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Abstract
We explain how thermodynamic cost can use for diagnosing optimal dense coding. We present a quantum channel where is 
included two initially uncorrelated thermal quantum systems to reveal the optimal dense coding using thermodynamic cost. 
The interest in dense coding brings into quantum correlation calculation. At first, the quantum Fisher information and spin 
squeezing are used to quantify the correlation dynamics over the system. The system reveals that the thermal evolution of 
quantum correlations depends crucially on specific energy and temperature. Also, they can be utilized as control parameters 
for optimal dense coding. Several interesting features of the variations of the energy cost and the dense coding capacity are 
obtained. It can keep its valid capacity value in a broad range of temperatures by increasing the energy value of excited states. 
Also, we can identify valid dense coding with the help of calculating the energy cost of the system. Using this approach, 
identifying a critical point of this model in dense coding capacity quality can be very effective.

1 Introduction

Studying the function of thermodynamics in informa-
tion theory has provided a good insight into the quantum 
mechanics [1–4]. A focus on features of quantum correla-
tions and entanglement conducted remarkably to the pro-
gress in our realization of the thermodynamics of quantum 
systems [2, 5, 6]. Up to now, the role and significance of 
thermodynamics in quantum information processing have 
fascinated the attention of many people [7, 8]. Moreover, the 
recognition of critical temperature in spin models is identi-
fied through different techniques [9].

The main objective of quantum mechanics is considered 
the quantum correlations, which not only contains a deeper 
understanding of the principles of quantum mechanics, but 
can also reveal an essential function of quantum information 
[10, 11] and enables the facility of quantum cryptographic 
protocol [12], quantum teleportation [13], quantum dense 
coding [14], and so forth. For example, in dense coding 
which is considered as an intriguing nonclassical impli-
cation, the sender can communicate two bits of classical 

information to the receiver by forwarding a single qubit if 
they mix a two-qubit maximally entangled state. Dense cod-
ing has been investigated not only theoretically [15–19] but 
also experimentally [20]. Along this line, much research has 
been devoted to study the quantum information and quantum 
correlation [21, 22] in various many-body systems [23].

To address the fundamental limitations inflicted by ther-
modynamics on the growth of correlations and entanglement 
in bipartite and multipartite settings, some systems have been 
inspected [24, 25]. In Ref. [25], the authors have studied the 
energy cost of the created correlations between the uncorre-
lated thermal quantum systems via performing such global 
unitary operations such as quantum discord and local quan-
tum uncertainty. Therefore, anyone can ask whether other 
quantum correlations such as quantum Fisher information 
and spin squeezing can show a correlation in present ther-
modynamic limitations. Recently, it has been represented 
that quantum Fisher information provides a tool for under-
standing the phase sensitivity that systems can prepare for the 
imperfection of quantum measurement devices [26–28]. As 
a document of multipartite entanglement, it is asserted that 
it specifies topological states [29] and non-Gaussian many-
body entangled states [30]. Quantum Fisher information can 
be widely explored in some intent such as the connection 
between quantum coherence and quantum phase transition 
[31–33], quantum metrology [34], and quantum speedup limit 
time [35]. Recently, it is attractive to find that spin squeezing 
is connected to quantum entanglement and one can use spin 
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squeezing to characterize entanglement. It is found that spin 
squeezing relates to the minimum spin fluctuation in the plane 
perpendicular to the mean spin direction [36–38].

We know that correlated states play a significant role in 
dense coding. For this purpose, we present a straightforward 
calculation of how quantum Fisher information and also spin 
squeezing of states can occur the fundamental limitations com-
ing from the initial temperature of two initially uncorrelated 
thermal quantum systems for building quantum correlations. 
The problem can be interested: how we can distinguish the 
connection between the dynamic properties of energy cost and 
dense coding capacity? Our results suggest that valid dense 
coding can be detected using the dynamic energy cost in ther-
modynamic effects.

The road map of this paper is formed as follows. In Sect. 2, 
we compute the density matrix for two initially uncorrelated 
two-dimensional thermal quantum systems, and then, we give 
out the analytical expression to the quantum Fisher informa-
tion and spin squeezing and demonstrate how creating quan-
tum correlations can be confined by the thermodynamics of 
the system. In Sect. 3, the super dense coding is discussed. We 
finish the paper with our main results and outlook in Sect. 4.

2  Creating quantum correlation 
between two thermal qubits

Let us take a global system can be included by two basic sepa-
rable d-dimensional quantum systems A and B. And they link 
with a hot heat bath at temperature T, the Hamiltonian of each 
of which may be expressed as H =

∑d−1

i=0
Ei��i⟩⟨�i� , in which 

Ei and ��i⟩ are eigenvalues and eigenstates, respectively. The 
thermal state of this system at a temperature T is given by [7]

where � =
e−�H

Tr(e−�H )
 , � = 1∕kT(k = 1) , and k is the Boltzmann 

constant. In the following of discussion, we will stand for 
energy of the ground and excited state by E0 = 0 and E1 = E , 
respectively. Also, the initial thermal state of a qubit can be 
given as � = p�0⟩⟨0� + (1 − p)�1⟩⟨1� . The coefficient p sets 
the ground populations that can be written

As in Ref. [39] was showed the maximal entanglement of 
two-qubit arises by optimal global unitary operations. The 
global unitary operator U which is made in this protocol can 
be easily represented as two unitary operators (U = V2V1) , 
so we can obtain the final state as�f = V2V1�iV

†

1
V
†

2
 , where

is the action of the CNOT  gate and

(1)𝜌T = 𝜌 ⊗ 𝜌,

(2)p =
1

1+e−�E
.

(3)V1 = �00⟩⟨00� + �01⟩⟨01� + �11⟩⟨10� + �10⟩⟨11�

is a rotation in the subspace spanned by �00⟩, �11⟩ to maxi-
mally entangled states which are ��00⟩ = 1√

2
(�00⟩ + �11⟩) 

and ��11⟩ = 1√
2
(�00⟩ − �11⟩) . Hence, the density matrix of 

the final state in the basis �00⟩, �10⟩, �01⟩, �11⟩ can be easily 
obtained by the following forms:

In the following, for obtaining quantum correlation, we 
focus on the quantum Fisher information and spin squeezing.

2.1   Fisher information between two thermal qubits

The quantum Fisher information (QF) is a widespread tool 
for explaining optimal validity in parameter estimation pro-
tocols [40–42]. An active area of research dedicated to eval-
uating the evolution of QF to determine the relation between 
quantum entanglement and quantum metrology [43, 44]. It 
has been illustrated that in the unitary evolution, quantum 
entanglement leads to a remarkable promotion in precision 
of parameter estimation. For an arbitrary parametric state �� 
that depends on � , the QF is characterized as follows:

where L� is the symmetric logarithmic derivative operator. 
L� is defined as the solution of the equation

The effect of the unitary evolution U� = e−iH� on � , 
�� = U

�
�U� , can be lead to parametric state �� . For a 

defined quantum state � =
∑

l �λl⟩⟨λl� with λl ⩾ 0 , 
∑

l λl = 1 . 
Here, we stand for F2(��) with F2(�,H) , which can also be 
expressed by [45]

According to Eq. (5), QFI can easily obtain as follows:

Obviously, if T → ∞ , F(�f ,H) is equal to zero. Also, the 
maximal amount of the QF can be obtained in the limit 
T → 0 , which is equal to 0.5. In Fig. 1a, we plot the QF 
which has given in Eq. (9) to study the quantum correlations 
behavior with respect to initial temperature of the system. 
It is seen that the quantum correlations vanish completely 

(4)V2 = ��00⟩⟨00� + �01⟩⟨01� + �10⟩⟨10� + ��11⟩⟨11�

(5)�f =

⎛
⎜⎜⎜⎜⎝

p

2
0 0 p2 −

p

2

0 p(1 − p) 0 0

0 0 (1 − p)2 0

p2 −
p

2
0 0

p

2

⎞
⎟⎟⎟⎟⎠
.

(6)F2(��) =
1

4
tr(��L

2

�
),

(7)���
��

=
1

2
(L��� + ��L�).

(8)F(�f ,H) =
1

2

∑
l≠n

(λl−λn)
2

λl+λn
�⟨l�H�n⟩�2.

(9)F(�f ,H) =
(1−e−�E)2

2
{

1

(1−e�E)3
−

1

1+e2�E
}.
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after a threshold temperature for any specific energy. As 
can be observed for any specific energy E due to thermal 
fluctuations, QF is decreased by increasing temperature. 
Also, we see that by enhancing the energy value of excited 
states E, the threshold temperature is raised and, therefore, 
the QF can exist in a vast limit of temperature. It should 
be noted that the maximal value of the QF is equal to 0.5 
which is obtained at T = 0 . To further investigate the criti-
cal behavior of QF, we have plotted the first derivation of 
Fisher information with respect to initial temperature of the 
system for various values of E in Fig. 1a. It appears that the 
dQF

dT
 have sharp dips in the thermal evolution for any specific 

energy E. A more detailed analysis shows that the position 
of the dips located at a critical temperature Tc . In fact, these 
sharp dips originate from the non-analytical property of QF 
at the critical temperature, which further demonstrates that 
the QF can detect the critical temperature for two initially 
uncorrelated thermal quantum systems. Now, we analyze 
the correspondence between the singularity of the threshold 
energy and the phase diagram for different temperatures. We 
have plotted QF and evolution of the first derivative QF with 
respect to the energy in Fig. 1b. From Fig. 1b, we see that 
with the increasing of energy for any special temperature, 
QF enhances to a maximum value. According to Fig. 1b, 
a threshold energy exists that depends on the temperature 
value. For a more detailed analysis, we display the evolution 
of the first derivative of the QF versus E in Fig. 1b. This 
graph reveals how the position of critical point energy alters 
as the temperature of the system increases.

2.2   Spin squeezing between two thermal qubits

Following Kitagawa and Ueda’s [38] criterion of spin 
squeezing, we briefly review the definition of the spin 
squeezing parameter for a collection of N qubits with com-
ponents S� =

∑N

i=1

��
i

2
, (� ∈ x, y, z) as

Here, the subscript �⃗n
⟂
 refers to an axis perpendicular to 

angular momentum operator. S = (Sx, Sy, Sz) denotes the 
angular momentum operator of an ensemble of spin-1/2 
particles. Where (ΔS⃗n

⟂

)2
min

 is the minimal spin fluctuation 
in a plane perpendicular to the mean spin, and J =

N

2
 , and 

S⃗n
⟂

= �⃗S. �⃗n
⟂
 . The non-correlated limit yields �2 = 1 , while the 

inequality 𝜉2 < 1 indicates that the system is spin squeezed 
and entangled. In Ref [46] was indicated for the mean spin 
along the z direction spin squeezing can be written as

where S± = Sx ± Sy are the ladder operators. From Eq. (11), 
we see that the squeezing parameter is determined by a sum 
of two expectation values ⟨S2

z
⟩ and ⟨S2

+
⟩ ; hence, the calcula-

tions are greatly simplified. For this density matrix Eq.(5), 
the associated spin squeezing is given by

According to Eq. (12), it is clear that the maximal value 
of the spin squeezing is equal to 1, which is obtained at 
T → ∞ . Also, the minimal amount of the infinity can be 
obtained in the limit T → 0 . Variations of spin squeezing are 
given in Fig. 2a for any specific energy E. We can see the 
spin squeezing undergoes to value one with increasing tem-
perature of the system for any specific energy. As a physi-
cal interpretation, the interaction between the system with 
its environment at high temperatures can be lead to non-
squeezed states. Notably, previous studies [25] have shown 
that the entanglement vanished completely at a finite critical 
temperature. It is also known in which all the specific energy 

(10)𝜉2 =
2(ΔS⃗n

⟂

)2
min

J
=

4(ΔS⃗n
⟂

)2
min

N
.

(11)�2 =1 +
N

2
−

2

N
[⟨S2

z
⟩ + �⟨S2

+
⟩�],

(12)�2 =1 −
1

4
tanh

�E

2

(
1 + tanh

�E

2

)
.

(a) (b)

Fig. 1  a QF and the evolution of the first derivative of the QF versus 
T  for various values of E ( E = 1 (red , solid line), E = 2 (blue, dotted 
line), E = 3 (black, dashed line)). b QF and the evolution of the first 
derivative of the QF versus E for various values of T  ( T = 0.1 (red , 
solid line), T = 0.3 (blue, dotted line), T = 0.5 (black, dashed line))

(a) (b)

Fig. 2  a Spin squeezing and the evolution of the first derivative of the 
spin squeezing versus T  for various values of E ( E = 1 (red , solid 
line), E = 2 (blue, dotted line), E = 3 (black, dashed line)) b spin 
squeezing and the evolution of the first derivative of the spin squeez-
ing versus E for various values of T  ( T = 0.1 (red , solid line), T = 0.3 
(blue, dotted line), T = 0.5 (black, dashed line))
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is supplied at a low temperature has a spin squeezing effi-
cient. Therefore, low temperature can maintain squeezing. 
Having this in mind, the first derivative of the spin squeez-
ing is depicted as a function of  T in Fig. 2a. The derivative 
of spin squeezing versus temperature of the system shows a 
singular behavior at the critical temperature for any specific 
energy E. As, the spin squeezing constructs a maximum at 
the critical temperature. In generally, It can be seen how the 
temperature of the initial state affects the amount of correla-
tion that we can be created. To confirm the previous discus-
sions, we investigate the behavior of the spin squeezing and 
the first derivative of the spin squeezing versus energy E for 
the difference of temperatures in Fig. 2b. We find that spin 
squeezing exhibits a sudden change at the critical point. This 
indicates that spin squeezing can be used to detect the phase 
transition that has happened in initially uncorrelated thermal 
quantum systems.

3  Superdense coding

Now, we carry out the thermal optimal dense coding in a 
global system consisting of two initially uncorrelated d-dimen-
sional quantum systems A and B as a quantum channel. For 
this purpose, the set of mutually orthogonal unitary transfor-
mations is necessary to be made. The set of mutually orthogo-
nal unitary transformations for two-qubit are given as follows 
[47]:

where �j⟩ is the single qubit computational basis 
(�j⟩ = �0⟩, �1⟩) . The average state of the ensemble of signal 
states generated by the unitary transformations Eq. (13) is 
given by

where 0 stands for 00, 1 for 01, 2 for 10, 3 for 11, and � is 
the density matrix of the quantum channel. Equation (13) 
represents the operations that Alice (sender) performs on 
the shared entangled state � . If the sender does the set of 
mutually orthogonal unitary transformations, the maximum 
dense coding capacity � can be obtained by

where S(�∗) is a von Neumann entropy for the average 
state of an ensemble of signal states �∗ , and S(�) is the von 

(13)

U00�j⟩ =�j⟩
U01�j⟩ =�j + 1(mod2)⟩
U10�j⟩ =e

√
−1(2�∕2)j�j⟩

U11�j⟩ =e
√
−1(2�∕2)j�j + 1(mod2)⟩,

(14)𝜌∗ =
1

4

3∑
i=0

(Ui ⊗ I2)𝜌(U
†

i
⊗ I2),

(15)� = S(�∗) − S(�),

Neumann entropy of the quantum channel. If 𝜒 > 1 dense 
coding is valid, and for optimal dense coding � must be 
the maximum, i.e., �max = 2 . We are now ready to discuss 
the validity of the generated quantum correlation a global 
system consisted of two initially uncorrelated d-dimensional 
quantum systems  A and B in contact with a heat bath at tem-
perature T as a quantum channel to study the optimal dense 
coding. By considering the density matrix Eq. (5), we first 
focus on the thermal dense coding capacity. By numerical 
calculation, we can plot dense coding capacity as a func-
tion T for different specific energy values. In Fig. 3a, we 
observe valid dense coding for any specific energy in low 
temperatures. It is reduced from the maximum to zero in a 
short interval of temperature and disappears for the large 
amounts of T. The increase in the energy value of excited 
states helps dense coding capacity can be alive in a broad 
range of temperature.

Now, we start to explore a work cost W to the optimal 
dense coding. Thermodynamic cost of dense coding W is 
given by [7, 48, 49]

where �∗ is the final state Eq. (14) as follows:

and Htot =
∑

i H
(i) is the total Hamiltonian as

By substituting Eqs. (5), (18) and (17) into Eq. (16), work 
cost can be obtained as

(16)W = Tr (Htot�
∗) − Tr (Htot�f ),

(17)�∗ =

⎛
⎜⎜⎜⎜⎜⎝

p2−
3p

2
+1

2
0 0 0

0
p(3−2p)

4
0 0

0 0
p(3−2p)

4
0

0 0 0
p2−

3p

2
+1

2

⎞
⎟⎟⎟⎟⎟⎠

,

(18)Htot = H ⊗ I2 + I2 ⊗ H =

⎛⎜⎜⎜⎝

0 0 0 0

0 E 0 0

0 0 E 0

0 0 0 2E

⎞⎟⎟⎟⎠
.

(a) (b)

Fig. 3  a Dense coding capacity and b energy cost of dense coding 
versus T for various values of E ( E = 1 (red , solid line), E = 2 (blue, 
dotted line), and E = 3 (black, dashed line))
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We find that the energy cost is dependent on temperature 
and specific energy. According to Eq. (19), it is easy to prove 
that value of the energy cost can be maximal in the criti-
cal temperature Tc = 0.91E which the dense coding is not 
valid, i.e., 𝜒 < 1 (see Fig.  3a). In Fig. 3b, the energy cost 
of dense coding is plotted as a function of temperature for 
any specific energy. It can be seen when the temperature is 
smaller than Tc , the energy cost increases until its maximum 
value with raising the temperature. However, it for T > Tc 
specific energy exhibits a collapse as temperature increases. 
Moreover, the range of T for energy cost is also broadened as 
specific energy increases in this interval. Notably, the height 
of peaks energy cost changes manifestly. It approaches 
the higher peak by increasing specific energy. Comparing 
dynamic energy cost Fig.  3b and dense coding capacity 
Fig.  3a leads to an interesting outcome, there is no optimal 
dense coding when energy cost is decreasing, i.e., after the 
phase transition T > Tc . We notice that when T < Tc , until 
the energy cost reaches its maximum value, we can obtain 
optimal dense coding. With these results at hand, one can 
detect optimal dense coding via the behavior of energy cost. 
Therefore, it is helpful to investigate the energy cost as indi-
cators of valid dense coding in every system.

4  Conclusion

In conclusion, we have prospected the number of quantum 
correlations that can be made between two initially uncor-
related thermal quantum systems via an optimal protocol 
that maximizes the quantum correlation. We inspected the 
thermal evolution of quantum correlations such as quan-
tum Fisher information and spin squeezing in this sys-
tem. It is illustrated that increasing the initial equilibrium 
temperature leads to diminishing the amount of quantum 
correlations that can be caused between two thermal 
states. Quantum correlations undergo an abrupt death at 
the critical temperature. Moreover, we have investigated 
the quantum dense coding for this model. We have found 
appealing results as the existence of a relationship between 
dense coding and energy cost that will certainly lead to a 
better comprehension of the non-equilibrium systems. Our 
analyses have indicated by enhancing the value of tem-
perature, the value of energy cost tends to its maximum. 
Interestingly, after crossing the critical temperature, when 
no optimal dense coding exists in the system, the energy 
cost of dense coding becomes spoiled. We offer these fea-
tures as a tool to detect optimal dense coding.

(19)W =
e�E − 1

2(e�E + 1)2
E.
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