∕Tc)|2

)
= 10 log10

((
N

𝛿E
+ 1

)2
)

≈ 20 log10

(||||
N

𝛿E

||||
)
,

where n corresponds to the supermode for which the SSR is 
to be measured. In the case of a position deviation �� in the 
first pulse, by linearizing with respect to �� , |P̃(f )|2 becomes

The resulting SSR then is again the ratio of Eqs. A8 and A9:
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