
Vol.:(0123456789)1 3

Applied Physics B (2022) 128:10 
https://doi.org/10.1007/s00340-021-07737-z

Theoretical investigation of applicability and limitations of advanced 
noise reduction methods for wavelength modulation spectroscopy

Lenard L. Röder1   · Horst Fischer1

Received: 5 July 2021 / Accepted: 13 December 2021 / Published online: 29 December 2021 
© The Author(s) 2021

Abstract
In this study, the applicability and limitations of several statistical and mathematical methods for noise reduction in wave-
length modulation spectroscopy are analyzed. Background noise is simulated for different frequencies and frequency confine-
ment. The noise is added to an absorption line of varying amplitude. The noise reduction methods (NRMs) are applied to 
the simulated signals and their performances are analyzed and compared. All NRMs show great increase in signal to noise 
ratio (SNR) while keeping bias low under certain conditions of the simulated signal. For each NRM the subspace of best 
performance is summarized and highlighted. Little to no overlap is found between these subspaces. Therefore, the optimal 
NRM strongly depends on measurement conditions and NRM quality cannot be compared in a general context.

1  Introduction

Tunable diode laser or quantum cascade laser absorption 
spectroscopy (TDLAS/QCLAS) using wavelength modu-
lation spectroscopy (WMS) have become major tools for 
molecule detection in various disciplines due to their high 
flexibility, time resolution, sensitivity, precision and selec-
tivity. Main applications are atmospheric measurements 
of trace gases and combustion process controls in industry 
[1–3]. Advancements in laser technology like the quantum 
cascade laser (QCL) [4] and the implementation of multi 
pass absorption cells [5, 6] have lead to major improvements 
of the technique in the last decades. The main limitations for 
precision and minimum detectable mixing ratios are laser 
disturbances, power or frequency drifts and optical noise 
patterns [7–9]. These noise patterns often have an underlying 
dominant frequency and a varying phase. The frequency can 
lie in the same region as the absorption signal, depending 
on the optical setup.

Many new data analysis techniques for noise reduction 
have been adapted to absorption spectroscopy experiments 
during the last decades and were reviewed several times in a 
qualitative manner [9, 10]. These methods range from signal 

analysis and denoising via time–frequency transformations 
[11, 12] to adaptive statistical methods [13, 14]. However, 
most recent publications of state-of-the-art experiments still 
rely on basic data analysis established in the last century [3, 
15]. This may originate from the specific design of these 
analysis methods for their target experiment; thus, leaving 
questions unanswered about the experimental requirements 
and limitations. This paper attempts to compare a few promi-
nent and also lesser known noise reduction methods (NRM) 
via simulation of a wide array of possible noise shapes. The 
goal to reach is a quantitative statement about the experi-
mental conditions necessary for the given NRM to increase 
the signal-to-noise-ratio (SNR) while simultaneously main-
taining a low bias.

This paper is organized as follows: In Sect. 2, an overview 
of the analyzed NRMs is given and small modifications to 
ensure compatibility are explained. In Sect. 3, the simula-
tion procedure is shown. Finally the simulation results are 
analyzed and interpreted.

2 � Noise reduction methods

First, the theory of WMS is described in short. According to 
the Lambert–Beer law the transmitted intensity I through an 
absorbing medium for small optical density can be approxi-
mated by
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where I0 is the transmitted intensity without absorption 
and �(�) is the absorption profile. � approaches a Gaussian 
profile for low pressure and a Lorentzian or Cauchy profile 
for high pressure. In intermediate cases the profile can be 
expressed as a convolution of both, a so called Voigt profile:

In WMS the frequency � is modulated with a modula-
tion depth a and modulation frequency Ω and the signal is 
subsequently demodulated using an analog or digital lock-in 
amplifier set to an integer multiple of the modulation fre-
quency nΩ . Therefore, the retrieved signal S is proportional 
to the nth harmonic Hn of the cosine series of the absorption 
profile:

More detailed derivations have been given several times 
in the literature and can be found, for example, in [2, 7, 
10]. In the course of this paper the second harmonic is used 
as most methods considered in this study were originally 
designed for second harmonic detection. It is depicted in 
Fig. 1. In principle this study can be conducted using other 
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(3)S ∼ Hn(�) = ∫ �(� + a cos(Ωt)) cos(nΩt)dt.

harmonics, normalization schemes [3] or direct absorption, 
as well.

2.1 � Wiener filter

Werle et al. [13] have described the implementation of an 
adaptive finite impulse response filter (FIR), the Wiener fil-
ter. It is calculated for each measurement spectrum X by a 
least squares algorithm, minimizing the mean square error 
between the measurement spectrum and a synthesized ver-
sion by convolution of the filter with a calibration spectrum 
C. Thus, knowledge about the target signal is used to opti-
mize the FIR:

A free parameter of this method is the filter size m. The 
appropriate value has to be chosen by a measurement of 
known mixing ratio.

2.2 � Singular value decomposition

A simple statistical approach was proposed by Mappe-Foga-
ing et al. [14] that assumes a stable and dominant absorption 
signal compromised by an unstable background. By per-
forming a singular value decomposition (SVD) on a batch of 
measured spectra the signal is split into eigenvectors. Under 
the right circumstances some of the eigenvectors contain 
signal information, while the rest contains only noise.

The singular value decomposition decomposes a matrix 
X with dimension N ×M into the basis of normalized wave-
lets V, corresponding singular values Σ and the propagation 
matrix U:

In their paper a decent initial signal to noise ratio is given 
so the signal information is stored in the first eigenvectors. 
They choose the appropriate effective dimension of the data 
set empirically. Naturally this becomes a very difficult task 
when SNR is low. To adapt to the simulation conducted in 
this paper, Pearson correlation coefficients between each 
normalized wavelet and a reference spectrum are calculated 
and only the first m eigenvectors, sorted by their correla-
tion coefficients, are considered during reconstruction. This 
procedure extends the empirical approach from the original 
paper but requires optimization of the free parameter m. The 
dimension has to be chosen during the calibration phase.

(4)Xi =

m∑
k=−m

�kCi+k.

(5)X = UΣVT .

Fig. 1   Reference 2f wavelength modulated spectrum of Voigt profile 
of carbon monoxide transition at at wave number 2190.02 cm−1 for a 
pressure of 50hPa, a temperature of 293 K and modulation depth 2.2⋅
HWHM, scaled to a maximum amplitude of 1 (blue), 0.5 (red) and 
0.1 (green)
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2.3 � Discrete wavelet transform

Denoising techniques based on the discrete wavelet trans-
form (DWT) have become widely used in signal processing, 
feature extraction and image denoising [16, 17]. The con-
tinuous wavelet transform is a time–frequency transforma-
tion similar to the Fourier transform [18]. It is defined by 
a convolution of the signal x with modified versions of a 
special function called mother wavelet � , that is scaled by 
the parameter a and translated by the parameter b:

Employing the redundancy of this procedure, Daubechies 
[19] carefully designed special wavelets and evaluated only 
discrete scales. This way the transform no longer has a two-
dimensional result but has the same dimension as the input. 
With Mallats algorithm this procedure now becomes an iter-
ative convolution with discrete filter banks to decompose the 
signal into approximation and detail coefficients [20]. Based 
on this representation of the original signal several studies 
have shown applications for removal of trends and suppres-
sion of noise for a given signal, also for TDLAS [10, 21, 22]. 
A study by Li et al. [11] has successfully applied the noise 
reduction based on Steins unbiased risk estimator (SURE) 
[23] with the non-negative Garrote threshold [24] on WMS. 
In their study they compared several wavelets and maximum 
decomposition levels and retrieved the optimal choice for 
their experimental setup. Hence, the choice of wavelet and 
maximum decomposition level is a free parameter and has 
to be chosen during calibration.

2.4 � Fourier domain analysis

Another approach utilizing time–frequency transforma-
tion has been proposed by Hartmann et al. [12]. They take 
advantage of the linear decrease of the logarithmic power 
spectrum of a Cauchy profile and interpolate discrete dis-
turbances to this slope caused by sinusoidal background, 
effectively removing the fringe patterns. They emphasize, 
however, that the technique required fine tuning of signal 
and noise for this procedure to work that easily.

A number of adjustments have to be made for this 
method to be used fully automatically on second harmonic 
Voigt profiles. The absorbance of a measured signal is 
calculated by performing a masked linear fit of the power 
spectrum of the measured signal to the power spectrum of 
a second harmonic Voigt, acquiring the parameters from 
a reference spectrum. Alternatively it can be fit directly to 
the power spectrum of the measured reference. The mask 
is a free parameter with left and right boundary index. 

(6)W(a, b) = ∫ �∗
(
t − b

a

)
x(t)dt.

Depending on the background structure the background 
is more or less confined in the frequency domain. This 
way the mask would be able to ignore points in the power 
spectrum influenced by the background and only consider 
noise free parts of the signal power spectrum.

Regarding the emphasis on the special requirements by 
the authors it can be seen here that improper choice of 
the mask or a background that is not at all confined to a 
small bandwidth can lead to unforeseen consequences if 
this method is applied blindly.

2.5 � Empirical mode decomposition

The empirical mode decomposition (EMD) is an adaptive 
decomposition scheme that splits a signal into its intrinsic 
mode functions (IMF) with the same number of zero cross-
ings as extreme points [25]. Meng et al. [26] have applied 
Savitzky–Golay filters to the IMFs and reconstructed the 
signal using the Pearson correlation coefficients of the fil-
tered IMF and the original signal as a weight. They have 
shown in their study that this method called EMD-FCR 
(Filter-Correlation-Reconstrunction) outperforms Wiener 
filters and DWT noise reduction for their particular experi-
mental setup. A drawback of this method is the high com-
putational effort. In addition, the order and window size of 
the Savitzky–Golay filter have to be optimized during the 
calibration phase as they are free parameters.

The FCR part was modified slightly for this simula-
tion, since the Pearson correlation with the original signal 
enhances noise instead of suppressing it in cases of very 
low SNR. As a modification the correlation coefficients are 
evaluated against a reference spectrum instead, similar to 
the SVD method.

2.6 � Artificial neural network

A feed-forward neural network consists of layers of affine 
transformations that are separated by a non-linear func-
tion called activation. This can be expressed by a matrix 
multiplication of the input xi with a weight Matrix Wi and 
addition of a bias vector bi , where i is the layer number. 
The result of this operation is then pointwise evaluated 
using the activation function �:

During the training phase the output is compared to 
the target value via a metric called loss function. The 
weight matrix parameters wi,jk and biases bi,k are opti-
mized by propagation of the gradient of the loss backwards 
through the network. Many sophisticated improvements to 
model design, loss functions, optimization, learning and 

(7)yi = �(Wixi + bi).
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prevention of overfitting have been made in the last few 
years. This paper will not cover any more details on this 
topic, since this is not the main focus of this study. Here 
we refer to reviews and books about this field [27, 28].

A simple artificial neural network has been proposed by 
Nicely et al. [29] as a proof of concept for optical fringe 
reduction. The model design of the authors is kept very 
simple as they emphasize their goal being only to proof the 
concept of applicability. Clearly the model is not optimally 
chosen for the given task and does not learn very fast.

For the simulation in this study eight identical networks 
were trained on different subspaces of the target simula-
tion and the choice of one specific network is set as a free 
parameter to be optimized during calibration. Each model 
is trained on synthetic data for 250 epochs with 214 itera-
tions each.

3 � Simulation

For the simulation a measurement scheme is chosen that 
mimics real experimental conditions and allows for optimi-
zation of the free parameters of the NRMs. The measure-
ment scheme requires three different kinds of input data:

•	 Reference A noise-free absorption spectrum. In experi-
ments this could be either a very high concentration 
measurement or a simulation using the HITRAN data-
base [30]. However, deviations of the used spectrum from 
the real underlying noise-free spectrum of the experiment 
can lead to undesired effects. In the simulation the refer-
ence is used to initialize some of the NRMs and also to 
calculate the absorbance.

•	 Calibration A noisy spectrum with known mixing ratio. 
This could be a measurement used for instrument char-
acterization or a calibration during field experiments. 

This data will be used to optimize free parameters of the 
NRMs for the given background signal.

•	 Ambient Target noisy spectrum to be denoised.

As reference a Voigt profile is calculated using data from the 
HITRAN database [30]. The chosen absorption profile is an 
idealized absorption spectrum of carbon monoxide at wave 
number 2190.02 cm−1 for a pressure of 50hPa and a tempera-
ture of 293 K [31]. The number of points is set to 29 = 512 , 
the line is centered at 28 and the scale is adjusted so that the 
Gaussian width � caused by Doppler Broadening is set to 16. 
The modulation depth is set to 2.2⋅HWHM according to the 
studies of Reid and Labrie [32]. The resulting 2f modulated 
spectrum is numerically calculated using (3) and is shown 
in Fig. 1 for several amplitudes.

The noisy part of the spectrum ñfc is generated as a func-
tion of two parameters: frequency f and noise complexity c. 
The Fourier power spectrum is set to a Gaussian of mean f 
and width f ⋅ c and the positive angles are sampled from a 
uniform distribution between −� and � . The negative fre-
quency angles are set to the negation of the positive angles to 
acquire a purely real signal after inverse Fourier transform. 
The complexity parameter c is a measure of the contribution 
to the noise by neighboring frequencies. For high values 
of c and f the noise becomes almost white, e.g., c > 4 and 
f > 512.

The resulting time signal is then normalized to � = 1 . 
Afterwards the reference spectrum is weighted with the third 
simulation parameter, the amplitude s, and added to the sig-
nal. Examples with s = 0 are shown in Fig. 2.

(8)
ñfc = F

−1
f �
(t)

[
exp

(
−(f � − f )2

2f 2c2

)
⋅ ei𝜙

]

with 𝜙 ∈ U(−𝜋,𝜋),

Fig. 2   Example spectra for different noise parameters. Complexity c is set to 0.01, 0.1 and 1 in plot a– c, respectively. In all plots the blue line, 
green line and red line corresponds to a frequency of 20 , 23 and 26 , respectively
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Now, the three parameters are discretized along logarith-
mic scales to form a 643 cube consisting of 218 = 262, 144 
individual triplets. The signal amplitude, frequency and 
complexity range from 0.01 to 100, 20 to M∕2 = 28 and 0.01 
to 1, respectively. For each triplet 32 calibration spectra are 
generated for free parameter optimization and 1024 ambi-
ent spectra are simulated. A simple grid search is used to 
optimize the free parameters. In possible future simulations 
more sophisticated approaches can be applied to speed up 
the procedure, e.g., some publications propose algorithms to 
efficiently choose the optimum window of a Savitzky–Golay 
filter which is used in the EMD-FCR [33, 34]. The NRM is 
applied to the N ambient spectra using the optimized param-
eters. The absorbance ai is retrieved by a final linear fit to the 
reference spectrum. These absorbances are then compared to 
the true amplitude s and the mean squared residual (MSR) 
and also the mean residual squared (MRS) are returned. The 
MSR and MRS are defined as follows:

This procedure is repeated for each NRM and also run 
once without noise reduction as a baseline. This is impor-
tant, since a least squares linear fit already shows great noise 
reduction properties under certain background conditions.

4 � Simulation results

For more clarity the resulting values from the simulation 
MSR and MRS can be expressed by two different measures:

MSR0 is the baseline MSR without noise reduction. Now 
ΔS describes the increase in SNR in the unit of decibels (dB) 
and the bias � describes the relative deviation of the sample 
mean from the true value in percent. Note that in extreme 

(9)nsfc =

⎛
⎜⎜⎜⎝

ñfc�
Var

�
ñfc

�
⎞
⎟⎟⎟⎠
+ s ⋅ x.

(10)MSR =
1

N

∑
i

(
s − ai

)2
,

(11)MRS =

(
s −

1

N

∑
i

ai

)2

.

(12)ΔS = 10 log10

(
MSR0

MSR

)
,

(13)� =

√
MRS

s
⋅ 100%.

cases the SNR increase can be negative and the bias can 
reach values above 100%. These performance measures are 
displayed by individual animations, where each frame shows 
an image plot of the fc-plane at a certain signal amplitude 
s which is increased from frame to frame from 0.01 to 100. 
The animations can be found in the electronic supplemen-
tary material. As an example the Fourier Domain Analy-
sis method (FDA) is evaluated explicitly in the following 
subsection, as it shows a variety of different characteristics. 
Then the performances of all NRMs is summarized and 
compared.

4.1 � Case study: Fourier domain analysis

The resulting SNR increase and corresponding bias are 
shown in Fig. 3 for several signal amplitudes s. In the first 
image at s = 0.01 the SNR increase gradually grows from 
30 dB at highest frequency to about 60 dB at a frequency 
of 25 for complexity values below 0.2. There ΔS evolves 
into a stripe pattern of several overlapping discrete lines. 
Here ΔS ranges up to over 70dB. Below frequency 23 the 
SNR increase of the stripes drops slightly and the pattern 
is overlaid with a smooth 40 dB region that tapers down 
at higher complexity. Finally ΔS increases again at lowest 
frequency.

Meanwhile, � is mostly close to zero for low complexi-
ties. The bias in the overlying smooth region at low fre-
quency ranges from 20 to 50%, however. The bias is greatly 
enhanced at high complexity, especially at low frequency, 
where it reaches values above 100%.

Obviously at high complexity the part of the Fourier 
spectrum containing the signal information is dominated by 
noise. The bias is reduced for low complexity but still sig-
nificant for low frequencies. Here the noise interferes with 
the first peak of the Fourier power spectrum. At frequen-
cies above 23 the algorithm effectively ignores parts of the 
power spectrum that differ from the underlying signal. The 
stripy pattern corresponds to discrete changes to the bound-
ary indices of the mask chosen in the calibration phase. The 
gradual decrease for higher frequencies probably does not 
originate from the NRM but from the baseline performance 
of the least squares linear fit, which acts as a low pass filter 
and, therefore, performs better on higher frequency noise.

In the second plot at s = 0.22 the SNR increase has shrunk 
uniformly, while the described patterns stay the same. This 
also follows from the baseline performance increasing with 
higher signal, hence lowering the ratio between absolute 
SNR and baseline SNR. The bias starts to tend to zero at 
high frequency and high complexity. The higher frequencies 
have lower impact on the method, since all signal informa-
tion is contained in the lower frequency components.

As displayed in the next image at s = 4.64 this process 
continues. The SNR increase is now constrained to the 22
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Fig. 3   Sequence of image plots 
of SNR increase (left) and bias 
(right) of the FDA algorithm in 
the fc-plane for different signal 
amplitudes, increasing from top 
to bottom. Each plot sequence 
has a shared color map ranging 
from 0 to 70 dB and 0 to 100%, 
respectively. White pixels in 
the SNR increase plot indicate 
points, where the bias is 100% 
or above. Depending on the 
experimental requirements the 
method should only be applied 
when high SNR increase is 
achieved while maintaining a 
low bias
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–24 frequency region, while � is close to zero almost every-
where. Only the overlying smooth region at low frequency 
and low complexity shows bias values up to 10%. At the 
same time the SNR increase starts to rise at this region.

The final image at s = 100 supports this new charac-
teristic. While bias and SNR increase have gone down 
to zero almost everywhere, SNR increase grows to about 
40 dB in the former biased region at low frequency and low 
complexity. A cause could be an increased capability to 

Fig. 4   Examples of simulated signal (dashed green), noise (solid 
blue) and result of the FDA NRM (solid red) for three different vari-
able settings. The lower subplots each show the residual (reconstruc-
tion minus true spectrum). The chosen values of the variables s, f, and 
c and the resulting SNR increase ΔS and � are given as follows: a 

s = 0.03 , f = 16 , c = 0.1 , ΔS = 47dB, � = 4.7 ⋅ 10−3 %; b s = 0.03 , 
f = 2 , c = 0.1 , ΔS = 39dB, � = 32 %; c s = 10 , f = 2 , c = 0.1 , 
ΔS = 19dB, � = 0.34 %. As mentioned in the text ΔS and � strongly 
depend on variable setting

Fig. 5   Highlights of the best 
performances of the analyzed 
NRMs in the fc-plane. The 
mean SNR increase and bias 
is given for the rectangular 
regions or the line trajectory, 
respectively: Wiener: ΔS = 7.3

dB, � = 8.7 ⋅ 10−4 %; SVD: high 
frequency region: ΔS = 24.9

dB, � = 2.0 %; low frequency 
region: ΔS = 40.9dB, � = 5.6 %; 
DWT-SURE: ΔS = 10.6

dB, � = 1.2 ⋅ 10−5 %; FDA: 
ΔS = 38.2dB, � = 7.1 ⋅ 10−3 %; 
EMD-FCR: ΔS = 14.3dB, 
� = 4.9% ; ANN: ΔS = 15.0

dB, � = 1.0 %. Rectangles filled 
with a stripe pattern indicate 
negative values of ΔS
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reconstruct the low frequency part of the power spectrum 
from the higher frequency features due to the high signal. 
This implies that up to s ≈ 5 only the first peak in the power 
spectrum may have been used by the algorithm.

As a summary the FDA method performs extraordinary 
well at complexity below 0.2 and in the frequency range 23
–25 and also at lower frequencies for high input SNR. The 
described features are visualized in Fig. 4. Here the method 
is applied to example spectra for three different settings.

4.2 � Performance summary

Interpreting the information from the animations given in 
the electronic supplementary material, the other NRMs are 
evaluated in a similar manner as the case study from the 
previous section. These results will not be discussed in such 
detail at this point but are instead summarized to limit the 
extent of this paper.

The Wiener filter achieves an SNR increase up to 19 dB 
for frequency between 24 and 26 and complexity below 
0.2, independent of signal amplitude s. Similar to the 
gradual decline of ΔS for higher frequencies due to base-
line performance, this method performs better for lower 
frequencies inside the described region. The bias differs 
from zero significantly only at very low frequency or high 
complexity.

The NRM based on SVD performs best at signals below 
1, complexity below 0.08 and two different frequency ranges. 
At frequencies higher than 23 the method shows no signifi-
cant performance gain compared to the baseline, between 
1.4 and 22 � grows to values of 60%. In this intermediate 
region the noise is too close to the signal to be distinguished.

The Discrete Wavelet Transform with Stein Threshold 
shows noisy SNR increase independent from input signal 
s for complexity below 0.2. Some broad bands emerge 
at frequencies equal to a power of two above 25 , where 
ΔS reaches values above 90dB. In this region the bias is 
always close to zero. The noisy SNR increase corresponds 
to a noisy choice of wavelet family and order in the cali-
bration phase.

The method called EMD-FCR shows high bias for 
almost all parameter combinations. Obviously the output 
is lowered drastically if the noise free spectrum does not 
match with an IMF, since the filtered IMFs are multiplied 
by the correlation coefficient. In the simulation even at 
high signals s the absorption spectrum is split into two or 
more IMFs very often. Here a thresholding scheme instead 
of a weighted sum could lead to better performance. How-
ever, at signal amplitude between 0.02 and 0.2 a narrow 
region of low bias and ΔS above 10 dB propagates along a 
curved path through the fc−plane. Here it seems the EMD 

separates signal from background and maps the absorption 
signal into a single IMF.

The final NRM analyzed is the combined set of sim-
ple artificial neural networks (ANN). Although the base 
model is primitively designed and was not optimized for 
this special task, the results show an average SNR increase 
of 15 dB and average bias below 1% for signal amplitude 
between 1.4 and 17, frequency below 22 and complexity 
below 0.26. The performance coincides with a particular 
network choice during calibration phase.

Figure 5 shows an overview of the best performance for 
each NRM in the fc-plane. The corresponding mean values 
for ΔS and � are given in the figure caption.

4.3 � Remarks

Now, some flaws of the simulation will be mentioned 
which influence the results of this paper.

•	 The reference spectrum and added signal is assumed 
to be noise-free and stable over time. Distortions and 
drifts in real experiments can influence the perfor-
mance of some of the NRMs. Prominent effects that 
can cause distortions in experimental conditions that 
have not been considered are residual amplitude modu-
lation [2], the phase shift between wavelength modula-
tion and intensity modulation [35] and the non-linearity 
of (1).

•	 Although the simulated noise covers a big range of 
noise characteristics, it is only an idealization of real 
background structures. Only fringe-like noises with a 
dominant frequency have been considered. Thus, the 
performance of some NRMs may vary depending on 
the background structure.

•	 Since the number of simulated ambient spectra is finite, 
this paper only gives statistical estimates of expected 
results.

•	 Since the number of simulated calibration spectra is 
finite, the grid search not always chooses the optimal 
free parameters. This could result in an underestimation 
of performance.

5 � Conclusion

There is no best noise reduction method for wavelength 
modulation spectroscopy. Parameters like the dominant 
noise frequency, noise power spectrum confinement and 
input signal strength can vastly influence the performance 
of some methods and lead to distortions of the output. A 
proper algorithm has to be carefully chosen according to 
the experimental setup. The results from this paper can help 
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predict possible performances given the noise parameters 
for a particular setup. Each analyzed method showed differ-
ent behavior for the simulation parameters. Although some 
NRMs were altered slightly to fit the simulation conditions, 
all of them were able to outperform the least squares linear 
fit by at least 10 dB without introducing large biases. The best 
performances were highlighted and little to no overlap of 
these best performance ranges were found. This result could 
explain the odd phenomenon that the methods outperformed 
other established techniques in the studies in which they 
were proposed, sometimes leading to apparent contradic-
tions between different studies.

While a quantitative comparison for a large space of noisy 
input shapes was given, many questions arose or were left 
unanswered. There are infinitely many more noise shapes to 
be tested. The effect of distortions to the noise free spectrum 
were ignored. The choice of free parameters and small adap-
tions to the methods could be improved. Finally there is still 
a long way to be able to identify and evaluate the best noise 
reduction method under experimental conditions, but this 
paper tries to take a first big step.

A follow-up study is planned to further analyze and quan-
tify the results given in this paper under several experimen-
tal conditions. The methods will be tested for two differ-
ent absorption spectrometers (different noise patterns) and 
several different trace gases (varying initial signal to noise 
ratios).
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