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Abstract
Compressed ghost imaging method can effectively reduce the number of measurements required for ghost imaging recon-
struction. The non-negative characteristics of measurement matrix in compressed ghost imaging method is inconsistent with 
the requirements of the measurement matrix in traditional compressed sensing theory, leading to low quality reconstruction. 
Aiming at the point, this paper proposes a singular value decomposition compressed ghost imaging method to improve the 
reconstruction quality of ghost imaging. First, the singular value decomposition is performed on the measurement matrix, 
and then the optimized measurement matrix and measurements are obtained, finally the reconstruction of the image is com-
pleted by the reconstruction algorithm. Numerical simulation experiments verify the superiority of our proposed singular 
value decomposition compressed ghost imaging method.

1  Introduction

In recent years, ghost imaging (GI) [1–6] has been one of 
the frontiers and hot spots in the field of quantum optics. 
Compared to traditional imaging techniques, GI is a novel 
imaging technology, which enables detecting and imaging 
as separate parts. GI takes the advantages of anti-turbulence 
perturbation and lensless imaging, which has wide applica-
tion in the fields of earth observation [7, 8], radar imaging 
[9], life science [10], optical computing [11, 12] and secure 
communication [13] and so on. However, the drawback of 
GI is that the imaging quality is still very poor.

In 2010, Ferry et al. [14] proposed differential ghost 
imaging (DGI), which adds a new differential bucket detec-
tor to record a reference light, and performs differential cal-
culation on measurements, which can dramatically enhance 
the signal-to-noise ratio (SNR) and improve the image 
reconstruction quality. In 2012, Sun et al. [15, 16] proposed 
normalized ghost imaging (NGI). Compared to DGI, NGI 
made some improvements which normalizes each individual 

measurement of the bucket detector, such as running the 
average, according to the speckle field detected by the ref-
erence arm, which can achieve higher quality imaging by 
eliminating the noise caused by laser power fluctuations.

In 2009, Katz et al. [17–20] proposed compressed ghost 
imaging (CGI) based on compressed sensing theory, which 
can achieve better reconstruction using measurements much 
lower than Nyquist rate. In 2014, pseudo-inverse ghost imag-
ing (PGI) [21, 22] was proposed, which reconstruction by 
pseudo-inverse of the measurement matrix, which achieve 
simpler, faster and better performance. In 2018, singular 
value decomposition ghost imaging (SVDGI) [23] was pro-
posed. Different from PGI, SVDGI firstly performs singular 
value decomposition (SVD) on the random measurement 
matrix to make the non-zero elements of singular value 
matrix to be equal to 1.0, and then the measurement matrix 
is obtained by the inverse singular value decomposition, 
finally a better reconstruction can be achieved by multiply-
ing the transposition of the measurement matrix.

To further improve the reconstruction quality of GI, this 
paper proposes a method of compressed ghost imaging based 
on singular value decomposition (SVDCGI). The nonnega-
tive characteristic of measurement matrix and measurements 
are simultaneously optimized using singular value decompo-
sition, and the original image is then reconstructed via the 
optimized measurement matrix and the measurements. A 
theoretically guarantees for optimized measurement matrix 
via singular value decomposition is also presented. By com-
bining SVD with CS, the proposed method is superior to the 
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state-of-the-art method, as demonstrated through numerical 
simulation experiments.

2 � Overview of non‑iterative reconstruction 
algorithms for ghost imaging

Figure 1 depicts an optical step of GI system. First, the pesudo-
thermal light is divided into two beams. One beam is “object 
arm”, in which an unknown object is illuminated and then 
collected by a bucket detector. The other beam named “refer-
ence arm”, which is detected by a pixelated sensor. The i - th 
measurement is recorded as Ii(x, y) . At the object arm, the 
bucket detector measures the intensity from the object, and 
each measurement is recorded as Bi , the reference light Ri is 
extracted by adding the second bucket detector.

After M pairs of measurements 
{
Ii
}M

i=1
 and 

{
Bi

}M

i=1
 are 

sequentially recorded, respectively, we can obtain the follow-
ing imaging model for ghost imaging:

which can be expressed in matrix–vector form

where vec(⋅) transforms a two-dimensional (2D) image in 
terms of a vector by the lexicographical order. Note that as 
the measurements Φ and B are recorded by the CCD and 

(1)

⎛⎜⎜⎜⎝

B1

B2

⋮

BM

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

I1(1, 1) I1(1, 2) ⋯ I1(P,P)

I2(1, 1) I2(1, 2) ⋯ I2(P,P)

⋮ ⋮ ⋱ ⋮

IM(1, 1) IM(1, 2) ⋯ IM(P,P)

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎝

T(1, 1)

T(1, 2)

⋮

T(P,P)

⎞⎟⎟⎟⎠

(2)B = Φ ⋅ vec (T)

bucket detectors, all the entries in both of them are nonnega-
tive, i.e. B ≥ 0 and Φ ≥ 0.

The aim of ghost imaging is to find the solution to follow-
ing optimization problem with B and Φ are known

Based on the basic principles of traditional ghost imag-
ing (TGI), traditional non-iterative ghost imaging methods 
such as pseudo-inverse ghost imaging (PGI), normalized 
ghost imaging (NGI), differential ghost imaging (DGI) and 
singular value decomposition ghost imaging (SVDGI) are 
proposed. Table 1 presents the definition of variables in 
five traditional non-iterative ghost imaging methods, and 
the reconstruction process of five different methods can be 
expressed in the Table 2. 

3 � Singular value decomposition 
compressed ghost imaging

3.1 � Compressed sensing

Classical Nyquist sampling theory leads to a large amount of 
data acquisition redundancy and waste of sensor resources. 
In 2006, Donoho and Candès firstly proposed compressed 
sensing (CS), CS theory shows that if a signal is sparse or 
compressible on some basis, accurate recovery of the origi-
nal signal with a small number of incoherent projections far 

(3)
find T

s.t. B = Φ ⋅ vec(T)

Fig. 1   Schematics of Ghost imaging system
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below the Nyquist sampling rate. And the CS theoretical 
framework is shown in Fig. 2.

In Fig. 2, � is a coefficient vector with size N × 1 , Ψ is 
a sparse basis of size N × N  , and f  is a one-dimensional 
vectorized signal of size N × 1 . g is the measurements, Φ is 
the measurement matrix.

3.2 � Compressed ghost imaging

One of the main disadvantages of traditional ghost imaging 
is that the measurements required for image recovery with 
a high quality. In 2009, Katz et al. Proposed an advanced 
reconstruction algorithm for GI based on compressed sens-
ing termed as compressed ghost imaging (CGI), which 

can reduce significantly the required acquisition times by 
an order of magnitude. CGI enables accurate recovery of 
a high-resolution image from few linear measurements.

In the case of M < N  , the imaging model of GI in 
Eq. (1) can be expressed into matrix–vector form under 
the framework of compressed sensing by exploit:

Note that the significant difference is that our measure-
ment matrix is restricted to nonnegative constraints, which 
is rarely handled in classical compressed sensing and lack 
of theoretically guarantees for successful recovery.

The reconstruction process of CGI can be expressed 
as solving a convex optimization problem by seeking for 
the image T(x, y) which the minimizes the �1-norm in the 
sparse basis as follows:

where Ψ−1 is the inverse of the sparse basis, the elements 
in the measurement matrix Φ are all non-negative, and all 
the elements in the measurements B are also non-negative.

In 2018, Shi et al. [24] proposed a method named modi-
fied compressed ghost imaging (MCGI) to reduce the 
background caused by randomly distributed detector noise 
on the signal path. Here, the detector noise is assumed 
as additive noise and propose the idea that subtracting a 

(4)B = Φ ⋅ vec(T) = ΦΨ�

(5)
T̂CGI = arg min

‖‖‖Ψ
−1
{
TCGI(x, y)

}‖‖‖L1
s.t. B = Φ ⋅ vec

(
TCGI

)
= ΦΨ𝛼

Table 1   Variable definition Variable Definition Variable Definition

Ii(x, y) The i-th row of speckle field pattern Ri Reference light Ri = ∫ ∫ Ii(x, y) dxdy

T(x, y) Original image T̂(x, y) Estimated version of T(x, y)

Bi The i-th measurement from bucket detector
Bi = ∫ ∫ Ii(x, y)T(x, y) dxdy

M Number of measurements

Φ Measurement matrix 

Φ =

⎛⎜⎜⎜⎝

I1(1, 1) I1(1, 2) ⋯ I1(P,P)

I2(1, 1) I2(1, 2) ⋯ I2(P,P)

⋮ ⋮ ⋱ ⋮

IM(1, 1) IM(1, 2) ⋯ IM(P,P)

⎞⎟⎟⎟⎠

Φ† Pseudo-inverse of matrix Φ

ΦSVD Singular value decomposition of matrix Φ
ΦSVD = UM×M

[
ΛM×M �

]
M×N

VT
N×N

Φ†

SVD
Pseudo-inverse of matrix ΦSVD

Table 2   Reconstruction process of five traditional non-iterative meth-
ods

Method Algorithm input Reconstruction formula

TGI Bi , Ii(x, y),M
T̂TGI(x, y) =

1

M

M∑
i=1

�
Bi − ⟨B⟩�Ii(x, y)

PGI Bi,M,Φ†
T̂PGI(x, y) =

1

M
Φ†

[
B1,B2,… ,BM

]T
DGI Bi,Ii(x, y),M,Ri

T̂DGI(x, y) =
1

M

M∑
i=1

�
Bi −

⟨B⟩
⟨R⟩Ri

�
Ii(x, y)

NGI Bi,Ii(x, y),M,Ri
T̂NGI(x, y) =

1

M

M∑
i=1

�
Bi

Ri

−
⟨B⟩
⟨R⟩

�
Ii(x, y)

SVDGI Φ†

SVD
,Bi,M T̂SVDGI(x, y) =

1

M
Φ†

SVD

[
B1,B2,… ,BM

]T

Fig. 2   CS theoretical framework
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constant value ( C ) from the bucket measurements B , the 
MCGI as follows:

where the new bucket measurements B� = B − C , and the 
statistical mean of noise value ⟨Bnoise⟩ is originally used as 
the constant C.

3.3 � Singular value decomposition compressed 
ghost imaging

Assuming that the size of an non-singular matrix is M × N , 
its singular value decomposition can be expressed as:

where, the U and VT are orthogonal matrix, and the sizes are 
M ×M , N × N respectively, and the singular value matrix Σ , 
which is a semi-positive diagonal matrix of size is M × N , 
as follows:

where, Λ is a diagonal matrix of size is M ×M , and the size 
of 0 is (N −M) ×M with all entries 0.

Combining the Eq. (7) with the Eq. (2), we can get:

By multiplying the matrix Σ−1
1
UT on both sides of Eq. (9), 

we can get:

Then, a new compressed measurement system can be 
expressed as follows:

where, BSVDCGI = Σ−1
1
UTB is the new measurements after 

optimization, ΦSVDCGI = VT
1

.
Finally, Orthogonal Matching Pursuit algorithm (OMP) 

[25, 26] is used to restore the original image in terms of low 
implementation cost and high speed of recovery:

(6)
T̂MCGI = arg min

‖‖‖Ψ
−1
{
TMCGI(x, y)

}‖‖‖L1
s.t.B� = Φ ⋅ vec(TMCGI) = ΦΨ𝛼

(7)Φ = UΣVT

(8)ΦSVD = UM×M

[
ΛM×M �

]
M×N

VT
N×N

(9)

B = Φvec(T) = UΣVTvec(T)

=U

�
M×M

⏞⏞⏞

Σ1

M×(N−M)

⏞⏞⏞

�

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

M×N

⎡⎢⎢⎢⎢⎢⎣

VT
1

⏟⏟⏟

M×N
(N−M)×N

⏞⏞⏞

VT
2

⎤⎥⎥⎥⎥⎥⎦

vec(T)

= UΣ1V
T
1
vec(T)

(10)Σ−1
1
UTB = Σ−1

1
UTUΣ1V

T
1
vec(T) = VT

1
vec(T)

(11)BSVDCGI = ΦSVDCGIvec(T) = ΦΨ�

3.4 � Theoretical analysis of singular value 
decomposition compressed ghost imaging

In SVDGI, the singular value decomposition is performed 
on the measurement matrix to make the non-zero elements 
of singular value matrix to be equal to 1.0, for high sam-
pling ratio (especially full-sampling), SVDGI can dramati-
cally enhance the reconstruction quality due to the small 
proportion of ‘0’ element. But under low sub-sampling 
ratio condition, as the “0” element in the diagonal ele-
ment of the measurement matrix is excessive, which leads 
to low quality of GI reconstruction. Different from the 
SVDGI method, this paper proposes singular value decom-
position compressed ghost imaging (SVDCGI) firstly per-
form SVD on the non-negative measurement matrix in the 
GI imaging and then an improved compressed measure-
ment system is constructed with the measurement matrix 
and related measurements are simultaneously optimized.

In the CGI method, as the non-negativity of measure-
ment matrix and the measurements are recorded by the 
detector, resulting in low quality reconstruction. Com-
pared with the CS reconstruction method, the SVDCGI has 
different requirements for the measurement matrix, which 
uses singular value decomposition on non-negative meas-
urement matrix, then ΦSVDCGI can be regarded as picking 
M rows from a special orthogonal matrix. In other words, 
after the singular value decomposition, we can obtain new 
measurement matrix ΦSVDCGI = VT

1
 is general orthogonal 

measurement matrices.

Lemma 1 (RIP for General Orthogonal Measurement Ensem-
ble)  [27–29] Let F be an N × N  orthogonal matrix with 
||HS, j

|| ≤ �(Q).Then picking its M rows to construct a ran-
dom measurement matrix of size M × N , while the rows of √
NQ uniformly at random. Then it is probability satisfy 

the RIP with RIC � = 1∕4 , if the number of measurement 
support that:

where, C0 is some constant, each integer S = 1, 2,….F is 
a subset of the signal domain, � is the mutual coherence 
coefficient:

(12)

T̂SVDCGI = arg min
‖‖‖Ψ

−1
{
TSVDCGI(x, y)

}‖‖‖L0
s.t. BSVDCGI = ΦSVDCGI ⋅ vec

(
TSVDCGI

)
= ΦSVDCGIΨ𝛼

(13)M ≥ C0 ⋅ |Q| ⋅ �2(H) ⋅ log (N∕�)

(14)� = max
i≠j

|||
⟨
�i,�j

⟩|||
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� can be interpreted as a rough measure of how concen-
trated the rows of measurement matrix. The smaller � , i.e. 
the more incoherent the measurement matrix.

Proof  As the Φi and Φj are the i-th row and j-th row of Φ , 
thus we have

Finally, we can find that the rows of the matrix are 
ΦSVDCGI orthogonalized, thus it's a general orthogonal meas-
urement ensemble. Then through Lemma1, the measurement 
matrix obtained by our proposed SVDCGI satisfies the RIP 
condition is concluded.

Therefore, the singular value decomposition is used to 
decompose the measurement matrix to obtain the optimized 
measurement matrix and the optimized measurements in 
SVDCGI. Since the rows of the optimized measurement 
matrix are orthogonal to each other, the correlation between 
the measurements is completely eliminated. Compared to 
other ghost imaging methods, SVDCGI method which not 
only reduces the number of measurements, but also improves 
the reconstruction quality.

4 � Numerical simulation

In this section, four sets of numerical simulation experiments 
are presented to verify the effectiveness of our proposed 
SVDCGI method. The test environment is Matlab 2016b. 
For comparison, SVDCGI is compared with other eight 
method (TGI, NGI, DGI, PGI, CGI,MCGI and SVDGI).

4.1 � Single reconstruction numerical simulation

In this numerical simulation, some binary images with 
64 × 64 pixels are selected as the target image, and the 
reconstruction results with different reconstruction meth-
ods are shown in Figs. 3 and 4, respectively. The number 
of measurements for each method is 2000 in Fig. 3 and 
4096 in Fig. 4. For further testing, some complex gray 
images with size 64 × 64 are also chosen as test images, 
and the number of measurements is 2000 under noiseless 
condition, the reconstruction results in Fig. 5.

To further analyze the reconstruction performance of 
the eight methods above, peak signal to noise ratio (PSNR) 

(15)ΦSVDCGI = 𝜙i𝜙
T
j
=< 𝜙i,𝜙j >=

{
1 i = j

0 others

is used to quantify the reconstruction quality. W  repre-
sents the original image, W ′ represents the reconstructed 
image, the image size is 64 × 64 . The definition of PSNR 
is defined as below:

where MSE = ‖W −W �‖2
2
∕(P × P) is the mean square error.

Also, the correlation coefficient (CC) is also used to 
indicate the similarity between the reconstruction results 
and the original image, which is defined as:

It can be seen from Fig.  3 that the reconstruction 
results by TGI, DGI, and NGI are very poor, and the 
reconstruction results of PGI, CGI, MCGI and SVDGI 
are relatively improved, but the reconstruction result is 
far less than our proposed SVDCGI. As can be seen from 
Fig. 4, the quality of the reconstruction is improved when 
full sampling and can be almost well reconstructed. From 
Fig. 5, although the CGI and MCGI method surpass other 
methods (TGI, PGI, DGI, NGI, SVDGI) substantially, 
but it is obvious that our proposed SVDCGI also has 
made a greater progress on reconstruction quality and 
the original image can be reconstructed when under sam-
pling. As shown in Table 3, SVDCGI has no advantage 
on the reconstruction time due to the iterative scheme, 
the same as CGI and MCGI. But in Table 4, SVDCGI has 
advantage on the reconstruction quality.

4.2 � Reconstruction under different sparsity

To compare the performance of our proposed SVDCGI 
method with other six reconstruction methods which under 
different sparsity level ( K ), the size of test image is 32 × 32 , 
i.e. N = 1024 , picking a random non-negative measurement 
matrix, the number of measurements M = 256 , the sparsity 
level varies from 60 to 200, and the step size is set to 5. Under 
each set of (N,M,K) parameters, the average CC and PSNR of 
1000 times experiments are calculated and depicted in Fig. 6.

As shown in Fig. 6, the CC and PSNR of TGI, DGI, 
NGI are nearly the same, which decreases slowly as the 
sparsity level increase. The PGI is nearly unchanged as 
the increase of sparsity, because it’s independent to the 
change of sparsity level. For CGI and our proposed SVD-
CGI, as the sparsity level increases, the PSNR and CC 
are better than other reconstruction methods, and our 

(16)PSNR = 10 × log10
2552

MSE

(17)CC =
COV

(
W,W �

)
�W�W �
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proposed SVDCGI is best. The reasons are that, after 
singular value decomposition, in the new compressed 
measurement system we get, the correlation between dif-
ferent measurements is eliminated, which maximize the 
efficacy of the measurements, thus our proposed SVD-
CGI method has made an great progress on enhancing 
the reconstruction quality.

4.3 � Reconstruction under different number 
of measurements

Considering the relationship of the reconstruction perfor-
mance and the number of measurements. In this experi-
ment, under different number of measurement, the size 
of test image is 32 × 32 , i.e. N = 1024 and the sparsity 

Fig. 3   Comparison results of 
eight reconstruction method for 
binary images with 2000 meas-
urements (under-sampling): a 
original image; b TGI; c PGI; d 
DGI; e NGI; f CGI; g SVDGI; h 
our proposed SVDCGI
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level K = 60 , the number of measurement varies from 60 
to 360, and the step size is set to 10. Under each set of 
(N,M,K) parameters, the average CC and PSNR of 1000 
times experiments are calculated and depicted in Fig. 7.

As can be seen from Fig. 7a and b, as the number of 
measurements increases, the CC and PSNR of TGI, DGI, 

and NGI increases slowly. The CC and PSNR of PGI, CGI 
and SVDGI increases as the number of measurements 
increases, and the CC value of CGI and SVDCGI increases 
until reaches 1.0. However, the curves of PSNR of SVD-
CGI increase rapidly than other methods, indicating that 
the SVDCGI method is much better than other methods.

Fig. 4   Comparison results of 
eight reconstruction method 
for binary images with 4096 
measurements (full-sampling): 
a original image; b TGI; c PGI; 
d DGI; e NGI; f CGI; g SVDGI; 
h our proposed SVDCGI
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4.4 � Reconstruction under different noises

However, the environmental noise is inevitable in ghost 
imaging. To analyze the influence of the noise on the 

eight methods, we add Additive White Gaussian Noise 
(AWGN) to measurement vector B . Under different the 
value of noise standard deviation, the size of test image 
is 32 × 32 , i.e.N = 1024 and the sparsity level K = 60 , 

Fig. 5   Comparison results of 
eight reconstruction method 
for grayscale images with 
2000 measurements (under-
sampling): a original image; b 
TGI; c PGI; d DGI; e NGI; f 
CGI; g SVDGI; h our proposed 
SVDCGI

Table 3   Reconstruction time of eight different reconstruction methods for binary images with 2000 measurements (under-sampling) 

Method TGI PGI DGI NGI CGI MCGI SVDGI SVDCGI

Reconstruction time (s) 0.009 0.010 0.009 0.014 2.291 1.783 0.004 2.148
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the number of measurement M = 256 and the value of 
noise standard deviation varies from 0.01 to 2, the step 
size is set to 0.08. Under each set of (N,M,K) param-
eters, the experiment is performed independently for 
1000 times. The average of CC and PSNR are shown 
in Fig. 8.

As we can be seen from Fig. 8a and b that the CC and PSNR 
of NGI and DGI are almost equal to TGI and approximately 
linearly decrease with noise standard deviation increase. The 
CC and PSNR of CGI and SVDCGI decrease as the noise 
standard deviation increases. Obviously, in the case of noise, 
the CC and PSNR of our proposed SVDCGI is best. There-
fore, the SVDCGI method has a promising prospect in real 
applications.

4.5 � Numerical simulation experimental analysis 
and summary

For further verification the mutual coherence of meas-
urement matrix under different methods (CGI, SVDCGI). 
In this experiment, under different number of measure-
ment, the size of test image is 64 × 64 , i.e. N = 4096 , the 
number of measurement varies from 500 to 4000, and the 
step size is set to 500. The mutual coherence of measure-
ment matrix is shown in Fig. 9.

In summary, the singular value decomposition is applied to 
decompose the measurement matrix, and then the optimized 
measurement matrix and measurements are obtained. Since 
the rows of the optimized measurement matrix are orthogonal 
to each other, the correlation between the measurements is 
eliminated as shown in Fig. 9. Therefore, the performance of 
the reconstruction can be greatly improved, and the quality 
of the reconstructed image is nearly optimal under the same 
number of measurements.

Table 4   PSNR and CC comparison of eight different reconstruction methods

Target image Binary image M = 2000 Binary image M = 4096 Grayscale image
M = 2000

Objective measure Avg PSNR
(dB)

Avg CC Avg PSNR (dB) Avg CC Avg PSNR (dB) Avg CC Avg SSIM

TGI 7.08 0.56 9.645 0.62 11.54 0.56 0.06
PGI 14.97 0.70 132.9 1.00 16.96 0.69 0.44
DGI 9.95 0.56 10.43 0.83 9.07 0.47 0.04
NGI 9.11 0.57 9.30 0.71 8.28 0.47 0.07
CGI 19.78 0.77 16.72 0.92 20.64 0.88 0.54
MCGI 20.27 0.78 25.49 0.97 18.05 0.90 0.51
SVDGI 12.77 0.50 13.02 0.82 13.75 0.70 0.30
SVDCGI 155.3 0.95 249.8 1.00 38.80 0.95 0.60

(a)

(b)

Fig. 6   a The relationship between CC and the sparsity level. b The 
relationship between PSNR and the sparsity level



	 C. Zhang et al.

1 3

47  Page 10 of 11

5 � Conclusion

In conclusion, we propose a method of singular value 
decomposition compressed ghost imaging based on non-
negative constraints to reconstruct original image, which 

can eliminate the correlation between the measurements 
by performing singular value decomposition on measure-
ment matrix to enhance the reconstruction quality of origi-
nal images. Also, the numerical simulation experimental 
demonstrate the feasibility and superiority of our proposed 
method.

(a)

(b)

Fig. 7   a The relationship between CC and the number of measure-
ments. b The relationship between PSNR and the number of measure-
ments

(a)

(b)

Fig. 8   a The relationship between CC with noise. b The relationship 
between PSNR with noise
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Fig. 9   Mutual coherence of measurement matrix under different num-
ber of measurement
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