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Abstract
Generally speaking, it is the essential core of image filtering to keep the texture features better while denoising the image. To 
some extent, optical coherence tomography retina images have speckle noise, which masks the texture features of the image, 
and thus causes misjudgment to the doctor’s diagnosis. In this paper, we first propose a cluster-based filtering framework for 
removing speckles with structural protection in OCT images. The overall process can be divided into preprocessing, struc-
ture extraction and structure denoising. First, in the preprocessing stage, we propose to use the shearlet (SHT) method for 
preliminary filtering and combine block search and matching to achieve structure protection. Then in the structure extraction 
stage, we propose to use the relative total variation algorithm to achieve structure extraction, combined with fuzzy C-means 
Clustering filters out the background noise to obtain the structure mask of the image. Finally, in the structure denoising 
stage, we propose a new variational Block matching 3D (BM3D)-L2 method, and the structure of the image and the noise 
are described in BM3D space and  L2 space, respectively. By assigning appropriate values to the parameters, image noise can 
be better eliminated, and the structural texture of the image can be protected. We test the proposed method on seven large 
noisy OCT images, which include five human retinal OCT images and two mouse optic nerve OCT images. In addition, we 
also compare it with SHT, BM3D, TV-SHT and TV-BM3D methods, which were proved to be effective in denoising. The 
performances of these methods are quantitatively evaluated in terms of the signal-to-noise ratio (SNR), contrast-to-noise 
ratio (CNR) and the averaged equivalent number of looks (ENL) at the aspects of speckle reduction and structure texture 
protection. Vast experiments show that our proposed method can effectively reduce speckle noise in OCT images, protect 
important structural information and improve image quality. Here, we believe that our method will improve image segmenta-
tion, medical diagnosis, and can use this as training samples to improve the accuracy of machine learning.

1 Introduction

Optical coherence tomography (OCT) is an emerging 
tomography technology, which is based on the principle of 
optical interference to observe the tissue information inside 
the organism. In this process, as a non-contact, non-invasive, 
non-ionizing imaging technology, OCT has been widely 
used in biomedical imaging and clinical with its advan-
tages of high safety, fast scanning speed and high resolution 
diagnostic area [1–3]. However, due to factors, such as the 

wavelength of the imaging beam, the mutual interference of 
scattered light, and the differences between different struc-
tures of the image, speckle has become an inherent phe-
nomenon of the OCT measurement system [4]. In addition, 
speckles can also lead to a decrease in the contrast of each 
part of the medical image, which brings certain difficulties 
to the doctor's diagnosis. Therefore, reducing speckle noise 
in OCT images, enhancing contrast in abnormal areas, and 
protecting image detail information are objects that research-
ers have paid close attention to in recent years. To improve 
the image quality, in the past three decades, many improve-
ments have been proposed in terms of system design and 
post-processing.

From the perspective of system design [5–10], the noise 
reduction performance of the OCT image can be directly and 
effectively achieved, but the premise of achieving this per-
formance is that the OCT system needs to be continuously 
modified, such as adjusting the light source and adjusting 
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the scanning angle. As a result, a lot of time is consumed 
and there will be speckle noise in the obtained OCT image.

Based on the image post-processing, the idea with speckle 
removal has been investigated in the past few years, and 
numerous different approaches have been proposed in the 
past several years. Generally speaking, these algorithms are 
classified as the spatial domain method and the transform 
domain method.

In the spatial domain algorithm, numerous and diverse 
methods have been developed, such as the adaptive median 
filtering [11], enhanced Lee filtering [12], adaptive Wiener 
filtering [13], Bayesian least squares estimation [14], the 
diffusion-based algorithms (PDEs) [15–17] and the nonlocal 
filters-based algorithms [18–21].

Particularly, the total variation (TV) model which was 
first proposed by Rudin et al. [22], is of great interest and 
probably the most successful one because of its simple form 
and decent edge preserving performance. In addition, many 
modified TV de-speckling methods [23–26], with different 
tuning functions, have been proposed gradually. However, 
the fixed (spatially invariant) regularization parameter used 
in TV models still limits the improvement of speckle reduc-
tion. In fact, the “staircase” effect often appears in TV and 
PDE de-speckling results. This is because the spatial infor-
mation on signal and noise cannot be adequately reflected 
by these methods.

In addition to the spatial domain algorithm, the transform 
domain algorithm is another important de-speckling strategy. 
This strategy decomposes the original image across multiple 
scales with a multiscale transform and reduces the speckle 
noise with a shrinkage technique to thresh the obtained coef-
ficients. In other words, their de-specking performance can 
be enhanced by choosing a proper decomposition basis and 
applying an effective shrinkage technique. In the transform 
domain, there are mainly the wavelet transform [27], the 
adaptive wavelet transform [28], the SHT transform [29], 
the contourlet transform [30], the curvelet filtering [31] 
and block matching and 3D (BM3D) transform [32]. Rela-
tively speaking, the methods realize better speckle reduction 
and more effective structure preservation. However, some 
unwanted wavelet-related visual artefacts are introduced 
into the results. In addition, these artefacts often degrade 
the image quality especially in the textural regions.

Generally speaking, the spatial domain denoising method 
has the advantages of directness, flexibility, and ease of 
implementation, while the transform domain denoising 
method can sparsely represent images in the frequency 
domain. It can be seen from the above that the two have 
unique advantages in reducing image speckle and structural 
protection in the spatial and transform domains, respec-
tively. By combining these algorithms and making full use 
of the advantages of each algorithm, the speckle removal 
performance can be further improved. For example, Ma et al. 

reduced pseudo Gibbs artifacts using TV-based methods [33, 
34]. In addition, Xu et al. studied the SHT-based TV (TV-
SHT) method and Huang et al.’s BM3D-based TV method 
[35, 36]. These methods usually need to select and adjust 
specific parameters to constantly balance the reduction of 
artifacts, the suppression of speckle noise, and the retention 
of structural texture. However, in the case of high speckle, 
even with these methods, pseudo Gibbs artifacts are still 
inevitable. Recently, Hossein et al. [45] propose to use the 
K-means clustering method to cluster images, and then pass 
three pixel-based de-speckle algorithms, including Lee filter, 
adaptive Wiener filter and mean filter method for filtering to 
obtain the good results. Hu et al. [44] proposed the retinex 
OCT image enhancement algorithm based on the clustering 
method, which selectively enhances the structural part, and 
uses a three-dimensional block matching algorithm to filter 
it, which further reduces the speckle noise and improves 
the image quality. It is worth mentioning that literature [44] 
uses FCM to divide the image into background and structure 
parts. However, this algorithm is based on feature calcula-
tion and clustering. When the noise is large, the clustering 
result of the image will be limited. Therefore, pre-processing 
operations are required in this paper. In addition, machine 
learning and deep learning methods [37–39] have provided 
many new ideas for speckle reduction. To some extent, these 
algorithms can quickly remove noise through the set network 
architecture. In this process, the training set plays a very 
important role, which directly determines the quality of the 
prediction results. However, the training set of these algo-
rithms usually contains more background noise, so that the 
final predicted image still has noise, and even the structure 
information of the image is blurred. To a certain extent, the 
accuracy and adaptability of these methods will be reduced.

Inspired by this, to eliminate the influence of background 
large noise on image structure information during the 
denoising process. In this paper, we first propose a cluster-
based filtering framework for removing speckles with struc-
tural protection in OCT images. The overall process can be 
divided into preprocessing, structure extraction and structure 
denoising. First, in the preprocessing stage, we propose to 
use the SHT method for preliminary filtering and combine 
block search and matching to achieve structure protection. 
Then in the structure extraction stage, we propose to use the 
relative total variation algorithm to achieve structure extrac-
tion, combined with fuzzy C-means Clustering filters out 
the background noise to obtain the structure mask of the 
image. Finally, in the structure denoising stage, we propose 
a new variational BM3D-L2 method, and the structure of 
the image and the noise are described in BM3D space and 
 L2 space, respectively. By assigning appropriate values to 
the parameters, image noise can be better eliminated, and 
the structural texture of the image can be protected. With 
this method, seven large noisy OCT images are successfully 
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de-speckled, in which human retina OCT images with the 
different disease information and two mouses normal optic 
nerve OCT images are selected, respectively, in this paper. 
In addition, we also use the three quantitative indicators of 
SNR, CNR and ENL to evaluate the ability of background 
noise reduction, structural noise removal and details infor-
mation smoothing protection. In addition, we compared 
the proposed method with SHT, BM3D, TV-SHT and TV-
BM3D methods. The experimental results of seven large 
noisy OCT images show that the proposed method is supe-
rior to the above three methods, and effectively improves the 
quality of the original OCT noise image.

The remainder of this paper is organized as follows: 
Sect. 2 reviews the theory of SHT transform, block match-
ing 3D and relative total variation. Besides, we details the 
proposed method. Section 3 gives the results of different 
methods and analyzes them. Finally, the conclusion is given 
in Sect. 4.

2  The description of related methods

2.1  The brief reviews of the related methods

2.1.1  SHT transform

The SHT space is a special synthetic wavelet with strong 
directional sensitivity that provides the best representation 
of the image’s geometric features in the direction and shape 
of the image. Recently, this transform has been applied to 
image denoising.

Given an image u , the forward and backward continuous 
2D SHT transform is defined as
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The parabolic scaling matrix As is an anisotropic dilation, 
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respectively. The SHT space can capture the change of the 
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the scale parameter a. The frequency-domain shear structure 
of shear waves is shown in Fig. 1. It is worth mentioning 
that when the value of a is small, the smaller the cut area; 
therefore, it can capture the frequency information of the 
image well.

2.1.2  Block matching 3D (BM3D)

Block matching 3D (BM3D) [32] is one of the hotspot algo-
rithms used in OCT image denoising in recent years. Its 
main idea is to aggregate similar blocks in the image, and 
then denoise through three-dimensional wavelet shrink-
age. While this algorithm can sparsely express the image, 
the most important thing is to consider the pixel block of 
the image, which can retain the detailed information of the 
image and improve the visual quality of the image. Its flow-
chart can be seen in Fig. 2.

The algorithm principle of BM3D mainly includes two 
parts. One part is to use three-dimensional transformation 
combined with wavelet hard threshold shrinkage coefficient 
to estimate the initial filtered image, and the other part is 
based on the result of the above operation, using three-
dimensional transformation combined with Wiener filter-
ing to shrinkage coefficient. Finally, the algorithm output 
the filtered image.

2.1.3  Relative total variation (RTV)

Relative total variation [40] is an extension of the total vari-
ation algorithm, which has good structure extraction per-
formance. It combines the total variation of pixels in the 
window with the inherent change of the entire space (espe-
cially for the visually significant area) to make meaningful 
content in the image as well as the texture edges are adjusted 
appropriately. Let R and S be the input image and the result 
image, respectively. The effect of the term (RP–SP) is that 
there is no significant deviation between the input and the 
result. The objective function is finally expressed as

Fig. 1  SHT support tiling in frequency domain
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where the value of λ typically varies in a small range 
[0.01,0.03] in practice. The ε is a small positive number 
to avoid division by zero. The general pixelwise windowed 
total variation measure, written as

where m belongs to the rectangular region centered at pixel 
n. lx(n) and ly(n) , respectively, are the local weighted total 
variation of pixel n in the x and y directions. gn.m is a weight-
ing function defined according to spatial affinity, and the w 
control window size. The specific solution process can be 
seen in Ref. [40].

2.2  The proposed cluster‑based filtering framework

By reviewing the above algorithms, we propose a new three-
stage filtering algorithm, including filtering, the structure 
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extraction and the structure denoising. The implementation 
steps are described as follows:

2.2.1  Preprocessing

First, a forward SHT transform is performed on the input 
image I(x, y) , to obtain the SHT transform coefficients CSHI:

where I(x, y) represents original input image, CSHI repre-
sents SHT transform coefficients, and SHT(⋅) represents SHT 
transform (Fig. 3).

Then the transform coefficients subject to a hard threshold 
before an inverse SHT transform is carried out:

where sigma is the parameter selected according the noise 
level, Tscalars(⋅) is a threshold scalar and its value is set to 
[thr 5 1 2 4] in this paper. dst_scalars(j) is the scalar cell 
array of the noise estimation level.

(7)CSHI = SHT(I(x, y)),

(8)CSHI(i) = shrink(CSHI(i)), i = 0, 1, 2, 3, 4,

(9)shrink
�
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image 

3Dtransform
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Inverse 3D Transform 
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Wiener filter 
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weight
3Dtransform 

Inverse 3D Transform

Block estimate aggregation 

Fig. 2  Block matching 3D (BM3D) operation flowchart

Fig. 3  Proposed filtering 
framework
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In addition, a backward SHT transform will operate on 
the SHT coefficients:

where SHT−1(⋅) represents inverse SHT transform and 
I1(x, y) represents the image obtained by the inverse trans-
form. In addition, the filtering effect of SHT is largely 
related to the parameter sigma, and the different values of 
sigma will eventually lead to different performance of image 
denoising.

Second, it combines block search and matching to achieve 
structural registration. Using the excellent sparse expres-
sion performance of BM3D, image registration is realized 
through BM3D’s block matching, and the structure of the 
image is preserved. Expressed by the following mathemati-
cal formula as

where I2(x, y) is the result after BM3D’s block search and 
matching processing with noise level 40 for I1(x, y) to greater 
achieve the structure registration, and Bm(⋅) represents the 
BM3D transform.

2.2.2  Structure extraction

First, we use relative total variation for image I2(x, y) to 
extract the structure of the image, and obtain the image 
I3(x, y) . Expressed by the following mathematical formula as

where the value of λ typically varies in a small range 
[0.01,0.03] in practice. In this paper, we set it to 0.01. ε is 
a small positive number to avoid division by zero. The first 
term of this formula is used as the fidelity term so that the 
processed image cannot be too deviated. The second term is 
used as a regular term to capture the structural information 
of the set window relative to the global change and adjust the 
balance through the parameter λ. More detailed information 
can be seen in Sect. 2.1.3 and the specific solution process 
can refer to Ref. [40].

Then, we superimpose the obtained result with the above 
structure registration result to highlight the structure of the 
image and obtain I4(x, y) . It can be expressed as a math-
ematical formula:

Second, we cluster the obtained images I4(x, y) with fuzzy 
C-means clustering. In this process, we divide it into two 
categories to facilitate the separation of the structure from 
the background noise.
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(14)I4(x, y) = I2(x, y) + I3(x, y).

The standard FCM algorithm assigns pixels to each cat-
egory using fuzzy memberships. In this paper, we classify 
the pixels in image I4(x, y) . Let X =

[
x1, x2,… , xn

]T denote 
an image I4(x, y) with N pixels to be partitioned into two 
clusters. FCM clustering algorithm is an iterative optimiza-
tion that minimizes the cost function [41]. The energy func-
tion of the clustering mask is calculated as

where �ij represents the membership of pixel xj in the ith 
cluster, c is the number of cluster, vi is the ith cluster center; 
‖ · ‖ is the norm metric; m ∈ [1, ∞] is the cluster fuzziness. In 
this paper, we set c and m to 2, respectively. The membership 
functions and clusters are updated as

and

In addition, we obtained the Mask of the structure of the 
image, as shown in Fig. 10. In addition, then get the structure 
of the image G(x, y).It can be expressed as a mathematical 
formula:

2.2.3  Structure denoising

Here, we first propose a new variational method to filter the 
structure image G(x, y):

The energy function of the proposed method can be writ-
ten as follows:

where Is and In represent the structure of the image and the 
noise contained in the image, respectively. ‖⋅‖BM3D repre-
sents block matching 3D space with noise level parameter 
�1 , and ‖⋅‖2

L2
 represents  L2 space, which is square integrable 

space and is the most commonly used and simplest func-
tional space.

By minimizing the energy function theoretically obtain 
satisfactory filtering results, so as to achieve the purpose 
of separating structure from noise, and then better remove 
noise. Furthermore, we numerically solve the designed 
energy function.
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(18)G(x, y) = Mask ∗ I(x, y).

(19)Is, In = argmin
Is,In

‖‖Is‖‖BM3D
+ �‖‖In‖‖2L2 ,G = Is + In,
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The above energy function can be converted to the fol-
lowing unconstrained model by Lagrangian multiplier [42], 
and an effective measure to solve the model is to minimize 
each variable Is and In in the energy function in turn:

With In being fixed, Is is a solution of

With Is being fixed, In is a solution of

where � belongs to the noise coefficient, we set it to 2 in 
this paper.

We summarize the main steps for structure-denoising in 
algorithm A, as follows:

(20)

Is, In = argmin
Is,In
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+ �‖‖In‖‖2L2 +
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2
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,

Algorithm A 

1. Initialization: = =0,  is the initial image 

2. Iterations: 

2.1  

2.2  

2.3 If n=N0,  

3. Stop test: we stop if n>N 

Is In G

Is = G − In BM 3D

In =
1

2δ +1
(G − Is )

G = Is + In

In algorithm A, N0 is the number of iterative updates in 
the middle, and N is the maximum number of iterations of 
the update.

3  Experiment and discussion

In this section, we test and verify the performance of our 
proposed method using seven large noisy OCT images, 
which include the five human retina images and two mouse 
optic nerve images. These images are obtained through the 
traditional SD-OCT system, which has the advantages of 
high-speed scanning and high accuracy, as shown in Fig. 4. 
In addition, these human retina images are from a public 
data set [43] and mouse optic nerve images are from data 
set [46], as shown in Fig. 5. For the convenience of read-
ers, we named these images as OCT-A, OCT-B, OCT-C, 

Fig. 4  Traditional SD-OCT 
system
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OCT-D, OCT-E, OCT-mouse1, OCT-mouse2. According to 
Fig. 5, it can be seen that the lesion areas of different OCT 
images are different, and the different areas all contain a 
certain amount of speckle noise, which greatly affects the 
structure information of the image and brings trouble to the 
doctor's diagnosis. It is worth noting that OCT-B–C have a 
rich porous structure.

All experiments are processed by MATLAB R2016a 
under the same conditions of a Lenovo ThinkPad E450 com-
puter equipped with 2.2 GHz CPU and 4 GB RAM memory.

3.1  Performance evaluation

For the quantitative evaluation, some aspects are used to 
quantify the image quality, including the signal-to-noise 
ratio (SNR), the contrast-to-noise ratio (CNR) and the aver-
aged equivalent number of homogeneous areas (ENL). In 
Fig. 5, some areas are marked to calculate SNR and CNR, 
in which R0-1–R0-2 as the ROIs are used to achieve the 
SNR, R1–R4 as the ROIs are used to achieve the CNR and 
R5–R7 as the ROIs are used to achieve the ENL. The overall 
selected region of interest covers the structural information 
of the image and can better reflect the microscopic math-
ematical characteristics of the image, so that the image struc-
ture can be expressed in detail. The three index equations 
are, respectively, defined as follows:

where �n and �2
n
 represent the mean and variance of the noise 

region, m and H indicates the number of regions selected in 
the original noisy image. It can be seen from Eq. (23) that 
SNR is often used to measure the amount of noise contained 
in the signal. The higher the value, the less noise the signal 
contains and the better the image quality. In this paper, it can 
be used as an indicator of speckle noise reduction capability.

It can be seen from Eq. (24) that CNR is a measure of 
the ability of image structure to remove noise. The more 
noise is removed from the structure part, the more the image 
structure contrast will increase. In addition, as an index for 
quantizing the noise reduction performance of the structure, 
the higher the CNR value, the less the noise content of the 
image structure part, which means the greater the degree 
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Fig. 5  Original noisy OCT images: a OCT-A; b OCT-B; c OCT-C; d OCT-D; e OCT-E; f OCT-mouse1; g OCT-mouse2
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of separation between the image structure and the noise. 
According to Eq. (25), it can be seen that ENL is used to 
measure the smoothness of detail information in the image. 
The larger the value of ENL, the smoother the details of the 
image and the less noise in the details of the image.

3.2  Experimental results and discussion

Here, we use the selected algorithm to conduct experimental 
research on the obtained OCT experimental images, includ-
ing SHT, BM3D, TV-SHT, TV-BM3D and the proposed 
method. Generally speaking, for a fair comparison, we 
compare the best results of each method. In this process, 
the parameters of all algorithms are selected based on bet-
ter filtering performance, in which the results of the BM3D 
method depend on thresholding factor of noise level σ, the 
results of the SHT method depend on the parameter: sigma, 
the results of the TV-SHT method depend on the parameters: 
�, �, �′, �′′ , and the results of the TV-BM3D method depend 
on the parameters: �, �, �, �,N0,N.

We show the performance of seven OCT images in 
numerical forms among Tables 1, 2 and 3. From the tables, 
it can be seen that our proposed method outperforms all the 

previous methods (SHT, BM3D, TV-SHT and TV-BM3D) 
by achieving highest values in SNR, CNR and ENL. It is 
worth mentioning that because the background noise is elim-
inated, the noise variance is 0, and the SNR is expressed 
by max. According to Tables 1 and 2, by comparing the 
value of SNR and CNR, it can be seen that the background 
noise removal and structure denoising ability of TV-BM3D 
in most OCT images is better than SHT, BM3D and TV-
SHT methods. Finally, according to Table 3, by comparing 
the value of ENL, it can be seen that the smooth structure 
of BM3D in OCT image is much stronger than SHT, TV-
SHT and TV-BM3D methods. We also show the parameter 
values of different methods for all OCT images in Table 4. 
Combining the three quantization indexes, we can find that 
our proposed method has achieved good results in the three 
aspects of background noise removal, structure denoising 
and structure smoothing. In addition, from the visual effect 
point of view, our proposed filtering and structure extraction 
methods have achieved good results.

Figure 6 shows the results of the OCT images processed 
by SHT algorithm. From a visual point of view, it can be 
seen from the result graph that the algorithm can remove 
background noise to a certain extent, and keep the high 

Table 1  SNR results in OCT 
mages

Methods OCT-A OCT-B OCT-C OCT-D OCT-E OCT-mouse1 OCT-mouse2

Original 28.4875 26.7188 30.3994 29.7485 26.4991 24.0597 23.2360
SHT 34.6176 40.5572 40.7131 42.9058 40.4294 44.7045 42.9840
BM3D 34.1465 34.7036 40.0868 40.3351 37.0123 44.1496 41.8459
TV-SHT 34.5276 33.0496 46.6660 45.5074 29.8923 37.1079 34.8761
TV-BM3D 41.6474 48.9775 54.0247 46.0266 42.3412 44.4088 42.0033
Proposed max max max max max max max

Table 2  CNR results in OCT 
images

Methods OCT-A OCT-B OCT-C OCT-D OCT-E OCT-mouse1 OCT-mouse2

Original 2.9169 3.3158 2.4612 2.5605 3.4325 1.1668 1.1407
SHT 4.2335 6.4812 5.1884 3.8465 5.9748 3.3216 2.7961
BM3D 3.8126 5.7560 4.5172 3.1684 5.3844 2.9919 2.6245
TV-SHT 4.7077 5.5717 6.1564 4.5206 5.1583 2.5811 2.3439
TV-BM3D 4.7220 7.2749 4.4851 3.3090 6.0058 3.8383 3.4251
Proposed 5.0518 11.3234 5.8258 5.3396 7.1093 9.5959 9.1442

Table 3  ENL results in OCT 
images

Methods OCT-A OCT-B OCT-C OCT-D OCT-E OCT-mouse1 OCT-mouse2

Original 441.3 123.6270 48.5 161.5 110.8 35.4 31.2
SHT 695.0 238.7960 215.5 1097.4 673.7 3085.6 4981.9
BM3D 2724.3 347.9196 475.1 1265.7 2107.8 3820.9 9128.3
TV-SHT 360.5 228.0433 164.9 705.0 377.1 333.2 405.0
TV-BM3D 1157.3 475.0802 138.9057 1949.2 1668.3 8499.0 4752.2
Proposed 3986.2 356.6745 469.7235 2260.6 3291.9 3260.3 5656.0
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frequency part of the image relatively complete. However, 
when the background noise is too large, part of the low-
frequency structure of the image is often missing during 
the filtering process. In addition, there are some scratches 
at the same time. Figure 7 shows the results of the OCT 
images processed by the BM3D algorithm. From a visual 
point of view, the background of the image is turbid, and 
still retains a lot of noise. However, the algorithm has better 
protection ability for the image structure, and can describe 
the image structure vividly in the smoothing process, mak-
ing the image structure clearer. Figure 8 shows the results 
of the OCT images processed by the TV-SHT method. 
From a visual point of view, the structural part of the image 
gradually becomes prominent, but the background of some 

excessively noisy images is accompanied by stronger noise 
artifacts and more scratches appear in the structural part. In 
terms of quantization index, in comparison, due to its effect 
on noise compensation, the TV-SHT method has relatively 
low overall values in terms of three indicators. However, 
with its excellent high-frequency sparse expression, the 
structure of the image is more complete, despite the pres-
ence of scratches. Figure 9 shows the results of the OCT 
images processed by the TV-BM3D method. It can be seen 
that under the background of large noise, the effect of this 
method is cleaner than the overall visual effect of the above 
method, and the structure of the image can be maintained to 
a certain extent. At the same time, it can be seen from the 
quantitative index that the method reduces the background 

Table 4  Parameters with 
different methods for OCT 
images

Methods Parameters

OCT-A SHT sigma = 30

BM3D � = 20

TV-SHT � = 1, � = 1, �� = 0.09, ��� = 100

TV-BM3D � = 0.63, � = 2.0, � = 0.075, � = 0.15,N0 = 5,N = 2

Proposed thr = 34, sigma = 0.051015, � = 20,N0 = 2,N = 3

OCT-B SHT sigma = 40

BM3D � = 50

TV-SHT � = 1, � = 1, �� = 0.1, ��� = 100

TV-BM3D � = 0.33, � = 1.6, � = 0.065, � = 0.11,N0 = 4,N = 2

Proposed thr = 33, sigma = 0.071205, � = 20,N0 = 2,N = 3

OCT-C SHT sigma = 30

BM3D � = 40

TV-SHT � = 1, � = 1, �� = 0.1, ��� = 100

TV-BM3D � = 0.75, � = 2.6, � = 0.085, � = 0.22,N0 = 5,N = 2

Proposed thr = 29, sigma = 0.041235, � = 20,N0 = 2,N = 3

OCT-D SHT sigma = 30

BM3D � = 50

TV-SHT � = 1, � = 1, �� = 0.1, ��� = 100

TV-BM3D � = 0.63, � = 1.9, � = 0.075, � = 0.143,N0 = 4,N = 2

Proposed thr = 34, sigma = 0.070125, � = 20,N0 = 2,N = 3

OCT-E SHT sigma = 35

BM3D � = 60

TV-SHT � = 1, � = 1, �� = 0.1, ��� = 100

TV-BM3D � = 0.67, � = 2.2, � = 0.065, � = 0.143,N0 = 4,N = 2

Proposed thr = 38, sigma = 0.063205, � = 20,N0 = 2,N = 4

OCT-mouse1 SHT sigma = 25

BM3D � = 60

TV-SHT � = 1, � = 1, �� = 0.1, ��� = 100

TV-BM3D � = 0.37, � = 2.7, � = 0.075, � = 0.203,N0 = 5,N = 2

Proposed thr = 66, sigma = 0.052145, � = 20,N0 = 2,N = 3

OCT-mouse2 SHT sigma = 45

BM3D � = 40

TV-SHT � = 1, � = 1, �� = 0.1, ��� = 100

TV-BM3D � = 0.39, � = 2.9, � = 0.085, � = 0.247,N0 = 5,N = 2

Proposed thr = 78, sigma = 0.064205, � = 20,N0 = 2,N = 4
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Fig. 6  Filtering results processed by SHT method: a OCT-A; b OCT-B; c OCT-C; d OCT-D; e OCT-E; f OCT-mouse1; g OCT-mouse2

Fig. 7  Filtering results processed by BM3D method: a OCT-A; b OCT-B; c OCT-C; d OCT-D; e OCT-E; f OCT-mouse1; g OCT-mouse2
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Fig. 8  Filtering results processed by TV-SHT method: a OCT-A; b OCT-B; c OCT-C; d OCT-D; e OCT-E; f OCT-mouse1; g OCT-mouse2

Fig. 9  Filtering results processed by TV-BM3D method: a OCT-A; b OCT-B; c OCT-C; d OCT-D; e OCT-E; f OCT-mouse1; g OCT-mouse2
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noise better, and the contrast has been improved to a certain 
extent. However, inevitably, this filtering method leads to 
the loss of some minute structure information of the image. 
Especially in the case of large noise and low contrast, the 
image loss will be more serious.

Figure 10 shows the image structure mask obtained after 
processing by our proposed method, which clearly shows 
us the structure of the image. Figure 11 shows the result 
of using the new BM3D-L2 variational algorithm on the 
structure of the image. Since the extracted structure con-
tains some noise, to better preserve the image details, we 
adopt the idea of BM3D-L2. The algorithm describes the 
structure of the image in BM3D space, and describes the 
noise in  L2 space. It can be seen that the image structure 
noise is eliminated, and the overall appearance is very clean, 
almost close to the noise-free image. According to the quan-
tization index, the proposed algorithm effectively removes 
background noise and structural noise, and also has a very 
significant improvement in detail smooth protection, fully 
demonstrating the superiority of our algorithm. We can get 
the following conclusions from the experimental results:

1) For the first time, by combining the SHT and BM3D 
for image preprocessing, the background noise of the 
image can be effectively filtered, and protect important 
structural information during this process. Then it is 

combined with the relative total variation, enhancing 
the structural information of the image.

2) According to the experimental results, it is found that, 
respectively, using SHT, BM3D, TV-SHT and TV-
BM3D methods to filter the original image cannot com-
pletely eliminate the background noise, and the presence 
of noise in the filtering process will affect the structural 
information. The fuzzy C-means algorithm effectively 
combines the ideas of machine learning algorithms for 
image segmentation, cleverly separates the structural 
information of the image from the background, and 
obtains the structural mask of the image, thereby elimi-
nating the effect of structural denoising.

3) For the filtering of the structure part, we first propose 
the BM3D-L2 variational algorithm, which divides the 
structure into two parts: image structure information and 
noise information, and the two sections are described 
in BM3D space and  L2 space. In this way, the structure 
can be separated from the noise part. According to the 
experimental results, it can be found that the proposed 
algorithm has significant advantages in image structure 
denoising and detail protection.

Fig. 10  Structural clustering masks by proposed method: a OCT-A; b OCT-B; c OCT-C; d OCT-D; e OCT-E; f OCT-mouse1; g OCT-mouse2
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4  Conclusion

In this paper, we first construct an image filtering frame-
work based on clustering for large noise OCT images. The 
framework can be divided into preprocessing, structure 
extraction and structure denoising. In the preprocessing 
stage, we use the SHT method to filter out background 
noise, and combine 3D block matching to denoise the 
image structure to achieve structural protection. In the 
structure extraction stage, we use the relative total vari-
ation algorithm to extract the structure, and combine 
the fuzzy C-means clustering algorithm to obtain the 
image structure mask. In the structure denoising stage, 
we propose a new variational BM3D-L2 method, which 
uses BM3D space and  L2 space to describe the structure 
and noise of the image. During this process, we can bet-
ter eliminate the image structure noise and protect the 
image structure texture by assigning appropriate param-
eter values. We tested our method on seven large noisy 
OCT images, and compared it with SHT, BM3D, TV-SHT 
and TV-BM3D methods. Combining quantitative and 
qualitative indicators, it can be found that our proposed 
method is effective, which can reduce the speckle noise 
of large-noise OCT images while protecting the structural 
information.
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