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Abstract
A quantum behavior of the light emitted by exciton polaritons excited in a pillar semiconductor microcavity with embedded 
quantum well is investigated. Considering the bare excitons and photon modes as coupled quantum oscillators allows for 
an accurate accounting of the nonlinear and dissipative effects. In particular, using the method of the quantum states repre-
sentation in a quantum phase space via quasiprobability functions (namely, a P-function and a Wigner function), we study 
the impact of the laser and the exciton-photon detuning on the second order correlation function of the emitted photons. We 
determine the conditions under which the phenomena of bunching, giant bunching, and antibunching of the emitted light 
emerge. In particular, we predict the effect of a giant bunching for the case of a large exciton to photon population ratio. 
Within the domain of parameters supporting a bistability regime we demonstrate the effect of bunching of photons.

1  Introduction

Exciton polaritons are mixed quasiparticles arising due to 
the strong coupling of photonic mode with an exciton reso-
nance. Being initially considered as a fundamental example 
of composite bosons with small effective mass, which is 
beneficial for a high-temperature condensation, the exciton 
polaritons are recognized now to be well suited for realiza-
tion of the practical devices being competitive with the state 
of the art optoelectronic and photonic devices. Indeed, the 
composite nature of exciton polaritons takes advantage of 
both photonic and excitonic constituents. Namely, polaritons 
inherit a high mobility and the ease of excitation from pho-
tons as well as the strong two-body interactions from exci-
tons. This combination makes polaritonic systems a versatile 
platform for studying quantum and nonlinear phenomena in 
strongly coupled light-matter systems.

We consider the exciton polaritons (hereafter polaritons) 
formed in a pillar microcavity [1]—see the sketch in Fig. 1. 
The micropillar is characterised by a narrow optical cone. 
Therefore, in contrast to a planar microcavity, it is capable 
of supporting a tightly confined condensate whose spatial 

degrees of freedom are suppressed. In what follows, we 
consider “zero-dimensional” polaritons formed in a small 
micropillar.

The quantum and nonlinear properties of exciton polari-
tons are of a great interest. When the cavity is driven by 
the external laser, the nonlinear behavior can be revealed 
in a bistable optical response [2] of the medium. This phe-
nomenon is classical and can be observed by a hysteresis of 
the cavity transmission characteristic measured by scanning 
adiabatically the intensity of the pumping laser. Here, in 
contrast, we are interested in the quantum manifestations of 
the bistability effect. In particular, we study the statistics of 
the light emitted by the microcavity. Note that manifestations 
of the quantum statistics under the bistabitility conditions 
were previously observed in the cavity-QED systems [3, 4]. 
We are aimed at searching of the conditions when the system 
behavior differs strongly from what the classical description 
predicts. For example, the influence of a classical noise on 
the exciton-polariton bistability has already been considered 
in Ref. [5]. At the same time, in the experimental works 
[6, 7], a bistable response characterized by the hysteresis 
loop was observed to be narrower than it was expected in 
the classical case. Such a squeezing of the bistability loop 
indicates a significant impact of the quantum noise effects 
on the polariton behavior.

A general characteristic of the quantum properties of a 
given system is a second order correlation function 
g(2)(�) =

⟨a(t)+a(t+�)+a(t)a(t+�)⟩
⟨a(t)+a(t)⟩2  . At zero time-delay � = 0 , it is 

g(2)(0) = 1 +
⟨(�n)2⟩−⟨n⟩

⟨n⟩2  . For example, a dramatic decrease of 
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this quantity above threshold can be considered as a finger-
print of Bose condensation in the exciton-polariton system 
formed in a planar microcavity [8]. The value of the second 
order correlation function indicates on such quantum phe-
nomena as bunching ( g(2) > 1 ) and antibunching ( g(2) < 1 ). 
The effect of antibunching was studied for polaritons formed 
in a quantum box in the context of so-called polariton block-
ade [9], when the emission of photons in pairs is suppressed 
and photons are emitted individually. The second order cor-
relation function of the photons emitted from the micropillar 
driven by the laser light demonstrates a sharp peak [10] in 
the phase transition region, while in a planar microcavity 
this value demonstrates a smooth dependence on the pump 
power beyond the threshold [8]. The quantum properties of 
the excitonic component of polariton state were theoretically 
investigated in Ref. [11]. In particular, the peak of the sec-
ond order correlation function of excitons was predicted. In 
this article, we focus on the investigation of the quantum 
behavior of the photonic mode.

To solve an open quantum nonlinear problem, we use 
a powerful analytical method of the generalized P-repre-
sentation [12]. Unlike numerical approaches, this method 
allows for investigation of the quantum properties in entire 
region of the quantum phase space. Besides, it contrasts to 
the linearization [14] and perturbation [15] methods which 
does not account for the strong quantum fluctuations in the 
vicinity of the quantum phase transition.

The paper is organized as follows. In Sect. 2 we introduce 
the Hamiltonian of the system and derive the master equa-
tion. Next, we move to the description of this system in a 
quantum phase space, namely, to the P-representation. We 
solve the Fokker–Planck equation for the P-function using 
the method of potential [12] and obtain the first and second 
order correlation functions [11] of the photons using the 
governing (slaving) principle. Note that the perturbation 
theory does not predict the observable peak of the second 
order correlation function [13] in this case. In Sect. 3, we 
investigate the effect of quantum fluctuations on the bista-
bility. In Sect. 4, we study the effects of the giant bunching 

and antibunching effects in the region of a triple resonance 
where the exciton, photon and the laser frequencies are close 
to each other. In Sect. 5, we study non-classic states in the 
strong pump regime.

2 � The model

Polaritons are excited by a coherent laser whose frequency 
is close both to the photon �ph and exciton �ex resonances. 
The Hamiltonian of two coupled modes in the presence of 
coherent pumping in the rotating wave approximation [2, 
11] reads:

Here 𝜙̂ ( 𝜙̂+ ) and 𝜒̂ ( 𝜒̂+ ) are annihilation (creation) operators 
of the photon and the exciton modes, respectively. Ẽd stands 
for the strength of the coherent pump driving the cavity 
mode at the frequency �d . The value �ph = �ph − �d stands 
for the detuning of the photon frequency from the frequency 
of the pump while �ex = �d − �ex—is the detuning of the 
excitonic resonance, �R equals to a half of the Rabi splitting, 
�—is a coefficient of a Kerr-like nonlinearity which stems 
from the exciton-exciton scattering.

The polariton condensate under consideration is an open 
quantum system which is inevitably affected by the pres-
ence of noise. We suppose that the micropillar temperature is 
about several Kelvin. In this case, the thermal noise is weak 
since the influence of the heat reservoir decreases exponen-
tially with the increase of the ratio ℏ�ph,ex∕kBT  . In our case 
�𝜔ph,ex ≫ kBT , therefore we neglect by the presence of ther-
mal noise. Also, we exclude the classical fluctuations from 
the driving laser [5]. Thus we are left with a purely quantum 
noise whose impact on the system behavior is studied below.

We treat the losses of the exciton-photon system via the 
Lindblad master equation (in the Born–Markov approxima-
tion) for the density operator � [11],

where �ph and �ex are the damping rates of photonic and exci-
tonic modes, respectively.

The semiclassical solution of the problem has been 
described in a number of works [2, 11, 16]. In particular, 
it predicts the bistable optical response of the microcavity 
which manifests itself in a hysteretic behavior of the output 
light intensity [2]—see Fig. 2b. The optical bistability effect 
occurs within the particular range of the driving field which 

(1)
Ĥ

S
=�𝛥ph𝜙̂

+𝜙̂ − �𝛥ex𝜒̂
+𝜒̂

+ �𝜔R
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∗
d
𝜙̂
)
.

(2)
𝜕𝜌

𝜕t
=
1

i�

[
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,

Fig. 1   A sketch of the micropil-
lar with embedded quantum 
well supporting formation of 
zero-dimensional polaritons 
(purple dot). The arrow illus-
trates the external laser pump 
which drives the photonic mode 
of the cavity
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is determined by a competition between the losses and the 
positive nonlinear feedback of microcavity excitons [5].

The steady state quantum solution of the master equa-
tion (2) is obtained analytically using the P-function 
approach—see Appendix 1. In what follows we assume 
that the quantum fluctuations of the photonic mode are 
governed to the quantum fluctuations of excitons [17, 18] 

according to the Haken’s slaving principle. Thus using the 
first equation from (A.4), in the steady state regime we 
obtain the following relation between the amplitudes of 
the photon and the exciton fields:

In this case a first order correlation function of photons, 
which is equivalent to a quantum average value of the photon 
number, is defined as

Here G(ij) =
⟨(

�+
)i
� j
⟩

—is a correlation function of the 
exciton mode, see Appendix 1. The value Id = |Ed|2 is pro-
portional to the intensity of the laser pump.

We characterize the quantum properties of the emitted 
light with the second order correlation function 
g
(2)

ph
=

⟨�+2�2⟩
⟨�+�⟩2  . From (3) with the use of Eq. (10) given in the 

Appendix 1 one obtains:

3 � Polariton bistability in the presence 
of quantum fluctuations

For the given problem (1), one can obtain the steady state 
solution in the mean field approximation. It implies averag-
ing quantum operators Omf =

⟨
Ô
⟩
= Tr

(
𝜌Ô

)
 and factoriza-

tion of the quantum averages as ⟨𝜒̂+𝜒̂ 𝜒̂⟩ → �𝜒mf �2𝜒mf . In 
this case the bistability phenomenon is manifested in the 
typical S-shape intensity-dependence of the photon mode 
population, see the dashed curves in Fig. 2b. The region 
where the solution is bistable, is displayed on the parameter 
p l ane  (�,�) ,  F ig .   2a .  He re  � =

�ph−�ex

2
 and 

� = �d −
(
�ph + �ex

)/
2 is a detuning of the driving field 

from the central frequency between the exciton and the pho-
ton resonances. The false colors in Fig. 2a correspond to the 
critical intensity of the driving field above which the single-
valued solution is superposed by a bistable one. This value 
is refereed to as a bistability threshold. There are two 

(3)𝜙 =
Ẽd

(
𝛾ph − i𝛥ph

)
(
𝛥2
ph
+ 𝛾2

ph

) −
𝜔R

(
i𝛾ph + 𝛥ph

)
(
𝛥2
ph
+ 𝛾2

ph

) 𝜒 .

(4)
⟨
𝜙+𝜙
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=

Id + 𝜔2
R
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) .
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ph
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d
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R
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√
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Fig. 2   a The bistability map on the (�,�)-plane. Shaded region cor-
responds to the existence of bistability. Color of the filling encodes 
the driving field intensity Ith

1
 corresponding to the left turning point 

of the nph(Id) curve, see panel (b). b The semiclassical population 
of the photonic mode nph and the analytical quantum solution (4) for 
⟨�+�⟩ at � = 32�ph , � = − 49.2�ph (orange line), � = − 49.1�ph (blue 
line), � = − 49�ph (red line), � = −48.9�ph (green line)—see the 
color crosses  on the panel (c). c the ratio of the driving intensities 
I
th
1

 and Ith
2

 corresponding to the left and the right turning points of 
the bistability loop. d The g(2)

ph
(Id)-dependence at the same parameters 

as in panel (b). The other parameters are � = 0.015�ph , �R = 25�ph , 
�ex = 0.01 ps−1 and �ph = 0.1 ps−1. e, f Numerical simulations of the 
stochastic dynamics of the photon number predicted by the equations 
(A.4). The initial state corresponds (e) to the point 2 on the panel (b) 
and (f) to the point 7
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domains of bistability: The upper and the lower one. On the 
energy scale, both domains are located above the relevant 
polariton branches �LP,UP = ±

√
�2

R
+ �2 shown with the 

blue lines. In particular, the regions of bistability are shifted 
upwards in frequency on the value which is determined by 
the level of losses [2].

The upper and lower segments of the bistability curve 
shown in Fig. 2b are stable in the mean field approximation. 
It means that the polariton mode excited in these configu-
rations live infinitely long. However in the presence of a 
sufficient external noise the stochastic switching between 
bistable states becomes possible [19]. The problem of sto-
chastic switching in the exciton-polariton system has already 
been considered in the context of a dissipative phase transi-
tion [7]. A study of the micropillar radiation demonstrated 
the stochastic switching between the bistable states [7, 10]. 
Besides, the non-classical behavior was discovered in the 
quantum statistics of the micropillar radiation [7]. The early 
theoretical works [7, 10, 19] which address this question 
used a truncated lower polariton branch approximation [2]. It 
means that it took into account only the lower polariton state 
neglecting by all the other terms which appear in the Hamil-
tonian (1) rewritten in the polariton basis. This approxima-
tion is valid when the pump frequency is tuned close to the 
lower polariton branch resonance. However, in the general 
case of arbitrary driving frequency, one needs to consider 
the interaction with both the upper and lower polaritons. In 
contrast to the previous studies, here we consider a com-
plete model operating in the exciton-photon basis using the 
slaving principle introduced by Haken [17]. This approach 
allows for expanding of the parameters region covered by 
the quantum nonlinear effects caused by the bistability 
phenomenon.

As opposite to the mean-field solution which predicts 
two stable stationary states within the bistability region, the 
quantum approach always yields [12] a single-valued solu-
tion (4), see the solid curve in Fig. 2b. However because 
of the intrinsic quantum noise, the bistable behavior still 
can be observed within the quantum approach by the pres-
ence of the hysteresis loop. The quantum approach treats 
the upper and lower states of the classical bistability curve 
as the metastable ones. Whether the system jumps between 
the metastable states or not depends on the time spent in 
the initial state. Therefore, if one scans the driving intensity 
up and down, the classical hysteresis loop is revealed only 
in the case of quasi-adiabatic variation of the pump power. 
At a finite scanning velocity the dynamical hysteresis loop 
becomes narrower as it was demonstrated in [6]. The loop 
width depends on the pumping rate variation rate and on the 
lifetime of metastable states [6]. Which is why the resulted 
nph(Id)-dependence is called a dynamic hysteresis loop.

The dynamics of the stochastic jumps can be described 
with the use of the stochastic differential equations (A.4) 
for the quantum variables (the commutative c-numbers 
�,�+,� and �+ ) [12, 13],—see Eq. (A.4). These equations 
include the diffusion and drift terms inherited from the 
Fokker–Planck equation (8). The details are given in the 
Appendix 1.

The solid curves in Fig. 2b show predictions of the quan-
tum solution for various laser detunings (indicated by the 
crosses in Fig.  2c). Our analysis reveals the presence of 
quantum jumps between two metastable states at the pump 
intensity corresponding to the fast variation of the photon 
number predicted by the quantum solution. In this region, 
the mean number of photons nph rapidly grows from the 
lower to the upper bistable state. The stochastic dynam-
ics demonstrating quantum jumps is shown in Fig. 2e. The 
parameters of the system correspond to the blue curve in 
Fig. 2b. The metastable states are indicated by points 2 and 
2′ connected with the red arrow. The stable states appear in 
the region where the quantum solution is close to the semi-
classical one (points 1 and 3 on the blue curve and point 4 on 
the green curve). Note that for the case of a wide bistability 
loop, there is typically only one stable branch of the classical 
solution, while the states on the opposite branch of the loop 
are metastable. This is the case of the point 7 which cor-
responds to the metastable state located at the lower branch 
of the green curve. The stochastic dynamics of the system 
initially excited in the state 7, as it is shown in Fig. 2f, dem-
onstrates an irreversible jump to the state 7′ corresponding 
to stable upper state.

Thus, we distinguish two dynamical regimes. In the first 
regime, the frequent jumps occur as it is shown in Fig. 2e. 
In Fig. 2b this regime corresponds to the orange and the 
blue curves. Since this behavior is caused by the quantum 
noise, this regime is referred to as a quantum one. In the 
bistability diagram, this regime is realised in the vicinity 
of the boundary of the bistability existence domain, see 
Fig. 2c. In this region, the pump intensities corresponding 
to the turning points of the classical S-shaped bistability 
curve are close to each other. The second case is character-
ized by the narrow range of the pump intensities at which the 
quantum jumps occur. Within this range, the mean photon 
number (4) grows steeply. On the contrary, the region of the 
metastable solutions characterized by a single jump behav-
ior shown in Fig. 2f is typically much wider, see the red 
and the green curves in Fig. 2b. The second regime occurs 
outside of the boundary of the bistability existence domain 
(see Fig. 2c), where the classical bistability curve is wide. 
Adopting the terminology from [20] we call this case a qua-
siadiabatic regime implying quasi-equilibrium of the system. 
In Ref. [20], a similar regime was considered in the context 
of the dissipative phase transition which is manifested by 
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closing of the Liouvillian gap in the thermodynamic limit 
(when the number of particles tends to infinity). However, 
in our case, a similar regime occurs at the small population 
of the state.

the differences between two regimes can be clearly 
illustrated with the use of the Wigner function representa-
tion, see Fig. 3. The coexistence of two metastable states is 
indicated by a bimodal structure [21] of the Wigner func-
tion illustrated in Fig. 3b, e. Note that when a single stable 
state exists, the Wigner function is characterized by a single 
peak, see the panels (a), (c), (d) and (f) corresponding to the 
points 1, 3, 4 and 6 in Fig. 2b, respectively. For the quantum 
regime, in the particular case corresponding to the recur-
rent jumps between the points 2 and 2′ in Fig. 2b, one can 
observe a pronounced overlap of the quasi-probability dis-
tributions corresponding to two bistable states, see Fig. 3b. 
On the contrary, for the quasiadiabatic case, correspond-
ing to the points 5 and 5′ in Fig. 2b the quasiprobability is 
localized in the two regions with almost no overlap between 
them, see Fig. 2e.

The quantum behavior of the photonic mode in the bista-
ble regime is reflected in its statistics. In the region where 
the quantum average photon number grows steeply, we 
observe a peak of the second order correlation function g(2)

ph
 , 

see Fig. 2d, which corresponds to the bunching of the pho-
tons emitted by the micropillar. Figure 2d shows the second 
order correlation functions of photons for various laser 
detunings � corresponding to the solutions shown in Fig. 2b. 
We can see an increase of the peak amplitude accompanied 
by the decrease of its width as the laser intensity growth. In 
this case, the width of the peak of the g(2)

ph
 function is com-

parable with the width of nph(Id)-dependence predicted by 
the quantum solution.

Figure 4 shows a map of the second order correlation 
function on the (�,�) parameter space for various driving 
intensities: (b) Id∕�2ph = 70 , (a), (c) Id∕�2ph = 100 , and (d) 
Id∕�

2
ph

= 200 . Panels (b–d) show the region in the vicinity 
of the resonance of the lower polariton (LP) branch (the 
green dotted curves), while panel (a) is focused on the 
upper polariton (UP) branch. One can see a bright narrow 
band which corresponds to the peaks of the g(2)

ph
 function 

while the background value is g(2)
ph

= 1 . This band follows 
position of the LP branch. Note that the narrow band of 
the bunching states as well as the peak magnitude of the 
g
(2)

ph
 shifts towards larger driving detunings � as the pump 

intensity increases. Besides, the peak of the second order 
correlation function is more pronounced for a positive 
detuning, 𝛥 > 0 . This is because the quantum fluctuations 
of the lower polaritons play a dominant role near the LP 
resonance (in contrast to the fluctuations of the upper 
polaritons which are suppressed in this domain). The fluc-
tuations are more pronounced for the positive detunings 
since in this region the excitonic fraction of the LP state 
dominates over the photonic fraction. It is reflected in the 

value of the Hopfield coefficients Cex =

���� 1

2

�
1 −

�√
�2+�2

R

�
 

and Cph =

���� 1

2

�
1 +

�√
�2+�2

R

�
 which determine the exci-

ton and photon fractions of the polariton state, respec-
tively. In particular, for the positive detuning, Cex > Cph.

Fig. 3   The Wigner function distribution W(Re(�), Im(�)) character-
izing the photonic fraction. Panels (a), (b) and (c) correspond to dif-
ferent positions on the blue curve shown in Fig. 2b indicated by the 
points 1, 2 and 3 respectively. The detunings are � = −49.1�ph and 
� = −32�ph . Panels (d), (e) and (f) correspond to the points 4, 5 and 
6 on the green curve, respectively. The detunings are � = −48.9�ph , 
� = −32�ph . The other parameters are the same as in Fig. 2 Fig. 4   The maps of the second order correlation function of pho-

tons in the vicinity of the upper polariton branch (a) and of the lower 
polariton branch (b–d). The polariton frequencies are indicated by 
the green dotted lines. The driving intensity is a Id∕�2ph = 100 , b 
Id∕�

2

ph
= 70 , c Id∕�2ph = 100 and d Id∕�2ph = 200
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Summarizing this section, we emphasize a crucial role of 
the quantum noise in the optical bistability phenomenon in 
the pillar microcavities. The noise-induced quantum jumps 
between metastable states wash out the hysteresis loop and 
lead to the non-classical statistics of the emitted light. How-
ever in practice, the stochastic behavior of optical photons is 
observable only in the vicinity of the bistability threshold, 
i.e. where the classical hysteresis loop is narrow. For the 
wide loops, the time spent by the system in the metastable 
state quickly grows with the increase of the loop width and 
can become impractically long as it was discussed in Ref. 
[20]. The non-classical statistics of the emitted light can be 
detected within a wide range of the laser driving detunings 
in the vicinity of both lower and upper polariton resonances. 
However, the range where the noise-induced behavior takes 
place is not limited solely to the domain of bistability. In the 
following section we demonstrate the phenomena of photon 
antibunching and giant bunching which occur far from the 
bistability existence domain.

4 � Triple resonance region

In this section, we focus on the parameter region close to the 
triple resonance between the exciton, photon and the pump-
ing laser frequencies, � = 0 and � = 0 . In this case we 

observed the bunching, giant bunching and the antibunching 
phenomena. The (�,�) – map of the second order correla-
tion function g(2)

ph
(0) in the vicinity of the triple resonance is 

shown in Fig. 5a. One can see a domain of the bright false-
color corresponding to the effect of the giant bunching, 
g
(2)

ph
≫ 1 , along to the line � ≈ −� . Note that this condition 

corresponds to the excitonic resonance �d ≈ �ex . This 
behavior should be attributed to the imbalance of the photon 
and the exciton populations. In particular, in the region of 
the giant bunching, the exciton population dominates over 
the cavity mode occupation nex∕nph ≫ 1 as it is shown in 
Fig. 5b. Therefore, the weak quantum fluctuations of the 
exciton mode cause strong fluctuations of the photon mode 
according to the slaving principle [18], see Eq. (3). This is 
illustrated in Fig. 5b which demonstrates the map of the 
nex∕nph ratio. The maximum in Fig. 5b follows the region of 
the giant photon bunching effect. Note, that for the consid-
ered parameters the value of g(2)

ph
(0) in the giant bunching 

regime reaches 105 as it is illustrated in Fig. 5c demonstrat-
ing a cross-sections of the map shown in Fig. 5a for the fixed 
values of the exciton-photon detuning.

At the negative detuning � , the effect of the giant bunch-
ing adjoins the region with g(2)

ph
< 1 , where the cavity pho-

tons are in the antibunched state, cf. with [22]. This regime 
is realised at the negative exciton-photon detuning � while 
the pump frequency �d is weakly detuned from the excitonic 
resonance �ex , see Fig. 5a. The transition from the bunching 
to the antibunching statistics with the variation of the driving 
laser frequency is clearly seen in Fig. 5c. The g(2)

ph
(||Ed

||)
-dependence is shown in Fig. 5d at different exciton-photon 
detunings: � = 6�ph  ,  � = 6.5�ph  ,  � = 6.7�ph  ,  and 
� = 7.5�ph . The antibunching is typically observed at the 
moderate driving strength while in the limit of strong driving 
the cavity field approaches coherent statistics, g(2)

ph
≈ 1.

5 � Non‑classic states

The effect of antibunching was studied for polaritons formed 
in a quantum box in the context of so-called polariton block-
ade [9]. In particular, the antibunching phenomenon was 
predicted to occur only at sufficiently large nonlinear inter-
action strength which requires a microcavity with a very 
small mode volume [9]. However, reducing the mode vol-
ume down to a subwavelength size has a drawback of the 
degradation of the microcavity quality factor which corre-
sponds to the increase of the cavity mode dissipation rate. 
Here, we demonstrate that the antibunching effect can be 
obtained with the small values of the nonlinear interaction 
strength which are achievable in the state of the art pillars 
microcavities. This is demonstrated in Fig. 6a which shows 
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Fig. 5   a The zero-delay second order correlation function of photons 
g
(2)

ph
(0) for various values of driving detuning � and exciton-photon 

detuning � . b The ratio between populations of the excitonic and pho-
tonic modes nex∕nph in the same parameter plane as in the panel (a); 
c the dependence of g(2)

ph
(0) on the driving detuning � for the fixed 

values of the exciton-photon detuning, shown by the vertical dot-
dashed lines in the panel (a), � = −7.5�ph (green line), � = 0 (yellow 
line), and � = 7.5�ph (blue line). d The dependence of g(2)

ph
(0) on the 

driving amplitude |Ed| at � = −7.5�ph , and at the fixed values of the 
laser detuning [color crosses  on the panel (a)], � = 6�ph (blue line), 
� = 6.5�ph (yellow line), � = 6.7�ph (green line), and � = 7.5�ph (red 
line)
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the second order correlation function of photons for differ-
ent values of the nonlinear interaction strength normalized 
to �0 = 0.015�ph which corresponds to the value used for the 
rest of the calculations in the paper. The antibunching of the 
cavity photons can be observed even at weak nonlinearities.

The strong antibunching can serve as a manifestation of the 
quantum blockade phenomenon. This effect can facilitate crea-
tion of single photon sources. That is why the relevant phe-
nomenon of the polariton blockade is of a great interest now 
[23]. Another important question is whether the photonic field 
emitted by the microcavity reflects the statistic of the intra-
cavity polaritons. To answer this question, we address the sta-
tistical properties of the second constituent of polaritons—the 
quantum well excitons. The effects of antibunching can be also 
observed for the excitonic mode. However, in contrast to the 
case of photons, the exciton antibunching is weak due to the 
large number of excitons in the vicinity of the triple resonance. 
In fact, the g(2)ex  map follows that of the photon field though the 
peak and the minimal values of the correlation function are 
much lower. In the antibunching region, g(2)ex  is typically a little 
less than one. The quantum statistics of lower branch polari-
tons combines the statistics of photons and excitons. However 
due to the domination of the exciton field it is mostly governed 
by the exciton statistics. Indeed, one can easily check that the 
condition g(2)

LP
≥ (g

(2)

ph
+ g

(2)
ex )∕2 holds in the region close to the 

triple resonance. It means that polaritons do not exhibit a 
noticeable antibunching effect in contrast to photons. There-
fore, it is necessary to emphasis that the quantum statistics of 
polaritons does not have to coincide with the statistics of the 
microcavity radiation. When the microcavity emits light, 
polariton state collapses to the photonic state inheriting the 
energy and momentum from the polariton. However, the sta-
tistics of the emitted photonic field can be completely 
different.

The antibunching effect leads to the anticorrelation of 
the photon pairs, which typically results in a sub-Poissonian 

distribution of the number of photons. The characteristic of 
the deviation of the statistics from the Poissonian one is the 
Mandel parameter [24]:

At Q = 0 the photon-number statistics is Poissonian. One 
can connect the Mandel parameter with the second order 
correlation function g2

ph
(0) as

The antibunching effect demonstrated in Fig. 6a occurs at 
the small average number of photons, see the values corre-
sponding to the right vertical axis. In these particular cases, 
Q ≈ 0 according to Eq. (7) which means that the statistics of 
photons is just slightly sub-Poissonian, Q < 0 . We then con-
sider the case of the larger population of the photonic mode. 
In particular, we fix the average number of photons at the 
level of 

⟨
nph

⟩
= 1 by tuning the intensity of the pump at each 

value of the varying detuning � . The corresponding g2
ph
(�)

-dependences are shown in Fig. 6b. At 𝛺 > 0 the antibunch-
ing effect corresponds to the statistic of photons being close 
to the sub-Poissonian distribution since Q < 0 , see the right 
vertical axis in the Fig. 6b.

6 � Conclusion

The quantum behavior of exciton polaritons formed in the 
micropillar cavity was studied in detail. The quantum solu-
tion obtained with the use of the quantum phase space 
method allows for calculation of the quantum statistical aver-
ages such as g(2)

ph
-parameter. The effect of quantum fluctua-

tions on bistability was analyzed. We observe the presence 
of the quantum jumps between the states corresponding to 
the upper and lower branches of the bistability curve. Previ-
ously, these stochastic jumps between bistable states were 
observed experimentally [5, 10, 25]. We distinguish between 
several regimes in the bistablity region: (1) a quantum 
regime with nontrivial quantum behavior and smooth transi-
tion between the bistable states; (2) the quasiadiabatic case 
which is characterised by the presence of metastable states 
and a sharp transition between them. The peak of the second 
order correlation function corresponding to the nontrivial 
quantum statistics of the micropillar radiation was observed. 
It should be noted that the approaches developed in Refs. [6, 
7, 19] used a single-mode approximation that takes into 
account only the lower polariton branch, when the pump 
frequency is tuned close to the resonance with the frequency 
of the LP branch. The contribution of the upper polariton the 
branch was neglected. Our work expands the range of system 

(6)Q =

�
�n2

�

⟨n⟩ − 1.

(7)Q =
⟨
nph

⟩
(g

(2)

ph
(0) − 1).
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Fig. 6   a The second order correlation function of photons versus 
the nonlinearity strength � at � = −7.5�ph and different values of � 
shown in the inset. b The second order correlation function of pho-
tons and the Mandel parameter Q versus the laser detuning � . The 
average photon number is taken as ⟨�+�⟩ = 1 at every point. The 
parameters are � = −4�ph—the blue line, � = −5�ph—the yellow line, 
� = −6�ph—the green line, � = −7�ph—the red line
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parameters where the effect of the quantum noise on the 
statistical properties of the exciton-photon system can be 
analyzed.

In the region of the triple resonance, we discovered the 
non-classical behavior of photons, namely, the antibunch-
ing and the giant bunching phenomena. Moreover, the anti-
bunching effect is observed even at weak nonlinearity. These 
results paves the way to the implementation of polariton 

microcavities for various quantum applications. For exam-
ple, for the creation of a polariton logic elements (such as 
polariton trigger proposed in Ref. [26]) or qubits operating 
under bistablity conditions. The recent experimental stud-
ies [27] demonstrated the need of using the medium with 
relatively strong interparticle interactions for the realization 
of a strong antibunching with semiconductor microcavities. 
In our case, the similar effect arises due to the fact that the 
weak quantum noise of the exciton mode induces strongly 
pronounced quantum effects in the photon mode accord-
ing to the slaving principle (3). That is why the effects of 
strong antibunching appear at the relatively low values of 
nonlinearity. Note, that the considered problem represents 
an example of the general system of two strongly coupled 
dissipative oscillators. Hence our results can be applied to 
the various experimental setups both in polaritonics and con-
densed matter physics.

Appendix 1: Derivation of basic equations 
based on the P‑representation method

Using the generalized P-representation and using the c-num-
bers instead of operators we turn from master equation (2) to 
the Fokker–Planck equation for the P-function [12]:

where � and �—are c-numbers. A solution of the Fok-
ker–Planck equation (8) is obtained by the method of poten-
tials in the adiabatic limit [12]:

(8)

𝜕P

𝜕t
=

[
−

𝜕

𝜕𝜙

(
−
(
i𝛥ph + 𝛾ph

)
𝜙 + Ẽd − i𝜔R𝜒

)

−
𝜕

𝜕𝜒

(
−
(
−i𝛥ex + 𝛾ex

)
𝜒 − i𝜔R𝜙 − 2i𝛼𝜒+𝜒2

)

+
𝜕2

𝜕𝜒2

(
−i𝛼𝜒2

)
+ h.c.

]
P,

where � = �ex +
�2

R
�ph

�2
ph
+�2

ph

− i

(
�ex +

�ph�
2

R

�2
ph
+�2

ph

)
 , � = �R

�ph−i�ph

�

(
�2
ph
+�2

ph

) 

and N—is a normalization constant.
We use solution (9) to calculate the correlation functions 

of any order for excitons:

where �  is a gamma function and 0F2 is a hypergeometric 
function.

The stochastic differential equations can be obtained in the 
Ito calculus by converting the Fokker–Planck equation (8) into 
the Ito form [12]:

where �(t) is an independent stochastic function, whose cor-
relation functions satisfy the following relations: ⟨�(t)⟩ = 0 , 
⟨�+(t)⟩ = 0 , 

⟨
�(t)�+

(
t�
)⟩

= �
(
t − t�

)
.

Appendix 2: Derivation of the Wigner 
function

We use the Wigner function for a visual presentation of 
the statistical properties of the exciton-polariton system 
based on the steady-state solution for the P-function (9). 
The Wigner function one can be expressed in terms of the 
P-representation as follow [28]:

Then substituting (9) in (12), changing variables in the inte-
gral as x → −Ed�∕t and using the Schläfli’s integral [29]

we obtain the following relation for the excitonic Wigner 
function:

(9)
Pss

(

� ,�+) = N�−2−i �
� �+−2+i �

∗

� exp
(

−�Ẽd
1
�
− �∗Ẽ∗

d
1
�+ + 2��+

)

,

(10)

G(mn) =
⟨(

𝜒+
)m

𝜒n
⟩
= ∫ 𝜒+m𝜒nPssd𝜇

= (−1)n+m

(
𝜎Ẽd

)n(
𝜎∗Ẽ∗

d

)m
𝛤
(
i𝛾∗

/
𝛼
)
𝛤
(
−i𝛾

/
𝛼
)

𝛤
(
m + i𝛾∗

/
𝛼
)
𝛤
(
n − i𝛾

/
𝛼
)

0F2

(
m + i𝛾∗

/
𝛼, n − i𝛾

/
𝛼, 2|𝜎|2||Ẽd

||
2
)

0F2

(
i𝛾∗

/
𝛼,−i𝛾

/
𝛼, 2|𝜎|2||Ẽd

||
2
) , d

(11)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�
�t� = −

(

i�ph + �ph
)

� + Ẽd − i�R� ,
�
�t�

+ = −
(

−i�ph + �ph
)

�+ + Ẽ∗
d + i�R�+,

�
�t� = −

(

−i�ex + �ex
)

� − i�R� − 2i��+�2 + (1 − i)
√

���(t),
�
�t�

+ = −
(

i�ex + �ex
)

�+ + i�R�+ + 2i��+2� + (1 + i)
√

��+�+(t),

(12)
W(�) =

2

�
e−2|�|

2 ∫
Cx
∫
Cx+

Pss

(
x, x+

)
exp

(
2�∗x + 2�x+ − 2x+x

)
dx+dx .

(13)J�(z) =
(z∕2)�

2�i ∫C

t−�−1 exp

[
t −

z2

4t

]
dt,
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where N′ is a normalization constant, defined by the follow-
ing expression:

Here we use the following expansion of the power series of 
the Bessel function [30]

According to (14) the Wigner function is always positive and 
equals the squared modulus of the Bessel function with the 
complex index −i�∕� − 1 . The Wigner function of photons 
is obtained from the governing principle (3):

where we introduced new normalized constant 
N�� =

�2

R

�2

ph
+�2

ph

N�.
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