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Abstract
This paper studies the interaction of an electromagnetic field with the matter in a laser cavity without assuming a fixed 
direction of the transverse electric field, described by the two-level Maxwell–Bloch equations. The derivation of the laser 
(3+1)-dimensional vectorial cubic-quintic complex Ginzburg–Landau equation is reported using a perturbative nonlinear 
analysis performed near the laser threshold. Considering the vector (2+1)D cubic-quintic complex Ginzburg–Landau equa-
tion, the stability of the moving dissipative solitons in the laser cavity is analyzed. Using the variational approximation, 
stability conditions and propagation trajectories of dissipative solitons are derived. Direct numerical simulations fully confirm 
analytical predictions of dissipative solitons trapped in an effective potential well. Potential applications of the obtained 
results related to spatial dissipative solitons, may be found in class B laser by considering solitons as individual addressable 
and shift registers of the all-optical data processing systems.

1  Introduction

New theoretical approaches, experimental analyses, and 
systematic use of computer science in data processing have 
been developed during the past 20 years in several types of 
lasers, which are very complex devices, having rich tempo-
ral, spatial, and spatiotemporal dynamics [1]. These different 
types of lasers can be classified into [2] Class A (for example, 
dye lasers) [3, 4], Class B (semiconductor lasers, CO2 lasers, 

and solid-state lasers) [5, 6], and Class C (the only example 
being the far-infrared lasers) [7], depending on the decay 
rate of the photons, the carriers, and the material polariza-
tion. However, this classification does not apply to inhomo-
geneously broadened lasers, including He-Ne, argon-ion, 
and Xe. Different dynamical features have been described 
when comparing these lasers, including instabilities, cas-
cades of bifurcations, multistability, and sudden chaotic 
transitions [1]. Many other fascinating features and proper-
ties concerned with chaotic dynamics have been extensively 
addressed in relevant semiconductor laser systems because of 
their potential applications in chaotic optical communications 
[8]. Further studies have suggested that optical cavities, also 
called cavity solitons, are present in many externally driven 
optical systems. However, their existence in laser systems 
is limited to the well-known laser with saturable absorbers, 
two-photon lasers, lasers with dense amplifying medium, or 
lasers pumped by squeezed vacuum [9].

Several models have been proposed to describe how spa-
tiotemporal dynamics emerge in large-aperture lasers. For 
example, the two-photon lasers have been the subject of 
continued theoretical attention since the early days of the 
laser era. The theoretical interest of the two-photon laser 
lies in the intrinsic nonlinear nature of the two-photon inter-
action. The Maxwell–Bloch (MB) equations give the most 
successful theoretical approach. The laser is a system where 
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the number of photons is much larger than one, thus allow-
ing a semi-classical treatment of the electromagnetic field 
inside the cavity through the Maxwell equations, which has 
been developed by Lamb [10] and independently by Haken 
[11]. The semi-classical laser theory ignores the quantum-
mechanical nature of the electromagnetic field, and the 
amplifying medium is modeled quantum-mechanically as a 
collection of two-level atoms through the Bloch equations.

The linear analysis and numerical integration of the full 
MB equations [12] have been used to interpret the features of 
the experiment that cannot be fully understood with a pertur-
bative model, such as the observed evolution from order to 
fully developed turbulence as the Fresnel number increases 
up to a critical control-parameter threshold [13]. In addition, 
it has been shown that the MB equations with a homogene-
ous line broadening are appropriate for the description of the 
amplification of short pulses in the multilevel atomic iodine 
amplifier [14]. Some prototype of nonlinear evolution equa-
tions has been constructed by singular perturbation methods, 
using the MB equations as the starting point, to reproduce 
the spatiotemporal dynamics of the large-aperture lasers.

The first class of prototype equations which describe, for 
example, the class-A laser-pattern dynamics, such as the 
multi-transverse-mode lasers, is the cubic complex Ginz-
burg–Landau (CGL) equation. The existence of a vortex solu-
tion of the laser equations, the stability of symmetric vortex 
lattices in the laser beams, the transition to nonsymmetric 
patterns dominated by titled waves, and disordered spatial 
distribution have been well-reproduced by the cubic CGL 
equation [15–19]. To prevent the “blowup” of the solutions 
of the cubic CGL equation for negative detuning, the cubic 
CGL equation, which possesses fourth- and higher-order dif-
fusion terms and which describes the excitation of transverse 
modes and structure formation in a laser correctly, has been 
derived [20]. It should also be mentioned that the adiabatic 
elimination of irrelevant variables has been shown to be very 
sensitive to the method used for the perturbation expansions in 
the case of partial differential equations which describe laser 
dynamics. That is why the center manifold theorem for elimi-
nating irrelevant variables has been used, leading to the cubic 
CGL equation in the small-field limit. The particular feature 
of the center manifold theory is that it is a solid mathemati-
cal framework within which the fast variables, as well as the 
characteristic scaling of the long-term dynamics, are properly 
determined [21]. It has also been shown that the cubic-quintic 
CGL equation is a continuous approximation to the dynamics 
of the field in a passively mode-locked laser [22].

The second class of prototype equations, which provides 
the generic description of transverse pattern formation in 
wide aperture, single longitudinal mode, two-level lasers, 
when the laser is operating near peak gain, is the complex 
Swift–Hohenberg equation for class A and C lasers [23]. 
Indeed, the complex Swift–Hohenberg equation comes 

naturally as a solvability condition for the existence of solu-
tions to the MB laser equations in the form of asymptotic 
series in powers of the small detuning parameter [23]. In 
addition, when the laser pattern dynamics is sensitive to the 
degree of stiffness of the original physical problem, such as 
in the class-B lasers, the amplitude equations are the com-
plex Swift–Hohenberg equation coupled to a mean flow [23], 
which is consistent with the observation that the population 
inversion variable in the MB laser equations acts as a weakly 
damped mode. Otherwise, the Swift–Hohenberg equation 
has been considered for a passive optical cavity driven by 
a coherent external field, valid close to the onset of opti-
cal bistability [24]. Moreover, theoretical studies of spati-
otemporal structures of lasers with a large Fresnel number 
of the laser cavity have been successfully described in the 
cases in which two coupled fields are involved in the dynam-
ics for class-B lasers. For example, it has been shown that 
two generic instabilities may destabilize the homogeneous 
steady-state solution. The first is a long-wavelength instabil-
ity related to the electromagnetic field’s phase invariance and 
is described by a scalar field obeying the Kuramoto-Shiva-
sinsky equation. The second is a short wavelength instability 
which corresponds to a Hopf bifurcation and is characterized 
by a complex field that follows a Swift–Hohenberg equation.

The third class of prototype equations, which contains a 
phenomenological aspect and whose use in the theoretical 
description of the pulse dynamics in a mode-locked laser, was 
pioneered by Haus and Mecozzi [25]. Assuming that only one 
polarization state plays a role and that the change of the pulse 
per round trip is small, so that one can replace the discrete 
laser components with continuous approximations, Haus and 
Mecozzi [25] obtained a master equation which is nothing but 
the stationary version of the cubic CGL equation. The coef-
ficients that appear in the model were related to the physical 
parameters in a rather phenomenological way [25, 26].

All these three classes of prototype equations are scalar 
since it is usually considered that the polarization degree of 
freedom of the electromagnetic field is fixed either by mate-
rial anisotropies or by experimental arrangement. Thus, the 
description of the dynamics is done in terms of a scalar field. 
It has been shown that the cavity-synchronous phase or ampli-
tude modulation technique transforms passively mode-locked 
optical oscillators into actively mode-locked lasers [27]. Mix-
ing passive and active mode-locking in the same device results 
in a new class of optical oscillators generating short pulses. 
To model this laser system, as an example, the scalar cubic-
quintic CGL equation has been used with terms correspond-
ing to active mode-locking in addition to the usual passive 
mode-locking terms [28]. However, the inclusion of a quintic 
saturating term in the scalar cubic-quintic CGL equation was 
shown to be essential for the stability of pulsed solutions [29]. 
Since the scalar cubic-quintic CGL equation is non-integrable, 
which means that general analytical solutions are unavailable, 
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selected analytical solutions can only be found for specific 
relations between the equation parameters. More complicated 
solutions for the cubic-quintic CGL equations, such as pul-
sating, creeping, or exploding solutions, have been reported 
numerically [30]. It is also well known that laser systems are 
made of several components; an accurate model should then 
involve consecutive sets of propagation equations. Models can 
be vectorial when the polarization nature of light is involved, 
including the delayed response of the saturable absorber and 
gain medium. The possibility of vectorial topological defects 
which are not predictable by the scalar theory was first ana-
lyzed by Gil [31]. Using standard perturbative nonlinear 
analysis, performed near the laser threshold, Gil derived a 
(3+1)-dimensional ((3+1)D) vectorial cubic CGL equation 
when considering the interaction of an electromagnetic field 
with the matter in a laser cavity without the assumption of a 
fixed direction of the transverse electric field. Different kinds 
of pattern formation are present in the dynamic states of the 
one-spatial dimension (localized structures) [32] and of the 
two-spatial dimensions (topological defects) [33–36] for the 
vectorial cubic CGL equation. Examples are the synchroni-
zation properties of spatiotemporally chaotic states [33], the 
identification of a transition from a glass to a gas phase [34], 
and the formation and annihilation processes leading to differ-
ent types of defects [35]. In addition, creation and annihilation 
processes of different kinds of vector defects, as well as a tran-
sition between different regimes of spatiotemporal dynamics, 
have been described [36]. Although many models have been 
derived from describing the dynamics of the solitons cavity, 
vector cubic-quintic CGL models have not been addressed 
yet in the case of cavity solitons. We demonstrate that many 
cavity solitons species can be obtained due to the physical 
processes such as third-harmonic generation, the contribution 
of one-photon resonant, and the two-photon-resonant.

The present work aims to understand the physical pro-
cesses involved in spatial pattern formation from a two-
level atomic system controlled by an intense laser field. The 
approach taken here parallels that of Gil [31] for the vecto-
rial cubic CGL equation. We start with the Maxwell–Bloch 
equations describing the propagation of a slowly varying 
field envelope through a collection of two-level atoms when 
the interaction of an electromagnetic field with the matter 
in a laser cavity is considered, without the assumption of 
a fixed direction of the transverse electric field. Then, we 
report on the derivation of the laser (3+1)D vectorial cubic-
quintic CGL equation. Furthermore, based on the vari-
ational approach, we discuss, theoretically and numerically, 
the dynamical properties of the moving vector dissipative 
solitons for several dynamical regimes of the coupled cubic-
quintic complex Ginzburg–Landau (CQCGL) equation [37]. 
The problem of multidimensional soliton instabilities leads to 
the collapse and depends on the number of space dimensions 
and strength of nonlinearity [38]. It has been demonstrated 

that to create the stable dissipative solitons of scalar CQCGL 
equation, the phenomenon of wave collapse (catastrophic 
self-focusing) must be controlled [37–40]. In some recent 
theoretical and experimental studies, generic approaches for 
the realization of stabilized multidimensional fundamental 
and vortex solitons are based on the use of trapping potentials 
created by shallow modulations of the refractive index of the 
material in the transverse plane, and the materials with satu-
rable or competing nonlinearities [41–43]. This is observed 
in diverse physical contexts such as matter- wave condensates 
and ultradilute quantum liquids, liquid crystals and ferroflu-
ids, nonlinear optics and ultrashort few-cycle optical pulses. 
To understand the achievement of the complex configuration 
of the moving of stable multidimensional dissipative soli-
tons of coupled CQCGL equations, the stability approach is 
performed based on the soliton trapped at the bottom of the 
effective potential well [38, 44].

This paper is organized as follows: In Sect. 2, we derive 
the laser (3+1)D vector CQCGL equation which describes 
the laser pattern dynamics. Section 3 presents the dynamical 
equations describing the solution parameters, followed by the 
research of analytical stationary solutions. Section 4 is devoted 
to deriving the effective potential associated with the particle-
like dynamic of the dissipative solitons, along with numerical 
results. Section 5 presents some concluding remarks.

2 � Derivation of the laser (3+1)D vector 
cubic‑quintic CGL equation

We consider the behavior of a slowly varying field envelope 
through a collection of two-level atoms with a transition 
frequency wa between the lasing levels and relaxation rates 
�
⟂
 and �∥ for the polarization and the population inversion, 

respectively. During the interaction of an electromagnetic 
field with the matter, the assumption of a fixed direction of 
the transverse electric field is ignored in a laser cavity. The 
basic equations of motion are the well-known MB equations 
[31, 45] written as 
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�0 is the magnetic susceptibility, c is the speed of light, � is 
the cavity damping coefficient and ℏ is Planck’s constant. 
Assuming that the electric field frequency w is very close to 
the atomic frequency wa , it follows that ℏw is the energy gap 
between the two atomic levels, g is the coupling constant 
between the electric field and the population inversion, and 
D0 is the pumping term [31]. It is well known that the atomic 
polarization of the two-level atoms can be expanded as

where � is a small parameter. In the following, we assume 
the electric field E to be taken as � = ��� , which restricts 
the problem to the case of a single harmonic. Assuming also 
that �� = ��

�
 , we obtain

with

and

Appendix A gives more details. We see that the nonlinear 
polarization �3 = �(�.�∗)� + �(�.�)�∗ + �(�.�)� consists 
of tree contributions. Parameters � , � , and � depend on the 
laser parameters. This form of the nonlinear polarization 
corresponds to materials possessing a higher degree of 
spatial symmetry (isotropic material) [46]. These contribu-
tions have very different physical characters. In terms of the 
energy level diagram, the first contribution with parameter 
� has the vector of nature � and illustrates one-photon-res-
onant contribution to the nonlinear coupling. The second 
contribution with parameter � has the vector nature of �∗ and 
illustrates two-photon-resonant processes, produces a non-
linear polarization with the opposite handedness. The third 
contribution with parameter � illustrates the process of third-
harmonic generation. For the case of third-harmonic gen-
eration, three physical processes to enhance the efficiency 
of the third-harmonic generation through the technique of 
resonance enhancement are illustrated: (a) the one-photon 
transition is nearly resonant, (b) the two-photon transition is 
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nearly resonant, and (c) the three-photon transition is nearly 
resonant. However, the method of (b) is usually the preferred 
way in which to generate the third-harmonic field with high 
efficiency, for the following reason: For the case of a one-
photon resonance (a), the incident field experiences linear 
absorption is rapidly attenuated as it propagates through the 
medium. Similarly, for the case of the three-photon reso-
nance (c), the generated field experiences linear absorption. 
However, for the case of a two-photon resonance (b), there 
is no linear absorption to limit the efficiency of the process. 
These predictions are exceptionally reliable for the case 
of atomic vapors because the atomic parameters (such as 
atomic energy levels and dipole transition moments) that 
appear in the quantum-mechanical expressions are often 
known with high accuracy. In addition, since the energy 
levels of free atoms are very sharp (as opposed to the case 
of most solids, where allowed energies have the form of 
broad bands), it is possible to obtain very large values of the 
nonlinear polarization through the technique of resonance 
enhancement [46].

We also assume that the traveling waves are lasing with 
frequency �a and critical vector kc = ±�a∕c . In addition, the 
longitudinal direction z is selected by the geometry of the 
laser medium or the mirrors. The direction of propagation is 
given by �� = kc� , though a priori both directions of propa-
gation are equiprobable. Once the atomic polarizability is 
known, the well-established perturbative nonlinear analysis 
is performed near the laser threshold by introducing a small 
parameter ( 𝜖 << 1 ) so that [31]

where DOC is a critical value given by DOC =
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scales, respectively, 

and
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with � ⟂ � , where � is slowly varying field amplitude in 
space and time. After inserting Eqs. (5)–(7) into the MB 
equations, rearranging terms and making use of Eqs. (3), (2) 
and (8), and identifying the coefficients of powers � at each 
order, we obtain, by applying the solvability conditions at 
0(�2) and 0(�3) , the laser (3 + 1)D vectorial CQCGL equa-
tion [47]

where ∇2
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=

𝜕2

𝜕𝜉2
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𝜕𝜁2
 represents a two-dimensional Lapla-

cian operator and the asterisk (∗) stands for the complex 
conjugate, while the coefficients zi(i = 1, 2,… , 7) are given 
in the Appendix. Equation (9) describes the behavior of the 
electric field in the medium. When coefficients z6 = z7 = 0 , 
in Eq. (9), we recover the laser (3 + 1)D vectorial CCGL 
equation that was introduced early by Gil [31] as a vector 
order parameter for an unpolarized laser and its vectorial 
topological defects. As can be seen, the model Eq. (9) has 
never been derived previously for the best of our knowledge. 
The coefficients z6 and z7 are simultaneously lead to the con-
tribution of nonlinear polarization with parameter � that has 
the vector nature of � , the nonlinear polarization with 
parameter � that has the vector nature of �∗ , and the contri-
bution of the nonlinear polarization with parameter � that 
illustrates the process of third-harmonic generation.

Due to the highly nonlinear nature of Eq. (9), we intro-
duce a number of useful simplifications: (i) we use the tradi-
tional uniform field limit which requires that both the mirror 
transmittivity and the gain per pass of the active medium 
be small, while their ratio may be arbitrary but finite; (ii) 
a large free spectral range; (iii) the number of modes that 
are significantly excited is manageably small [48]; (iv) the 
fourth-order derivative is neglected [31]. In this way, the 
new field amplitude obeys the equation of motion
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||2 + 2||�−

||2
)||�+

||2�−

]
,

(13)

� = − c1i∕c1r, � = c2i∕c2r, � = c3i∕c3r,

� = c5i∕c5r, �r = (c3r + 2c4r)∕c3r,

�i = (c3i + 2c4i)∕c3r,

�r = − (c5r + 3c6r)∕2c5r,

�i = − (c5i + 3c6i)∕2c5r,
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frequency detuning, �r and �i are the nonlinear cross coef-
ficients related to the cubic XPM, �r and �i are the nonlinear 
cross coefficients describing the quintic XPM, � represents 
the nonlinear coefficient for the quintic SPM.

3 � Analytical treatment using variational 
approach

To remind, a study of the (2+1) D form of the CQ-CGL 
equation governing the evolution of the optical field in the 
bulk medium with the localized linear gain compensated by 
losses was successfully made using the variational approxi-
mation adapted to dissipative systems, in which stability 
domains of elliptic spinning ones, double-rotating eccentric 
vortices, revolving crescents, and breathers were found [51]. 
In addition, varieties of asymmetric rotating vortices carry-
ing the topological charge, and four- to ten-pointed revolv-
ing stars with zero topological charge have been generated 
using the variational approximation [52]. To proceed with 
the variational method, we adopt the following appropriate 
notation of Eq. (12) whose the coupled CQCGL equations 
are rewritten as [44]:

with

where we have separated conservative from non-conserv-
ative terms. Solutions for such equations are assumed as a 
symmetric gaussians ansatz [37, 53, 54] given by

where A is the amplitude, X is the spatial width, C is the 
unequal wavefront curvature, X0 is the central position, � is 
the phase and N accounts for the motion of the dissipative 
soliton along the transverse direction. They are all functions 
of the independent variable t. By means of the variational 
approach [38, 44, 53, 55–57], we obtain the following cor-
responding set of six Euler-Lagrange equations: 

(14)
i
��±

�t
+ �± + Δ�± + ||�±

||2�± + �r
||�∓

||�±

+ �||�±
||4�± + �r(

||�∓
||2 + 2||�±

||2)||�∓
||2�± = iQ±,

(15)
Q± = ��± + �Δ�± + �||�±

||2�± + �i
||�∓

||�±

+ �||�±
||4�± + �i(

||�∓
||2 + 2||�±

||2)||�∓
||2�±,

(16)
�± =A exp

{
−
(x ± X0)

2 + y2

2X2

+i[2C((x ± X0)
2 + y2) ± N(x ± X0) + �]

}
,

(17a)

dA

dt
= −

3

4
A3� +

2A2�

X2
−

5

9
A5� + 4AC + A�N2

− �A +

(
−1 +

1

2X2
+

X2
0

X2

)
A3�ie

−
2X2

0

X2

+

(
8X2

0

9X2
− 1 +

1

2X2

)
A5�ie

−
8X2

0

3X2 ,

(17b)

dX

dt
= −

1

4
A2X� −

�

X
+

2

9
A4X� + 4XC

(
�CX2 − 1

)

+
1

2

(
−X +

1

X
+

2X2
0

X

)
A2�ie

−
2X2

0

X2

+

(
16X2

0

9X
− 1 +

1

X

)
A4�ie

−
8X2

0

3X2 ,

(17c)

dC

dt
= −

1

4X2
A2 −

2

9X2
A4� +

4�C

X2

+
�rA

2

X2

(
X2
0

X2
−

1

4

)
e
−

2X2
0

X2

+
2�rA

4

3X2

(
8X2

0

9X2
− 1

)
e
−

8X2
0

3X2

−
1

X4
+ 4C2,

(17d)

dN

dt
= 2N�

(
1

X2
+ 4X2C2

)

+ (2�iC −
�r

X2
)A2X0e

−
2X2

0

X2

+

(
�iC −

�r

X2

)
16A4X0

9
e
−

8X2
0

3X2 ,

(17e)

dX0

dt
= 2N�

(
−1 + 2X2C

)
+ �iA

2X0e
−

2X2
0

X2

+
8�iA

4X0

9
e
−

8X2
0

3X2 ,

(17f)

d�

dt
= 1 + 4�C

(
NX2 − 1

)
+

5

9
A4� +

3

4
A2 +

2

X2

− N2 +

(
�iNX0 +

3�r

4
−

�rX
2
0

X2

)
A2e

−
X2
0

X2

+
1

3

(
8�iNX0

3
+ 5�r −

16�rX
2
0

3X2

)
A4e

−
8X2

0

3X2 .
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 The variational technique reveals the interaction between 
the symmetric Gaussian waves and the laser system during 
propagation, including the additional relevant effects. The 
dynamics of the entire soliton can be significantly affected 
during the propagation. However, as well as the theoretical 
analysis shows the influence of the system on the dissipative 
soliton dynamics, explicit information related to the different 
solutions and their stability cannot be obtained at this stage 
of the analytical procedure.

The steady-state solutions of the system of Eqs. 
(17a)–(17e) are obtained by setting the derivatives of soliton 
parameters with respect to time, to zero. Taking X0 = 0 , for 
more simplicity, and after some algebra, we obtain the fol-
lowing solutions that give: (i) the amplitude

(ii) the width

(iii) the soliton velocity

(iv) the unequal wavefront curvature

necessary to build the steady-state solution.

(18)A =
3

2

√
−

1 + �r

2(� + 3�r)
,

(19)

X =

⎡⎢⎢⎣
((18��i + 24�r) + 8(�� − �))A4 + 9(�(� − �i) − 1 − �r)A

2

36(2(1 + �2) +
�A2

2
(�i + A2�i))

⎤⎥⎥⎦

−1∕2

,

(20)N =

√√√√� +
1

2
(�i + �)A2 + (

�i

2
+

�

3
)A4

�
,

(21)C =
1

2�X2
,

4 � Stability analysis and numerical results

The stability analysis of the moving dissipative soliton is 
performed through the effective potential [44, 58–60]. In 
doing so, we first investigate the possibility of the soliton 
trapped at the bottom of the effective potential well. The 
integration of the variational Eqs. (17a)–(17f) gives

The stationary solution of Eq. (22) corresponds to a parti-
cle located at the bottom of a potential well U(X), whose 
expression is given in appendix B. In this framework, the 
equation that describes the dynamics of a particle in a one-
dimensional potential well is

which is valid when the nonlinearity exactly balances the 
diffraction and the loss is exactly compensated by the gain. 
The graph of the effective potential shows an extremum, 
which is an equilibrium point. The analysis of the possi-
bility of the soliton being trapped in the well is presented 
in Fig. 1. The used parameters correspond to the popula-
tion inversion decay rate �|| = 107s−1 , polarization decay 
rate �

⟂
= 3.9 × 109s−1 , the cavity loss � = 9.9 × 107s−1 and 

the lasing wavelength � = 10.6 �m [61], together with the 
atomic transition frequency �a = 0.2 × 108s−1 for Fig. 1a, 
and �a = 2.5 × 108s−1 for Fig. 1b. From Fig. 1a, b, we can 
observe the appearance of two domains of instability (plane 
domain with zero potential and the domain of maximum 
potential), and the stability domain with minimum values of 
the effective potential, where the soliton can be trapped [44, 
58]. The symmetric Gaussian input will be self-trapped and 
generate a dissipative soliton for a good choice of dissipative 
parameters belonging to the stable domain.

(22)1

4

(
dX

dt

)2

+ U(X) = U
(
X0

)
.

(23)d2X

dt2
= −2

�U(X)

�X
,

Fig. 1   Potential U(�,�) for the following set of parameters: � = −1 , X0 = 12.5 ; a � = −0.159 , �r = 1.1087 , �i = 0.2118 , � = 0.0159 , �i = 0.1289 , 
�r = −0.5074 , b � = −0.13761 , �r = 1.0535 , �i = 0.1001 , � = 0.1761 , �i = 0.43 , �r = −0.5016
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The time evolution of the solution parameters has been 
numerically investigated using the fourth-order Runge–Kutta 
computational method, which allows to integrate the sys-
tem of equations obtained through the variational approach. 
The results that are displayed in Fig. 2a, b show that the 
amplitude A, the width X, the velocity N, and the unequal 
wavefront curvature C evolve with a slight change at the 
beginning of their propagation. From Fig. 2c, d (showing 
the input/output of the two solutions), one sees the increase 
of the widths, slight decrease of the intensities, and the shift 
of the central position corresponding to the two solutions. 
Despite this small difference, the variational analysis gives 
a detailed qualitative picture of each perturbation’s role and 
mode of action (such as coupling, diffraction, self-phase 
modulation, loss, or gain) on the pulse during propagation.

To confirm our analytical predictions, we solve the cou-
pled (2+1)D CQCGL. Equation (14) with the split-step 
Fourier method [44]. Using parameters corresponding to 
the stable domain of Fig. 1b (bottom of the effective poten-
tial), we obtain Fig. 3a, b. They present a stable evolution 
of the intensities of the coupled moving dissipative solitons 
�− and �+ during propagation in the space-time domain. 
Figure 3c, d show the corresponding spectral evolution of 
Fig. 3a, b. Albeit the initial shift of their central position, 
which is in agreement with the analytical predictions (see 

Eqs. (17a)–(17f)) together with Fig. 1, solitons remain stable 
during propagation. However, as we have noted, a continu-
ous shift of the initial central position during propagation, 
the corresponding spectral dynamics presents stable central 
position (see Fig. 3c, d).

Stable harmonic time evolution of solutions �+ and �− 
are shown in Fig. 4a, b. So the results are confirmed by the 
prediction of Haken [62], showing that the lasers are stable 
systems. Figure 4b, with its corresponding spectral evolution 
shown in Fig. 4d, reveal the moving harmonic dynamics. On 
the other hand, Fig. 4a and the corresponding spectral evolu-
tion (see Fig. 4c), related to the solution �+ , show a station-
ary harmonic evolution with a large period, compared to �− 
solution. This coherent evolution is an important property of 
laser systems and is used in applications such as holography 
and interferometry [63, 64].

As a reminder, the used parameters of Fig. 4 belong to the 
bottom of the potential well shown in Fig. 5, obtained for 
�r = −0.25016 . The rest of parameters remains unchanged 
as in Fig. 1b.

When carefully adjusting the nonlinear parameters around 
the bottom of the effective potential well, a typical opti-
cal evolution of the solution is depicted and displayed in 
Fig 6a, b, for the maximum values of �+ and �− , respec-
tively. Their corresponding spectral evolutions are given in 

Fig. 2   a, b display the evolution 
of the amplitude, the pulse 
widths, the chirp, the unequal 
wavefront curvatures, the veloc-
ity, the central position and the 
phase with respect to t. c, d 
depict the input/output profiles 
of the solutions �+ and �− for 
the following set of param-
eters: � = −0.159 , �r = 1.1087 , 
�i = 0.2118 , � = −1 , 
� = 0.0159 , �i = 0.1289 , 
�r = −0.5074 , and the initial 
central position X0 = 2.5
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Fig. 6c, d. One should note that the comparison between 
Figs. 4 and 6 leads to a good agreement both for analyti-
cal and numerical results. A periodic evolution is noted in 
Fig. 4 using parameters taken from the bottom of the poten-
tial well. When shifting such values, we observe a gradual 

change in the periodicity of the solutions �+ and �− , which 
indicates a gradually lost stability as presented in Fig. 6. 
Interestingly, a similar result was experimentally obtained 
by Cohen et al. [65], using a semiconductor laser with quasi-
periodic dynamics induced by external optical feedback 

Fig. 3   a, b show the three dimensional spatial evolution as predicted by the stability of the dissipative soliton trapped in the potential well. c, d 
display their corresponding spectral evolution V− and V+ , respectively for the values of parameters � = 0.72 , � = −0.728 and X0 = 15.5
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Fig. 4   a, b are the periodic evolution of max(�+(t)) and max(�−(t)) 
of the dissipative soliton obtained by direct numerical simulation 
of Eq. (13). The corresponding spectral evolution max(V+(t)) and 

max(V−(t)) are presented in c, d, with �r = −0.25016 , � = 0.72 , and 
� = −0.73 , while the rest of parameters remains the same in Fig. 3
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from a cavity with two arms, also known as the T-cavity. 
They showed the existence of frequency shifts in the spec-
trum occurring in the optical domain, therefore giving way 
for developing novel laser-feedback-based devices with the 
capability for subwavelength, nanoscale, multidimensional 
position sensing. Figure 7a, c, e for |�+(x, y)|2 and Fig. 7b, 
d, f for |�−(x, y)|2 present the three-dimensional evolution of 
the dynamics given in Fig. 4a, b, and reveal the formation 
of alternate structures that had been predicted and observed 
in the CO2 laser [66].

Figure 8 presents profiles of dissipative solitons at differ-
ent propagation times. They reveal another specificity and 
particularity of Eq. (14). The obtained 3D stable spatiotem-
poral optical solitons, by direct numerical simulations of 

the proposed model equation, are among new interesting 
dynamical aspects of dissipative optical solitons. The results 
are obtained with X0 = 12.5 , �r = −0.3 , and the rest of the 
parameters are the same as those of Fig. 7.

We observe through numerical simulations that when 
carefully adjusting the value of �r , the initial symmetric solu-
tion (see Fig. 8a, b) evolves toward a new stable formation 
with a non-smooth vertex top profile. Recently, a similar 
result was obtained by Djoko et al. [55]. They showed that 
such profiles are stable and can be considered a potential 
object for long-distance transmission in communication 
systems. To confirm the results of Figs. 8, 9 displays the 
spectral evolution of the solution given in Fig. 8, and it fol-
lows that, despite the non-smooth vertex top profile, those 
profiles remain stable. These structures are good candidates 
for laser devices.

5 � Conclusion

In summary, the first achievement of the present work was 
the successful derivation of the (3+1)D vectorial CQCGL 
equation, modeling the interaction of an electromagnetic 
field with the matter in a laser near the lasing threshold. 
After that, the stability of the moving dissipative solitons in 
the laser cavity, modeled by the coupled (2+1)D CQCGL 
equation, has been studied. We have derived the expression 

Fig. 5   Potential U(�,�) , as a function � and � , for �r = −0.25016 . 
The other parameters remain unchanged as in Fig. 1b
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Fig. 6   a, b show the quasi-periodic evolution of max(�+(t)) and 
max(�−(t)) of the dissipative soliton by direct numerical simulation 
of Eq. (13). The corresponding spectrals evolution max(V+(t)) and 

max(V−(t)) are presented in c, d, with �r = −0.25016 , � = 0.63051 
and � = −0.728 . The rest of parameters are taken from Fig. 3
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of the stability condition and the propagation trajectory of 
solitons using the variational approach. Using the effective 
potential of the system, we have shown, through numeri-
cal simulations, that solitons can be trapped in the poten-
tial well, leading to a good agreement between analytical 
and numerical results. In such dissipative systems, cross-
compensation involving self-focusing, loss/gain, and cou-
pled effects appears to stabilize the controllable behavior of 
induced optical vector moving solitons during propagation. 

Based on an appropriate choice of parameters, from the sta-
bility condition, we have observed a generation of harmonic 
to quasi-periodic patterns inherent to the laser systems. This 
confirms the accuracy between our analytical predictions 
and the long-time evolution of the expected moving dissipa-
tive solitons, as observed experimentally in the CO2 laser.

They could be of great interest for technological applica-
tions related to laser systems to increase their efficiency. 
In addition, such patterns allow the development of novel 

Fig. 7   Spatial profiles of the solution �+(x, y) (upper line) and 
�−(x, y) (bottom line ) at different steps of the evolution: a, b 
T = 0 , c, d T = 4 , e, f T = 10,000 , using the following param-

eters: � = −0.13761 , � = 0.1761 , � = 0.7 , �r = 1.0535 , �i = 0.1001 , 
�i = 0.043 , �r = −0.25016 , � = −1 , � = −0.73 , and X0 = 2.5

Fig. 8   Spatial profile of the solution �+(x, y) (upper line) and �−(x, y) 
(bottom line ) at different steps of the evolution: a, b T = 0 , c, d 
T = 15,000 , e, f T = 30,000 , using the following parameters val-

ues: � = −0.13761 , � = 0.1761 , � = 0.7 , �r = 1.0535 , �i = 0.1001 , 
�i = 0.043 , �r = −0.3 , � = −1 , � = −0.73 , and X0 = 12.5
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laser-feedback-based devices, with the capability for sub-
wavelength, nanoscale, multidimensional position sensing.

Appendix

A Multimodal method

The equations describing the interaction of the electromag-
netic field with the matter are given by the Maxwell–Bloch 
Eqs. (1a)–(1c). The quantities E, P and D are taken as 
follows:

under the conditions �−n
j

= (�n
j
)∗ , �−n

j
= (�n

j
)∗ , and 

D−n
j

= (Dn
j
)∗ . We assume that the permanent electric field 

such that

(24)� =

∞∑
j=1

∈j

+j∑
n=−j

�
n
j
(r) exp(inwt),

(25)� =

∞∑
j=1

∈j

+j∑
n=−j

�
n
j
(r) exp(inwt),

(26)D =

∞∑
j=1

∈j

+j∑
n=−j

Dn
j
(r) exp(inwt),

(27)∀j > 0 leads to�0
j
= 0.

We focus our study to the case E = E1
1
 , D0

1
= D0 . In the pres-

ence of the intense field in the system, we have 
D0 <<

2

�wa

(
E ⋅

𝜕P

𝜕t

)
 . Inserting the relation of P and D given 

by Eqs. (25) and (26) into Eqs. (1b) and (1c), it comes, for 
any einwat , the following relations:

where p and q can take negative values, and p + q = n . For 
any power of � , solving these equations leads to:
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Fig. 9   Spectral profile |V+|2 (upper line) and |V−|2 (bottom line ) of the results of Fig. 8, at different steps of the evolution: a, b T = 0 , c, d 
T = 15,000 , e, f T = 30,000
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with � = ��1 + �2�2 + �3�3

where �1 = �1
1
, �2 = �1

2
    

and

In the following, we perform the nonlinear perturbation anal-
ysis near the laser threshold by introducing a small param-
eter � so that D0 = D0C + 𝜖2D̃0 ( 𝜖 << 1 ), (�, �) = �(x, y) , 
(Z, �) = �2(z, t) [31]. Moreover,

with

From the MB equations, some algebraic manipulations yield 
the following solvability condition
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2
3
= 0, D2

3
=

2i

ℏ
(
�∥ + 2iwa

)(��

�
�
�

�

)
,

(38)𝜖3, n = 3 ∶ �
3
3
=

ig(
8wa − 3i𝛾⊥

)(D2
2
�
1
1

)
, D3

3
= 0,

(39)�3 = �
1
3
+ �

3
3
.

(40)

⎛⎜⎜⎜⎜⎜⎝

�

�t�

�

�t�

D

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0

0

0

0

D0

⎞
⎟⎟⎟⎟⎟⎠

+ �

⎛
⎜⎜⎜⎜⎜⎝

�1

�t�1

�1

�t�1

D1

⎞
⎟⎟⎟⎟⎟⎠

+ �2

⎛
⎜⎜⎜⎜⎜⎝

�2

�t�2

�2

�t�2

D2

⎞
⎟⎟⎟⎟⎟⎠

+

(41)

⎛⎜⎜⎜⎜⎜⎝

�1

𝜕t�1

P1

𝜕t�1

D1

⎞⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

A

iwa�
1

𝜇0c
2
(−1 +

ik

wa

)�
iwa

𝜇0c
2
(−1 +

ik

wa

)�

0

⎞
⎟⎟⎟⎟⎟⎟⎠

ei(wt−kcz) + c.c., A⊥Ẑ.

(42)
𝜅
𝜕��

𝜕𝜏
= − 2iwa

𝜕��

𝜕𝜏
− 2iwac

(
𝜕

𝜕Z
+

i

2kc
∇2

⊥

)
��

− 𝜇0c
2

(
2
𝜕

𝜕𝜏

𝜕��

𝜕t

)
,

(43)2
𝜕

𝜕𝜏

𝜕��

𝜕t
= − 𝛾⊥2

𝜕��

𝜕𝜏
− g

(
D̃0 + D2

)
��,

D2 is obtained by solving Eq. (44), and by combining Eqs. 
(42) and (43) just give

The nonlinearities come from the interaction between the 
population inversion and the electric field. To analyze the 
higher order diffusive term in this system, the higher-order 
correction 𝛾2

⊥

𝜕2��

𝜕𝜏2
 is needed to the polarization Eq. (43)

Substituting Eq. (47) into Eq. (46), we obtain

Multiplying both sides of Eq. (49 ) by

leads to the following amplitude equation derived by Gil 
[31]:

with

(44)
�D2

�t
= − �∥D2 +

2

ℏwa

(
��.

���

�t

)
.

(45)

𝜕��

𝜕𝜏
=

2c(𝛾⊥ − iwa)

k − 𝛾⊥ + 2iwa

(
𝜕

𝜕Z
+

i

2kc
∇2

⊥

)
��

+
𝜇0c

2g

k − 𝛾⊥ + 2iwa

(
D̃0 + D2

)
�1

(46)

𝜅
𝜕��

𝜕𝜏
= − 2iwa

𝜕��

𝜕𝜏

− 2iwac

(
𝜕

𝜕Z
+

i

2kc
∇2

⊥

)
�� − 𝜇0c

2

(
2
𝜕

𝜕𝜏

𝜕��

𝜕t

)
.

(47)2
𝜕

𝜕𝜏

𝜕��

𝜕t
= − 𝛾⊥

𝜕��

𝜕t
+ 𝛾2

⊥

𝜕2��

𝜕𝜏2
− g

(
D̃0 + D2

)
��.

(48)
�D2

�t
= − �∥D2 +

2

ℏwa

(
��.

���

�t

)
.

(49)

(𝜅 − 𝛾⊥ + 2iwa)

[
1 +

2𝛾2
⊥

𝜅 − 𝛾⊥ + 2iwa

(
𝜕

𝜕Z
+

i

2kc
∇2

⊥

)]

𝜕��

𝜕T
= 2c

(
𝛾⊥ − iwa

)( 𝜕

𝜕Z
+

i

2kc
∇2

⊥

)
�� + 𝜇0c

2g
(
D̃0 + D2

)
��.

((
𝜅 − 𝛾⊥ + 2iwa

)[
1 +

2𝛾2
⊥

𝜅 − 𝛾⊥ + 2iwa

(
𝜕

𝜕Z
+

i

2kc
∇2

⊥

)])−1

(50)

𝜕

𝜕𝜏
� =C1A + C2

(
𝜕

𝜕Z
+

i

2kc
∇2

⊥

)
� + C3

(
𝜕

𝜕Z
+

i

2kc
∇2

⊥

)2

�

+ C4(� ⋅ �
∗)� + C5(� ⋅ �)�∗,

(51)
C1 =

𝜇0c
2gD̃0

(
𝜅 − 𝛾⊥ + 2iwa

)

×
(
(𝜅 − 𝛾⊥)

2 + 4w2
a

)
,
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(52)
C2 = −

2c
(
𝛾⊥
(
𝛾⊥ − 𝜅

)
+ 2w2

a
+ iwa

(
𝜅 − 3𝛾⊥

))

×
(
(𝜅 − 𝛾⊥)

2 + 4w2
a

)
,

(53)C3 = −
4c2𝛾⊥

(
𝛾2
⊥

(
2𝜅 − 𝛾⊥

)
+ 𝜅

(
𝜅𝛾⊥ − 4w2

a

)
− i𝛾⊥

(
3𝛾2

⊥
+ 4w2

a
− 𝜅

(
2𝛾2

⊥
− 𝜅

)))

×
(
(𝜅 − 𝛾⊥)

2 + 4w2
a

)2
,

(54)
C4 =

4kg
(
−
(
𝜅 − 𝛾⊥

)
+ 2iwa

)

× �wa𝛾∥
(
(𝜅 − 𝛾⊥)

2 + 4w2
a

)
,

(60)

C5 =
2g

(
𝛾∥

(
2w2

a
+ 𝜅

(
𝜅 − 𝛾2

∥

))
− 2w2

a

(
𝜅 + 𝛾⊥

)
− iwa

(
𝛾∥
(
𝜅 + 𝛾⊥

)
+ 2𝜅

(
𝜅 − 𝛾⊥

)
+ 4w2

a

))

× �wa

(
𝛾2
∥
+ 4w2

a

)(
(𝜅 − 𝛾⊥)

2 + 4w2
a

)
.

Where D2 is again obtained by solving Eq. (58), i.e.,

with

 Substituting Eq. (59) into Eq. (57), and after some algebra, 
we obtain the following (3+1)D vectorial cubic-quintic CGL 
equation

 with

(58)
�D2

�t
= − �∥D2 +

2

ℏwa

(
��.

�(�1 + �3)

�t

)
,

(59)
D2 =D20 + D22e

2i(wat−kcz) + D∗
22
e−2i(wat−kcz)

+ D24e
4i(wat−kcz) + D∗

24
e−4i(wat−kcz),

(55)

D20 =
4

�𝜇0c
2wa𝛾∥

(
− k��∗ +

kg���∗�

�wa𝛾⊥

(
4

𝛾∥
+

1(
𝛾∥ − 2iwa

) +
1(

𝛾∥ + 2iwa

)
)

+
ig���∗�

�wa𝛾⊥

(
1(

𝛾∥ + 2iwa

) −
1(

𝛾∥ − 2iwa

)
))

,

(61)

D22 =
2

�𝜇0c
2wa

(
𝛾∥ + 2iwa

) (−��(k + iwa)

+
2g���∗

�

(
k

𝛾⊥wa

(
1(

𝛾∥2iwa

) +
2

𝛾∥

)

+
3(

𝛾∥ + 2iwa

)(
8wa − 3i𝛾⊥

)

+
i(

𝛾∥ + 2iwa

)
(

1

𝛾⊥
−

3k

wa

(
8wa − 3i𝛾⊥

)
)))

,

(62)D24 =
12g��

�2𝜇0c
2wa

(
𝛾∥ + 4iwa

)(
8wa − 3i𝛾⊥

)
(
1 −

ik

wa

)
.

(63)

𝜕�

𝜕𝜏
= z1� + z2

(
𝜕

𝜕Z
+

i

2kc
∇2

⊥

)
� + z3

(
𝜕

𝜕Z
+

i

2kc
∇2

⊥

)2

� + z4(� ⋅ �
∗)�

+ z5(� ⋅ �)�∗ + z6
(
�

�
⋅ �

∗�
)
� + z7

(
�

�
⋅ �

∗
)
�

∗
,

To analyze higher order nonlinearities in the system, the 
nonlinear polarization term �3 is needed. Therefore, taking 
into account the nonlinear polarization into the population 
inversion Eq. (48) yields

(56)
k
𝜕��

𝜕𝜏
= − 2iwa

𝜕��

𝜕𝜏
− 2iwac

(
𝜕

𝜕Z
+

i

2kc
∇2

⊥

)
��

− 𝜇0c
2

(
2
𝜕

𝜕𝜏

𝜕��

𝜕t

)
,

(57)2
𝜕

𝜕𝜏

𝜕��

𝜕t
= − 𝛾⊥

𝜕��

𝜕𝜏
+ 𝛾2

⊥

𝜕2��

𝜕T2
− g

(
D̃0 + D2

)
��,
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B Effective potential

The expression of the effective potential derived in Sec. 4 
is as follows:

(64)z1 =
𝜇0c

2gD̃0

(
k − 𝛾⊥ + 2iwa

)
(
k − 𝛾⊥

)2
+ 4w2

a

,

(65)z2 =
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a
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,
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