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Abstract
Computer-generated holograms (CGHs) are used in holographic three-dimensional (3D) displays and holographic projec-
tions. The quality of the reconstructed images using phase-only CGHs is degraded because the amplitude of the reconstructed 
image is difficult to control. Iterative optimization methods such as the Gerchberg–Saxton (GS) algorithm are one option for 
improving image quality. They optimize CGHs in an iterative fashion to obtain a higher image quality. However, such itera-
tive computation is time-consuming, and the improvement in image quality is often stagnant. Recently, deep learning-based 
hologram computation has been proposed. Deep neural networks directly infer CGHs from input image data. However, it 
is limited to reconstructing images that are the same size as the hologram. In this study, we use deep learning to optimize 
phase-only CGHs generated using scaled diffraction computations and the random phase-free method. By combining the 
random phase-free method with the scaled diffraction computation, it is possible to handle a zoomable reconstructed image 
larger than the hologram. In comparison to the GS algorithm, the proposed method optimizes both high quality and speed.

1  Introduction

Computer-generated holograms (CGHs) [1–3] are gener-
ated by simulating the physical process of holograms on a 
computer. CGHs are used in holographic 3D displays [4–7] 
and holographic projections [8–12]. The object light on the 
CGH plane has a complex amplitude, but the spatial light 
modulators (SLMs) that display the CGH can only modulate 
its amplitude or phase. Phase-only SLMs are widely used in 
practice due to their high light efficiency. The reconstructed 
image degraded due to a lack of this information. Time divi-
sion multiplexing [10, 13], down-sampling [14, 15], double-
phase hologram [16–18], and binary amplitude encoding 
[19] have all been proposed as solutions to this problem. 
Although these methods provide high-quality reconstructed 

images, they require an SLM with a high refresh rate and a 
large spatial bandwidth product.

The Gerchberg–Saxton (GS) algorithm [20–22], one of 
the optimization methods, can obtain high-quality CGHs by 
iteratively performing diffraction calculations with known 
constraints. However, the computing burden of iterative 
computation is high, and the method tends to fall into a 
local minimum solution, thus stagnating the improvement 
of image quality. However, hologram calculation using deep 
learning has been recently proposed [23–26]. Deep neural 
networks (DNNs) directly infer CGHs from two-dimensional 
(2D) and 3D data in these methods. Deep learning algo-
rithms optimize the network parameters of DNNs using a 
gradient descent algorithm to generate high-quality CGHs 
during training. After the training is complete, DNNs can 
directly output CGHs from input data at a high speed. How-
ever, in these methods [23–26], the size of reconstructed 
images is static. Holographic projection [8–12] requires the 
use of zoomed reconstructed images whose size exceeds 
CGHs without the need for a zoom lens.

In this paper, we propose a deep learning-based CGH 
optimization method suitable for holographic projection. 
This study aims to optimize phase-only CGH (also known 
as kinoform). In [23–26], DNNs directly generate CGHs 
from input image data. In contrast, the proposed method 
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generates a CGH from an image by diffraction computa-
tion, then inputs it into the proposed DNN, which outputs an 
optimized CGH. We combine a scaled diffraction calculation 
[27] with a random phase-free method [28–32] to calculate 
the input CGHs. This method enables the reconstruction of 
images larger than the CGH. In general, it is necessary to 
use random phase when dealing with a reconstructed image 
larger than the CGH, but highly speckled noise may occur. 
The proposed method is superior to the GS algorithm in 
terms of computed speed and image quality because it can 
obtain reconstructed images with high quality without using 
random phases. Section 2 describes the proposed method, 
Sect. 3 describes the results of simulations and optical 
experiments, and Sect. 4 summarizes the study.

2 � Methods

We begin by explaining the GS algorithm, a conventional 
optimization method, as a comparison method. The GS algo-
rithm applies constraints on the object plane and the CGH 
plane, respectively, and then iterates to make the recon-
structed image of the CGH similar to the original image. 
When optimizing a phase-only CGH, the amplitude infor-
mation in the object plane is replaced with the amplitude 
of the original image while retaining the phase, and then 
we propagate this new field to the CGH plane. The ampli-
tude of all pixels is unified in the CGH plane, and only the 
phase information is retained; then we back propagate this 
new field to the object plane. By repeating this iteration, 
the reconstructed image gradually approaches the original 
image closely.

The simulation results of reconstructed images from 
phase-only CGHs optimized by the GS algorithm are 
shown in Fig. 1. The GS algorithm was iterated 10 times. 

Fig. 1   Original and reconstructed images: a we used two different 
images as shown in each row, b numerically reconstructed images 
from phase-only CGHs without the GS optimization with random 

phase [7], and c numerically reconstructed images from phase-only 
holograms optimized by the GS algorithm
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The original images are given in Fig. 1a, (we used two dif-
ferent images shown in the top and bottom rows), and the 
reconstructed images without and with the GS optimization 
are shown in Fig. 1b, c. The initial phase of the original 
images was chosen at random. Although the image quality 
is improved when compared to the un-optimized cases, the 
computational complexity of the iterative computation is 
high, and the image quality stagnates, resulting in speckle 
noise.

We optimize phase-only CGHs using deep learning to 
obtain high-quality reconstructed images at high speed. The 
network used in this study is shown in Fig. 2. The network 
used for training is different from the network used for infer-
ence. Phase-only CGHs are computed in the scaled diffrac-
tion layer of the network during training. A numerically 
zoomable CGH can be calculated by changing the sampling 
pitch set in the source image of the scaled diffraction com-
putation. In this study, we used one of the scaled diffraction 
computation, Aliasing-Reduced Scaled and Shifted (ARSS) 
Fresnel diffraction computation [27].

The DNN receives the phase-only CGH generated by the 
scaled diffraction computation and outputs the optimized 
phase-only hologram. U-Net [33], one of the network struc-
tures, was used as the DNN. The output phase-only CGH 
is input into the inverse scaled diffraction layer to obtain 
the reconstructed image. The loss function between the 

reconstructed image and the original image is computed, and 
the network parameters of the DNN are optimized using the 
error backpropagation algorithm to obtain the desired recon-
structed image. The trainable parameters are not included in 
the scaled diffraction layer, and only the DNN parameters are 
updated.

After training is complete, the two scaled diffraction layers 
in the network are removed, and a phase-only hologram is 
generated by a conventional hologram computation algorithm 
and input into the DNN to obtain the optimal phase-only CGH.

If the initial phase of the original images is not set in the 
hologram computation, the object light does not diffuse widely 
over the CGH plane, and thus an appropriate phase distribu-
tion must be given. Random phase is often used as an initial 
phase distribution, but it causes strong speckle noise in the 
reconstructed image. In this study, the phase distribution of the 
virtual convergent light used in the random phase-free method 
[28] was used as the initial phase. The phase of the virtual 
convergent light [32] was defined as:

where xi and yi are the coordinates on the object plane, and 
xiOffset and yiOffset are the horizontal and vertical offsets, 
respectively. The offsets are used to avoid overlap between 
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Fig. 2   Proposed method. The structure of the proposed method is different in the training and inferring processes. The network includes the 
scaled diffraction layers in the training. Phase-only CGHs are input to the DNN after removing the scaled diffraction layer in the inferring
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the non-diffracted light of the SLM and the reconstructed 
image. fi is the focal length, and the distance between the 
CGH and the reconstructed image is z . The area of the 
reconstructed image is Si , and the area of the CGH is Sh . We 
can determine fi by the following equation

We use scaled diffraction to calculate complex ampli-
tudes U

(

xh, yh
)

 on the CGH plane from an object with the 
virtual convergent light. A phase-only CGH is calculated 
by

where arg() is the operator taking the argument of the 
complex number. In this study, we use a bleached-phase 
CGH [34] as another complex amplitude encoding in addi-
tion to the phase-only CGH. Bleached phase CGH is a 
method to improve the diffraction efficiency of the recon-
structed image by bleaching the amplitude hologram [35], 
which is calculated as

The structure of the U-Net we used is shown in Fig. 3. 
Features are extracted by convolution and max-pooling 
layers, and a CGH of the same size as the input CGH 
is obtained by up-sampling layers. Skip connections are 

(2)fi ∶ fi − z = Si ∶ Sh × 0.5.

(3)�
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))

,

(4)�
(

xh, yh
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= Re
(

U
(

xh, yh
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.

added to prevent the loss of detailed information due to 
max-pooling operations.

The number at the left of each layer in Fig. 3 shows the 
number of pixels, which is 128 × 128 in the lowest layer. 
The number of channels is shown in the upper part of each 
layer, and the lowest layer has 64 channels. The size of 
the convolution filters is all 3 × 3 with a stride of one, and 
the convolution layers are zero-pad so that the inputs and 
outputs of each layer are the same size. We used structural 
similarity (SSIM) to take the structural information of the 
reconstructed images into account as the loss function. The 
parameters of the SSIM were the filter size and standard 
deviation of 11 and 1.5, k1 = 0.01 and k2 = 0.03 , respec-
tively. The optimizer was Adam, and the training batch size 
was four.

3 � Results

We used the Open Images Dataset [36, 37] as the training 
dataset. The image size was resized to 1024 × 1024 px and 
grayscale. We used 1000 images as the training data, 300 
images as the validation data, and 100 images as the test 
data. The parameters of the CGH calculation are shown in 
Table 1. By setting the pixel pitch of the original image to 
five times that of the hologram, the area of a reconstructed 
image is 25 times larger than that of the CGH. Therefore, the 
sizes of the CGH and the reconstructed image for simulation 

Fig. 3   U-Net-based network structure
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and optical experiments are 3.8 mm × 3.8 mm and 19.1 mm 
× 19.1 mm, respectively.

The proposed method and the GS algorithm were run in 
the same environment on an Intel Core i7-4790 K@4.00 GHz 
with 32 GB of RAM and NVIDIA GeForce RTX3070 GPU. 

We used Python 3.6.13, Keras 2.4.3, and Tensorflow-gpu 
2.4.1 as deep learning frameworks.

We input the CGHs computed by the scaled diffrac-
tion calculation with the random phase-free method into 
the trained DNN and reconstruct the inferred CGHs. A 
comparison of the reconstructed images of the phase-only 
CGHs is shown in Fig. 4. As a comparison, we also show the 
results of end-to-end learning, in which the forward diffrac-
tion calculation is removed from the network in Fig. 2 and 
the holograms are directly inferred from the original images 
(hereafter referred to as “end-to-end learning”). From left 
to right, we show the original image, non-optimization (we 
only used a random phase-free method), GS algorithm (10 
iteration), the proposed method, and end-to-end learning.

The random phase-free method resulted in an edge-
enhanced reconstructed image. This is a common 

Table 1   Calculation parameter

Number of pixels [px] 1024 × 1024
Wavelength [nm] 532
Pixel pitch of CGH [ μm] 3.74
Pixel pitch of original image [ μm] 18.7
Propagation distance [m] 0.5
Offset (x-direction) [mm] 20.48
Offset (y-direction) [mm] 20.48

Fig. 4   Comparison of the reconstructed images of phase holograms. From left to right: original image, non-optimization (random phase-free 
method), GS algorithm, proposed method, and end-to-end learning
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phenomenon in phase-only holograms [38]. The end-to-end 
learning failed to generate correct CGHs. Although the pro-
posed method can be more efficient than the GS algorithm 
and is capable of reconstructing details of the images, the 
images are entirely superimposed with noise.

Following that, we used a bleached-phase CGH [34] 
to perform the same training and inference as in Fig. 4. A 
comparison of the reconstructed images is shown in Fig. 5. 
The original image, non-optimization (random phase-free 
method), GS algorithm (10 iteration), the proposed method, 
and end-to-end learning are shown from left to right.

The proposed method generates images similar to the 
original images when utilizing bleached-phase CGH, as 

shown in Fig. 5. The proposed method is able to optimize 
holograms for high image quality, unlike the GS algorithm. 
The CGHs inferred by end-to-end learning do not generate 
the desired reconstructed images, as shown in Figs. 4 and 
5. This is because the image domains of the original image 
and the CGHs are significantly different, making it difficult 
to train the DNN [39]. In Fig. 6, we further show the results 
of the reconstructions of the GS method with 20 iterations, 
the adaptive weighted GS method (AWGS) [40], which is 
a modification of the GS method, and the sampled-phase-
only hologram (SPOH) [41]. We compare the conventional 
methods of the random phase-free method, the GS algorithm 
(10 and 20 iterations), AWGS (10 and 20 iterations), and 

Fig. 5   Comparison of reconstructed images of bleached-phase holo-
gram. From left to right: original image, non-optimization (random 
phase-free method), GS algorithm, proposed method, and end-to-end 
learning. In phase-only holograms, only the object light is recon-
structed, but in principle, a bleached-phase hologram generates 
conjugate light and direct light in addition to the object light. In the 

random phase-free method, the spherical wave component is super-
imposed on the object light. During reconstruction, this spherical 
wave is regenerated in the phase of the reconstructed object light, 
and slightly interferes with other unwanted light, resulting in circular 
fringes
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SPOH with the proposed method using quantitative image 
quality assessment. The average values of peak signal-to-
noise ratio (PSNR) and SSIM for 100 test data are shown 
in Table 2. In the evaluation, all images were converted to 
8-bit grayscale images.

Both the phase-only CGHs and bleached-phase CGHs 
show better results in terms of PSNR and SSIM than the 
non-optimization method and the GS algorithm, as shown in 
Table 2. In particular, the image quality assessment is better 
than the other methods when the proposed method optimizes 
the bleached phase of CGH. In addition, the GS algorithm 
with 10 iterations takes 84 ms to optimize a CGH, whereas 
the proposed method can infer a CGH in 28 ms, which is 
faster than the GS algorithm. The calculation times of the 
GS algorithm (20 iterations), AWGS (10 iterations), AWGS 
(20 iterations) are 149, 88, and 157 ms, respectively. The 

calculation speed of the proposed method was five times 
faster than the GS algorithm at 20 iterations.

We show results of optical experiments. The optical setup 
and the optical reconstructions of bleached-phase CGHs that 
showed better results in the simulation results are shown in 
Figs. 7 and 8. We used a green laser at 532 nm and Holo-
eye GAEA2 as the SLM. The optical reconstructions were 
directly captured on the image sensor.

In Fig. 8, the GS algorithm does not represent fine details 
because of speckle noises, and the non-optimization method 
includes spherical-phase errors introduced by the random 
phase-free method, but the proposed method improves the 
overall image quality, including the fine details. The recon-
structed images at the bottom row of Fig. 8 are magnified in 
Fig. 9. The spherical-phase noises are observed in the non-
optimization method as shown in Fig. 5, but in the proposed 

Fig. 6   Comparison of reconstructed images of phase holograms. From left to right: original image, GS algorithm (20 iteration), AWGS (10 itera-
tion), AWGS (20 iteration), sampled-phase-only hologram
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method, the spherical-phase noises are removed and the 
image quality is improved.

Finally, we show a zoomable holographic projection. 
After training the proposed DNN with a constant pixel pitch 
five times larger than that of the CGH, we generated CGHs 
by changing the pixel pitch of the original image from twice 
to five times the CGH. The generated CGHs were then input 
into the DNN without changing the weight parameters of the 
DNN, yielding optimized CGHs as an output. A snapshot 
of the simulated and optically reconstructed movie while 
changing the pixel pitches on the original image is shown 
in Fig. 10. The movie was taken in which the reconstructed 
images zoomed in and out by displaying the optimized 
CGHs sequentially.

4 � Conclusion

By optimizing the hologram, we obtained reconstructed 
images larger than CGHs by combining deep learning, the 
random phase-free method, and ARSS Fresnel diffrac-
tion computation. The simulation and optical experiments 
showed that the proposed method outperforms the GS 
algorithm and the random phase-free algorithm in terms 
of image quality and computational speed.

Table 2   Quantitative assessment of reconstructed images

PSNR [dB] SSIM

Phase-only CGH
 Non-optimization (random phase-free method) 7.72 0.274
 GS algorithm (10 iteration) 12.91 0.309
 GS algorithm (20 iteration) 13.27 0.316
 AWGS (10 iteration) 12.82 0.263
 AWGS (20 iteration) 13.13 0.273
 Sampled-phase-only hologram 6.87 0.142
 Proposed method 14.07 0.614

Bleached phase CGH
 Non-optimization (random phase-free method) 14.99 0.544
 GS algorithm (10 iteration) 13.13 0.315
 GS algorithm (20 iteration) 13.44 0.326
 AWGS (10 iteration) 10.38 0.260
 AWGS (20 iteration) 10.37 0.260
 Proposed method 21.73 0.822

Fig. 7   Optical system
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Fig. 8   Optical reconstructed 
images of the bleached-phase 
holograms. From left to right, 
non-optimization, GS algorithm 
(10 iteration), and the proposed 
method

Fig. 9   Enlarged images of the 
optical reconstructed images 
of the bleached phase of CGH. 
From left to right: non-optimi-
zation, the GS algorithm (10 
iterations), and the proposed 
method
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