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Abstract
Gradient index (GRIN) material is widely applied as a kind of special functional material in many practical engineering 
fields. Accurate knowledge of the GRIN distribution of the material is the key to use GRIN material. Therefore, this paper 
presents a technique to determine the GRIN using laser beam-based deflection system. In this work, we establish a retrieval 
model of the GRIN of the slab medium, in which a collection of laser beams from given position transit the medium sample 
and the exit positions are recorded as measurement information. The Runge–Kutta ray-tracing technique is employed to 
obtain the ray trajectories, and the stochastic particle swarm optimization algorithm is used to solve the inverse problem 
to estimate the GRIN of the sample. Moreover, the inverse model we developed is proven to be theoretically reliable via 
the sensitivity analysis. A series of simulation experiments on determination of the GRIN profiles of the medium samples 
are performed. The results shows that the GRIN with known functional forms (i.e., linear and sinusoidal expressions) can 
be inversed accurately, but the estimation of the GRIN without known functional forms fails. Considering that the GRIN 
profiles are usually unknown beforehand in practice, an improved inverse model in which two collections of laser beams are 
adopted to transit the sample and the refractive index on the boundary wall is measured by a refractometer to increase the 
measurement information is proposed. The results indicate that the GRIN without known functional forms can be inversed 
accurately using the improved inverse model and even can tolerate larger measurement errors, which is of great significance 
to practical experiments. This investigation proves that the retrieval scheme we developed is accurate and can be regarded 
as a promising inverse technique.

List of symbols
a, b, c, d, e	� The coefficient of the polynomial
Fobi	� The objective function
L	� The geometric length
M	� The total number of the pixels in the sample 

element
N	� The number of laser beams
n	� Refractive index
Pi	� The local best position

Pg	� The global best position
Q	� The quality function of the retrieval defined 

as Eq. (15)
R	� The position matrix in Eq. (4)
Smi

	� The sensitivity coefficient in Eq. (8)
T	� The ray vector in Eq. (5)
t	� A new variable in Eq. (2)
Vi	� The speed of the ith particle
Xi	� The position of the ith particle
x
pre

i
 , xmea

i
	� The predicted and measured exit position in 

Eq. (7)
x, z	� Coordinate

1  Introduction

Gradient index (GRIN) optics is a new independent subject, 
which studies the optical performance of GRIN elements, 
the production of GRIN materials, and the design and analy-
sis of GRIN optical systems [1–5]. The origin of this subject 
can be traced back to the 1850s; however, research on GRIN 
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optics has been primarily limited to theoretical studies due 
to the limitations of the fabrication technologies. Until the 
1970s, Japanese scientists took the lead in manufacturing the 
glass radial gradient index lens (self-focusing lens), which 
enhanced the practical applications of GRIN optics. As a 
result, GRIN materials entered a rapid development stage, 
and a variety of manufacturing processes emerged, such as 
ion exchange [6], chemical vapor deposition [7], neutron 
irradiation [8], diffusion-assisted coextrusion process [9], 
and variations of polymer-based processes [10]. In addition, 
since GRIN materials can widely be used in various fields, 
the study of GRIN optics is of great significance.

It is essential to understand the GRIN distribution for 
effective usage of GRIN materials, because the refractive 
index distribution determines the ray trajectory within the 
medium. Therefore, knowing the GRIN distribution of a 
medium is the first challenge to be resolved. Some stud-
ies on the measurement or estimation of the GRIN profiles 
have been reported in recent decades. For example, Vazquez 
et al. [11] developed a tomographic method to reconstruct 
the refractive index profiles of lenses, which are rotationally 
symmetrical around the optical axis, and analyzed the effects 
of the experimental errors on the accuracy and versatility 
of this method. Verma et al. [12] adopted optical coherence 
tomography to measure the refractive index profiles of a 
crystalline lens of a fisheye, and the measurement error of 
the refractive index was only approximately 1%. Sokolov 
et al. [13] studied the refractive index gradient measure-
ment in nonuniformly thick dielectric films, and the method 
they developed can be used for an arbitrary shape of the 
index modulation over the film thickness in the limit of a 
small gradient. Hsieh et al. [14] used heterodyne interferom-
etry to measure the refractive index distribution of a GRIN 
lens, and this method has the merits of both common-path 
interferometry and heterodyne interferometry. Cai et al. [15] 
employed a polynomial to calculate the gradient refractive 
index profiles of GRIN ball lenses and used a shearing 
interferometer to measure the gradient refractive index pro-
files of these lenses rapidly, automatically, and nondestruc-
tively. Teichman et al. [16] used the relationship between 
the refractive index distribution and ray paths to estimate 
the refractive index distribution, in which the laser beam 
deflection, displacement, and mode conversion on passing 
through the media were adopted as known information. 
Tian et al. [17] gave a complete data-processing procedure 
for quantitative reconstruction of the refractive index fields 
from limited multidirectional interferometric data, and this 
method was proved via experiments to be accurate and reli-
able. Nihei et al. [18] designed a method in which the trans-
verse ray-tracing method is adopted to indirectly determine 
the refractive index distribution of a graded-index polymer 
optical fiber by comparing the displacement of the transverse 
ray projected on the screen with the actual measurement. 

Henke et al. [19] developed a rapid and simple technique 
for the determination of the refractive index of ultra-thin 
organic films on planar transparent substrates using forward 
light scattering. Lin et al. [20] developed a nondestructive 
measurement technique in which they used boundary value 
measurements of positions and slopes for a series of probe 
beams and adopted a bootstrap algorithm to recover the one-
dimensional refractive index distribution. Subsequently, they 
[21, 22] extended the method for the reconstruction of a two-
dimensional inhomogeneous refractive index field based on 
ray deflection measurements.

These previous studies indicate that the measurement 
techniques are mainly based on deflection measurements, 
interferometry methods and optical coherence imaging. The 
methods utilizing beam displacements or deflections are typ-
ically based on simplifying geometric assumptions [21, 23] 
that become invalid when a significant amount of refraction 
occurs inside the sample. Moreover, interferometric meth-
ods based on fringe patterns are ambiguous without prior 
knowledge [21, 24]; besides, resolving the fringes can be dif-
ficult when the propagation distances within the medium are 
substantial. Optical coherence imaging is a high-resolution 
imaging technique for layered GRIN profiles [21, 25], but its 
disadvantage is that scattering elements are required (such 
as the discontinuities of the refractive index) due to the prin-
ciple of this method. Wei et al. [26] determined the GRIN 
profiles of the slab medium based on radiative transfer, but 
the GRIN could not be inversed if the absorption coeffi-
cient and scattering coefficient of medium are unknown in 
advance. This disadvantage seriously limit its application. In 
other words, there are insufficient studies on the estimation 
of the GRIN profiles resulting in an urgent need for devel-
oping more measurement methods and inverse techniques. 
In recent years, the inverse technique based on swarm intel-
ligent algorithms has been popular for parameter identifica-
tion. Stochastic particle swarm optimization (SPSO), as an 
excellent intelligent algorithm, has been widely employed 
to solve inverse problems. For example, Sun et al. [27] used 
the SPSO algorithm to estimate the soot volume fraction 
and temperature in flames from multi-wavelength emissions. 
Yuan et al. [28] adopted the SPSO algorithm to solve the 
inverse problem for the estimation of the particle size distri-
butions of atmospheric aerosols. Qi et al. [29] first employed 
the SPSO algorithm to solve the inverse radiation problems 
and the successfully obtained the source term, extinction 
coefficient, scattering coefficient, and absorption coefficient. 
Ruan et al. [30] utilized the SPSO algorithm to determine 
the optical properties and thickness of optical thin films. 
Ren et al. [31] used SOPO algorithm to retrieve simulta-
neously temperature-dependent absorption coefficient and 
thermal conductivity of participating medium. These studies 
show that the SPSO algorithm is a good global optimization 
solver in inverse estimating parameters with prior knowledge 



Determination of gradient index based on laser beam deflection by stochastic particle swarm…

1 3

Page 3 of 14  131

and can be employed to solve estimation of parameters with 
corresponding prior knowledge. However, previous SPSO 
studies did not estimate GRIN profiles based on geometrical 
optics.

This paper presents the first application of the SPSO 
algorithm for determining the GRIN profiles based on 
optical measurements. The motivation of the present work 
is to establish a retrieval model of the GRIN of the slab 
medium, and obtain the accurate GRIN profiles with or 
without known functional forms. In additions, the effects 
of the measurement errors on retrieval accuracy of GRIN 
are analyzed thoroughly. The remainders of this work are 
as follows: the direct model of laser beam propagation in 
GRIN medium is given in Sect. 2; the SPSO algorithm is 
introduced in Sect. 3; the retrieval results and analysis are 
presented in the Sect. 4; and the main conclusions are given 
in Sect. 5.

2 � Ray tracing model

Due to the heterogeneity of composition, density and tem-
perature distribution of semitransparent media as well as the 
Kerr effect and electrostrictive effect, the refractive index of 
a medium may be a function of the spatial position [32]. In 
GRIN medium, the ray goes along a curved path determined 
by the Fermat principle, and even the total reflection occurs 
inside the medium as shown in Fig. 1. Theoretically, the 
curved ray path can be described by the ray equation [33, 
34]:

where R ≡ (x, y, z) is the position vector of a point on a ray; 
s is the length of ray measured from a fixed point on it; and 
n(R) is the refractive index. However, it is difficult to solve 
the ray equation analytically in most cases, especially for 
the multi-dimensional complex medium problems. To meet 

(1)
d

ds

[
n(R)

dR

ds

]
= ∇n(R),

the needs of practical applications, a numerical method, for 
example, the Runge–Kutta method can be used to calculate 
the ray trajectories [33, 34]. By introducing a new variable 
t via

The ray equation can be transformed into a second-order 
linear differential equation:

where a vector D characterizing the GRIN medium is 
introduced.

To solve this equation numerically for R(t) by the 
Runge–Kutta method it is converted into a system of two 
first order differential equations:

by introducing a vector function T. Here we use third-order 
Runge–Kutta formulas expressed as [33, 34]

to calculate R(t) and T(t), where Δt is the step size (the 
increment in t) and the subscript n is the iteration index. 
Reasonable step size Δt is important to guarantee accuracy 
of numerical solution. Therefore, the selection of step size 

(2)ds=n(R)dt.

(3)d2R

dt2
= n(R)∇n(R) =

1

2
∇(n(R))2 = D(R),

(4)

⎧⎪⎨⎪⎩

dR

dt
= T(R, t)

dT

dt
= D(R)

,

(5)

⎧⎪⎨⎪⎩

k1 = ΔtD
�
Rn

�
k2 = ΔtD

�
Rn + (Δt∕2)Tn + (Δt∕8)k1

�
k3 = ΔtD

�
Rn + ΔtTn + (Δt∕2)k2

� ,

(6)

{
Rn+1 = Rn + (Δt∕6)

(
6Tn + k1 + 2k2

)
Tn+1 = Tn + (1∕6)

(
k1 + 4k2 + k3

) ,

Fig. 1   Schematic diagram of light transmission in media with GRIN
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Δt should be done first. The GRIN of a slab medium with 
thickness L = 1 length unit is set as n(z) = 1.2 + 0.6z. Fig-
ure 2 gives the curved ray trajectories which originate from 
left wall with different initial directions and end at the left 
or right wall. It can be seen that the results with step sizes 
Δt = 0.1 , Δt = 0.01 , Δt = 0.001 and Δt = 0.0001 are very 
close, which indicates that relatively large step size can be 
selected. As a compromise between the accuracy and effi-
ciency, the step size Δt = 0.001 was selected for this study.

3 � Inverse scheme

3.1 � Inverse model

The optical measurement scheme for the GRIN retrieval by 
the inverse model is shown in Fig. 3. A family of interrogat-
ing beams generated by a laser device transit a slab medium 

sample with a GRIN. The exit positions of the laser beams 
are recorded as measurement data to determine the GRIN, 
and the corresponding objective function can be defined as

where xpre
i

 and xmea
i

 are the predicted and measured exit posi-
tions, respectively; and N is the number of the laser beams.

To evaluate the reliability and the performance of the 
inverse model, a detailed sensitivity analysis is performed 
to characterize the relation between the known information 
and retrieval parameters. The sensitivity coefficient is the 
first derivative of a dependent variable with respect to an 
independent variable and is defined as

where mi denotes the independent variables which stands for 
the coefficients of the GRIN; ∆ represents a tiny change that 
is set to 0.5%; and xmi denotes the exit position of the laser 
beam at the right boundary. If the sensitivity coefficients are 
either small or correlated with one another, inverse prob-
lems can be highly sensitive to measurement errors. In other 
words, the retrieval parameters are then difficult to obtain 
from the measurement data.

Considering the linear GRIN n(z) = a + bz and sinusoidal 
GRIN n(z) = a + bsin(πz) as examples (a = 1.2 and b = 0.6 
are selected here), the sensitivity coefficients of the meas-
urement data are shown in Fig. 4. It can be observed that 
the sensitivity coefficients of the known information for the 
retrieval parameters a and b are relatively large. The absolute 
values of the sensitivity coefficients increase with the inci-
dent angle of the laser beam, and the sensitivity coefficients 
to parameter a is not correlated with those to parameter 
b. These observations indicate that the developed inverse 
model is reasonable and the GRIN profiles can be accurately 
inversed in theory.

3.2 � SPSO algorithm

The SPSO algorithm is used to solve the above mentioned 
inverse problem. This algorithm was proposed by Cui and 
Zeng [35] based on the standard PSO algorithm. The basic 
principle of this algorithm is that the parameters of the par-
ticle at the best global position will be fixed and other par-
ticles will be shifted to the weighted center between their 
local best position and the global position. Compared with 
the standard PSO algorithm, the SPSO algorithm can solve 
the problem of premature convergence more effectively [29]. 
In the SPSO algorithm, the evolution equations for velocity 

(7)Fobj =

N∑
i=1

(
x
pre

i

/
xmea
i

− 1
)2
,

(8)

Smi
(xmi ) =

�xmi

�mi

|||mi=m0
=

xmi

(
m0 + m0Δ

)
− xmi

(
m0 − m0Δ

)
2m0Δ

,Fig. 2   Ray trajectories with different step sizes

Fig. 3   Schematic illustration of laser beam position measurement for 
GRIN profile retrieval
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Vi and position Xi (i.e., the retrieval parameters) of the ith 
particle in the (t + 1)th generation are expressed as

where i = 1, 2,…, M; c1 and c2 are the acceleration coeffi-
cients; R1 and R2 are the uniformly distributed random num-
bers in [0, 1]; Vi(t + 1) is the speed of the ith particle at the 
(t + 1)th generation; Xi(t) is the position of the ith particle at 
the tth generation; Xi(t + 1) is the position of the ith particle 
at the (t + 1)th generation; Pi(t) is the local best position of 
the ith particle at the tth generation; and Pg(t) is the global 
best position of the tth generation.

In addition, the SPSO algorithm decreases the global 
search capability but increases the local search capability. Pg 
can be maintained as the best position historically to improve 
the global search capability of the SPSO algorithm, and the 
position Xj(t + 1) of the jth particle is generated randomly in 
the search space. Moreover, the other particle i(i ≠ j) at the 

(9)
�i(t + 1) = c1 ⋅ R1 ⋅

[
�i(t) − �i(t)

]
+ c2 ⋅ R2 ⋅

[
�g(t) − �i(t)

]
,

(10)�i(t + 1) = �i(t) + �i(t + 1),

position Xi(t + 1) evolves according to Eqs. (9) and (10). The 
following correction procedure can be obtained:

where F is the fitness function; and ‘arg min’ is an opera-
tor that returns the argument at which the function is the 
smallest. This procedure can strengthen the global search 
ability and the detailed behavior of SPSO has been well doc-
umented and presented in Ref. [29] and not repeated here.

The initial values have important effects on accuracy and 
efficiency of the SPSO algorithm. Poor initial values may 
cause SPSO unable to obtain desired results. Therefore, the 

(11a)�j = �j(t + 1),

(11b)�i =

{
�i, F

(
�i

)
< F

[
�i(t + 1)

]
�i(t + 1), F

(
�i

) ≥ F
[
�i(t + 1)

] ,

(11c)�
�
g = argmin

{
F
(
�i

)|i = 1,… ,M
}
,

(11d)�g = argmin
{
F
(
�
�
g

)
,F

(
�g

)}
,

Fig. 4   Sensitivity analysis of 
measurement data on retrieved 
parameters
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initial values must be set reasonably. Here, the initial values 
of the SPSO algorithm are generated in the search interval 
randomly. First, according to the parameters to be inversed, a 
search range [xmin, xmax] of the retrieval parameters is deter-
mined. Then, the position of particles X representing the 
retrieval parameters are generated base on a random number 
in range of [0, 1]:

where rand is a random number generated by computer in 
range of [0, 1]. At last, the same treatment is applied in all 
particles X. Taking linear GRIN n(z) = a + bz (a = 1.2 and 
b = 0.6 are selected here) as example, the search interval is 
set as [0, 5]. The initial values of a and b are shown in Fig. 5. 
It can be seen that the initial values are randomly distributed 
in the range [0, 5]. This treatment would make the initial 
positions of particles locate in the entire search interval ran-
domly, which can improve accuracy and efficiency of SPSO 
algorithm.

3.3 � Solution of inverse problem

Simulation experiments are adopted to study the estima-
tion problem of the GRIN profiles. Interrogating beams are 
launched into the GRIN medium at the starting point (z0, 
x0) = (0, 0) with 1° angular interval and the position of the 
beams reaching the opposite boundary is recorded. Some 
interrogating beams cannot reach the opposite boundary due 
to total internal reflection. The exit positions of the laser 
beam xi are used to construct the objective function. To get 
closer to the real experiment, random shifts are added to the 
simulated data obtained by the ray-tracing model. The fol-
lowing relation is used in the present inverse analysis

(12)�i = rand ⋅
(
xmax − xmin

)
,

where � is a normal distribution random variable with zero 
mean and unit standard deviation. The standard deviations 
of measured spot positions at the right boundary, σ for a γ 
measured error at 99% confidence, are determined as

where 2.576 indicates that 99% of a normally distributed 
population falls within ± 2.576 standard deviation of the 
mean.

In this work, the inverse problem of refractive index esti-
mation is transformed into an optimization problem through 
objective function which couples the tracing model parame-
ters and the SPSO variables. The variable Xi of SPSO repre-
sents the retrieval parameters (a, b, c of the GRIN refractive 
index equation) and Pg of SPSO is the global best position at 
current generation and denotes the best retrieval parameters 
in all retrieval parameters included in all particles. Namely, 
Pg = [a, b, c, …] in which the fitness function F(a, b, c, 
…) = 

∑N

i=1

�
x
pre

i

�
xmea
i

− 1
�2 is the minimum in all particles 

at current generation (note that xpre
i

 and xmea
i

 are the predicted 
and measured exit position, not the retrieval parameters a, b, 
c). In evolution, the new values of Pg represents the retrieval 
results of parameters a, b, c, … of the GRIN refractive index 
equation. At the end of the iteration, the values of Pg at the 
last generation represents the final retrieval results of a, b, 
c, … of the GRIN refractive index equation. The particle 
swarm size of the SPSO algorithm is set as Np = 100 , and 
the iteration termination criterion is that the objective func-
tion Fobj ≤ 10−10 , or that the number of iteration generations 
reaches Ng = 1000. The flowchart of the SPSO for estimating 
the GRIN profiles is shown in Fig. 6.

(13)xmea
i

= xexact
i

+ ��,

(14)� =
xexact × �

2.576
,

Fig. 5   Initial values of a and b in the SPSO algorithm
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To evaluate the retrieval results, the quality function of 
the retrieval is defined as

where Yest(z) and Yexact(z) are the estimated and exact values 
of the refractive index, respectively.

(15)Q =

{
1

L ∫
L

0

[
Yest(z) − Yexact(z)

]2
dz

}1∕2

,

4 � Results and discussion

The inverse scheme is employed to solve the estimation 
problem of the GRIN profiles of a slab medium sample by 
a series of simulation experiments. All the calculations are 
completed using Fortran code, and the developed program 

Fig. 6   Flowchart of SPSO for 
determination of GRIN profiles
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is executed on an Intel Core(TM) i5-8250U PC with a 
1.60 GHz CPU and 8.0 GB RAM.

4.1 � Estimation of GRIN with known expressions

In this section, the GRIN with known expressions is inversed 
based on the retrieval model we developed. Because the 
expressions of the GRIN are known in advance (this can be 
considered as a type of prior information in inverse prob-
lems), only the coefficients of the GRIN expression need 
to be retrieved. First, the effects of the measurement errors 
on the retrieval results of the GRIN are investigated. A lin-
ear GRIN profile n(z) = a + bz (where a = 1.2 and b = 0.6) 
is used to demonstrate the tolerance of the inverse scheme 
subject to the measurement errors. The simulation experi-
ment is performed ten times, and the average results are 
adopted to reduce the randomness of the SPSO algorithm. 
The retrieval results are presented in Fig. 7, which shows 
that the measurement error has a significant effect on the 
retrieval accuracy. When the measurement errors are set 
as 0.3% and 0.5%, the quality functions of the retrieval are 
Q = 7.36 × 10−3 and Q = 1.14 × 10−2, respectively. By con-
trast, when measurement errors are set as 0.7% and 1.0%, 
the quality functions of the retrieval are Q = 6.71 × 10−2 and 
Q = 1.18 × 10−1, respectively. If a relatively high accuracy 
of the GRIN is required, as in precision optics, the results 
with measurement errors 0.7% and 1.0% cannot be accepted. 
Therefore, a 0.5% measurement error is selected to analyze 
the inverse problem of the GRIN under the following cases.

Case 1: Determination of linear GRIN
A linear GRIN is retrieved based on the inverse model 

shown in Fig. 3. Two types of linear GRINs n(z) = a + bz 

and n(z) = a − bz are selected herein. The retrieval results are 
shown in Figs. 8 and 9. It can be observed that the retrieval 
results of the linear GRIN with a 0.5% measurement error 
are consistent with the true profiles. The quality functions 
of the retrieval are only Q = 1.03 × 10−2, Q = 8.68 × 10−3, 
and Q = 1.14 × 10−2 for n(z) = 1.2 + 0.2z, n(z) = 1.2 + 0.4z, 
and n(z) = 1.2 + 0.6z, respectively. The total times for ten 
repeated calculations are 2443.27 s, 2029.33 s, and 1782.52 s 
for n(z) = 1.2 + 0.2z, n(z) = 1.2 + 0.4z, and n(z) = 1.2 + 0.6z, 
respectively. The quality functions of the retrieval are only 
Q = 1.88 × 10−2, Q = 2.16 × 10−2, and Q = 1.63 × 10−2 for 
n(z) = 1.8 − 0.5z, n(z) = 1.8 − 0.6z, and n(z) = 1.8 − 0.7z, 
respectively. The total times for ten repeated calculations 
are 2173.93 s, 2207.27 s, and 2196.66 s for n(z) = 1.8 − 0.5z, 
n(z) = 1.8 − 0.6z, and n(z) = 1.8 − 0.7z, respectively. These 

Fig. 7   Retrieval results of linear GRIN n(z) = 1.2 + 0.6z with different 
measurement errors

Fig. 8   Retrieval results of linear GRIN n(z) = a + bz 

Fig. 9   Retrieval results of linear GRIN n(z) = a − bz 



Determination of gradient index based on laser beam deflection by stochastic particle swarm…

1 3

Page 9 of 14  131

results show that the inverse scheme we developed is accu-
rate and effective.

A comparison between Figs. 8 and 9 showed that the 
retrieval accuracy of n(z) = a + bz is higher than that of 
n(z) = a − bz. This may be explained by the fact that, for the 
GRIN n(z) = a + bz, the laser beams transit the sample from 
an optically thinner medium to an optically denser medium. 
By contrast, the reverse process occurs for the GRIN 
n(z) = a − bz. The total internal reflection of the laser beam 
may occur when it transits from an optically denser medium 
to an optically thinner medium. This could prevent some 
of the laser beams from reaching the exit boundary. The 
reduction of the measurement information could reduce the 
retrieval accuracy of the GRIN. Thus, providing a valuable 
reference for the arrangement of the laser device, sample and 
detector in a practical experiment measurement.

Case 2: Determination of sinusoidal GRIN
The retrieval of the sinusoidal GRIN is studied in 

this case. Similarly, two types of sinusoidal GRINs 
n(z) = a + bsin(πz) and n(z) = a − bsin(πz) are selected 
herein. The retrieval results are presented in Figs. 10 and 
11, which depict the consistency between the inversed 
results and true profiles, especially for estimating 
n(z) = a + bsin(πz). The quality functions of the retrieval are 
only Q = 1.39 × 10−2, Q = 1.08 × 10−2, and Q = 7.79 × 10−3 
for n(z) = 1.2 + 0.5sin(πz), n(z) = 1.2 + 0.7sin(πz), 
and n(z) = 1.2 + 0.9sin(πz), respectively. The total 
times for 10 repeated calculations are 4997.19  s, 
4609.56  s, and 4219.77  s for n(z) = 1.2 + 0.5sin(πz), 
n(z) = 1.2 + 0.7sin(πz), and n(z) = 1.2 + 0.9sin(πz), respec-
tively. The quality functions of the retrieval are only 
Q = 2.49 × 10−2, Q = 2.89 × 10−2, and Q = 2.36 × 10−2 
for n(z) = 2.2 − 0.6sin(πz), n(z) = 2.2 − 0.8sin(πz), and 

n(z) = 2.2 − 1.0sin(πz), respectively. The total times for 
10 repeated calculations are 4641.77  s, 4281.27  s, and 
4174.31 s for n(z) = 2.2 − 0.6sin(πz), n(z) = 2.2 − 0.8sin(πz), 
and n(z) = 2.2 − 1.0sin(πz), respectively. Comparison 
between Figs. 10 and 11 shows that the retrieval accuracy of 
n(z) = a + bsin(πz) is higher than that of n(z) = a − bsin(πz). 
This result from the fact that for the GRIN n(z) = a + bsin(πz), 
all laser beams can transit the medium and reach the oppo-
site boundary; while for GRIN n(z) = a − bsin(πz), some laser 
beams cannot reach the opposite boundary of the medium 
due to total internal reflection. Thus, the retrieval accuracies 
of the two types of sinusoidal GRINs are different.

4.2 � Estimation of GRIN without known expressions

In practice, the expression of the GRIN is usually unknown 
in advance. Thus, it is important to study the estimation of 
the GRIN without prior information on its functional forms. 
First, the higher order polynomials are employed to estimate 
the GRIN profiles based on the retrieval model, as shown 
in Fig. 3. Considering a linear GRIN n(z) = 1.2 + 0.6z as an 
example, the second-order polynomial n(z) = a + bz + cz2 
and the third-order polynomial n(z) = a + bz + cz2 + dz3 are 
adopted. The retrieval results are illustrated in Fig. 12. It 
is evident that the retrieval results are significantly differ-
ent from the true profile. In other words, it failed to inverse 
the linear GRIN n(z) = 1.2 + 0.6z based on the second-order 
and third-order polynomial approximations. This observa-
tion indicates that the inverse model, as shown in Fig. 3, 
is not suiT for estimating the GRIN without the known 
expressions.

To overcome the ill-posed and multi-solution problems of 
estimating a GRIN without detailed functional forms, addi-
tional measurement information is required to determine the Fig. 10   Retrieval results of sinusoidal GRIN n(z) = a + bsin(πz)

Fig. 11   Retrieval results of sinusoidal GRIN n(z) = a − bsin(πz)
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GRIN profile. Thus, an improved inverse model, as shown 
in Fig. 13, is developed. Compared with the inversed model 
given in Fig. 3, there are two improvements in the new 
retrieval model: (1) Two family of laser beams are adopted 
to transit the sample, which could generate more measure-
ment information; (2) The refractive index on the boundary 
wall is measured using a refractometer, which means that 
their values at both boundaries can be known in advance 
[36]. Based on the improvement (1), the new objective func-
tion becomes

where Nl and Nr are the number of the laser beams reaching 
the left and right boundaries, respectively; xpre

i,l
 and xmea

i,l
 are 

the predicted and measured exit positions at the left bound-
ary; xpre

i,r
 and xmea

i,r
 are the predicted and measured exit posi-

tions at the right boundary. Based on the improvement (2), 
the constant term a can be determined from the refractive 

(16)Fobj =

Nl∑
i=1

(
x
pre

i,l

/
xmea
i,l

− 1
)2

+

Nr∑
i=1

(
x
pre

i,r

/
xmea
i,r

− 1
)2

,

Fig. 12   Retrieval results of linear GRIN n(z) = 1.2 + 0.6z 

Fig. 13   Schematic illustration of advanced laser beam position measurement for improved GRIN profile retrieval
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index at the left boundary, thereby reducing the number of 
the retrieval parameters.

The linear GRIN n(z) = 1.2 + 0.6z is inversed based on 
the improved retrieval model, and the estimated results 
are shown in Fig. 14. It can be observed that the retrieval 
results are improved significantly. When the measurement 
errors are set as 3% and 5%, the quality functions of the 
retrieval are Q = 5.28 × 10−3 and Q = 6.89 × 10−3 for the 

polynomial hypothesis n(z) = a + bz + cz2, respectively; and 
the quality functions of the retrieval are Q = 2.74 × 10−3 
and Q = 1.30 × 10−2 for the polynomial hypothesis 
n(z) = a + bz + cz2 + dz3, respectively. When the measure-
ment errors are set as 10% and 15%, the quality functions 
of the retrieval are Q = 2.98 × 10−2 and Q = 6.48 × 10−2 for 
the polynomial hypothesis n(z) = a + bz + cz2, respectively; 
and the quality functions of the retrieval are Q = 5.89 × 10−2 

Fig. 14   Retrieval results of lin-
ear GRIN n(z) = 1.2 + 0.6z based 
on improved retrieval model
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and Q = 9.15 × 10−2 for the polynomial hypothesis 
n(z) = a + bz + cz2 + dz3, respectively. This indicates that 
the retrieval results considering 3% and 5% of the meas-
urement errors are accurate, whereas the retrieval results 
considering 10% and 15% of the measurement errors are 
not accepted. Compared with Sect. 4.1, it can also be noted 
that the improved inverse model can tolerate larger meas-
urement errors, which is of great significance to practical 
experiments. Therefore, a 5% measurement error is selected 
to analyze the inverse problem of the GRIN based on the 
improved retrieval model in the following cases.

Case 1: Determination of linear GRIN
The linear GRIN is retrieved based on the improved 

inverse model. Due to the function forms of GRIN is 
unknown, the second-order and third-order polynomials 
are adopted to determine the GRIN profiles. The retrieval 
results are shown in Fig. 15 from which it can be seen 
that the GRINs n(z) = 1.2 + 0.6z and n(z) = 1.2 + 1.0z 
are both estimated accurately. The quality functions of 
the retrieval are Q = 6.89 × 10−3 and Q = 1.25 × 10−2 for 
n(z) = 1.2 + 0.6z and n(z) = 1.2 + 1.0z based on polynomial 
hypothesis n(z) = a + bz + cz2, respectively. The total times 
for 10 repeated calculations are 6751.69 s and 3694.21 s 
for n(z) = 1.2 + 0.6z and n(z) = 1.2 + 1.0z, respectively. The 
quality functions of the retrieval are Q = 1.30 × 10−2 and 
Q = 2.58 × 10−2 for n(z) = 1.2 + 0.6z and n(z) = 1.2 + 1.0z 
based on the polynomial hypothesis n(z) = a + bz + cz2 + dz3, 
respectively. The total times for ten repeated calcula-
tions are 2992.44 s and 2249.76 s for n(z) = 1.2 + 0.6z and 
n(z) = 1.2 + 1.0z, respectively. It should also be noted that the 
retrieval accuracy of the linear GRIN based on the second-
order polynomial is higher than that based on the third-order 

polynomial. This can be explained by the fact that the sec-
ond-order polynomial is closer to the linear GRIN, and fewer 
retrieval parameters are present in the inverse problem.

Case 2: Determination of quadratic GRIN
The quadratic GRIN is inversed based on the third-order 

and fourth-order polynomials in this case. The retrieval 
results are given in Fig. 16, which indicates that the esti-
mated results of the GRINs n(z) = 1.2 + 0.6z + 0.3z2 and 
n(z) = 1.2 + 0.8z + 0.5z2 are consistent with the true profiles. 
The quality functions of the retrieval are Q = 2.23 × 10−2 
and Q = 3.05 × 10−2 for n(z) = 1.2 + 0.6z + 0.3z2 and 
n(z) = 1.2 + 0.8z + 0.5z2, respectively, based on the 
polynomial hypothesis n(z) = a + bz + cz2 + dz3. The 
total times for ten repeated calculations are 3179.09  s 
and 5074.99  s for n(z) = 1.2 + 0.6z  + 0.3z2 and 
n(z) = 1.2 + 0.8z + 0.5z2, respectively. The quality functions 
of the retrieval are Q = 3.47 × 10−2 and Q = 1.66 × 10−2 for 
n(z) = 1.2 + 0.6z + 0.3z2 and n(z) = 1.2 + 0.8z + 0.5z2, respec-
tively, based on the polynomial hypothesis n(z) = a + bz + c
z2 + dz3 + ez4. The total times for 10 repeated calculations 
are 3459.35 s and 3193.40 s for n(z) = 1.2 + 0.6z + 0.3z2 
and n(z) = 1.2 + 0.8z + 0.5z2, respectively. A comparisons 
of Figs. 15 and 16 reveals that the retrieval accuracy of 
the quadratic GRIN is slightly lower than that of the linear 
GRIN. This is because the former is more complex, and its 
estimation requires the investigation of more parameters to 
be inversed. Both of these increase the retrieval difficulty 
and reduce the retrieval accuracy of the GRIN.

Case 3: Determination of sinusoidal GRIN
The estimation of the sinusoidal GRIN is studied in this 

case. Similarly, high-order polynomials are used for the 
approximation. Due to the characteristics of the sine function, 

Fig. 15   Retrieval results of linear GRIN n(z) = a + bz based on 
improved retrieval model

Fig. 16   Retrieval results of quadratic GRIN n(z) = a + bz + cz2 based 
on improved retrieval model
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the second-order, third-order and fourth-order polynomials 
are adopted to determine the sinusoidal GRIN. Figure 17 
presents the retrieval results and portrays some deviations 
between the retrieval results and the true profiles, except for 
the estimation of n(z) = 1.2 + 0.3sin(πz) based on the poly-
nomial hypothesis n(z) = a + bz + cz2. The quality functions 
of the retrieval are Q = 9.77 × 10−3 and Q = 3.99 × 10−2 for 
n(z) = 1.2 + 0.3sin(πz) and n(z) = 1.2 + 0.6sin(πz), respec-
tively, based on the polynomial hypothesis n(z) = a + bz + cz2. 
The quality functions of the retrieval are Q = 3.63 × 10−2 
and Q = 1.91 × 10−2 for n(z) = 1.2 + 0.3sin(πz) and 
n(z) = 1.2 + 0.6sin(πz), respectively, based on the polyno-
mial hypothesis n(z) = a + bz + cz2 + dz3. The quality func-
tions of the retrieval are Q = 2.78 × 10−2 and Q = 6.30 × 10−2 
for n(z) = 1.2 + 0.3sin(πz) and n(z) = 1.2 + 0.6sin(πz), respec-
tively, based on the polynomial hypothesis n(z) = a + bz + 
cz2 + dz3 + ez4. This is because the sine function is funda-
mentally different from polynomial functions. Besides, a 
certain deviation arises when using polynomial functions 
to approximate sinusoidal GRIN profiles. Moreover, the 
measurement noise could also cause a certain deviation in 
the retrieval process of the sinusoidal GRIN. Therefore, the 
retrieval accuracy of the sinusoidal GRIN could be relatively 
poor.

5 � Conclusions

Determination of GRIN profiles of slab medium based on 
laser beam deflection measurement is studied in this work. 
The SPSO method is applied to solve the inverse problem 
to estimate GRIN first. Several common refractive index 
profiles: the linear GRIN, sinusoidal GRIN, and quadratic 

GRIN are investigated. To determine the GRIN without the 
known function forms, another one inverse retrieval model 
is developed to supply more known information, which can 
not only accurately retrieve the unknown GRIN, but also 
improve the tolerance of the measurement error. Based on 
the simulation experiment results, the following conclusions 
can be drawn.

(1)	 The SPSO algorithm is an excellent solver for deter-
mining the GRIN based on the laser beam deflection 
measurement.

(2)	 The inverse models developed in this study are accu-
rate and effective, especially the second one which can 
solve the estimation problems of the GRIN without the 
known function forms.

(3)	 Complex GRIN profiles (i.e., a sinusoidal function 
form) are difficult to be inversed accurately even using 
high-order polynomial approximations.
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