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Abstract
A discrete model governing a system of cold bosonic atoms in zig-zag optical lattices in quantum optics was proposed in 
the literature. In an analog to this model, a continuum model is, here constructed. The resulting equation is a nonlinear 
Schrodinger equation NLSE with drift force and linear growth. Exact solutions of this equation are obtained. To this issue, 
a new transformation that allows to inspect the optical lattice due to soliton–periodic wave collision is introduced. Here, 
the colliding dynamics are inspected. A class of polynomial and rational solutions of the model equation constructed are 
obtained by using the unified and generalized unified methods. The solutions found reveal the propagation of local zigzag-
shaped pulses in optical lattices. Mixed smooth–sharp (shock-like) optical pulses are also observed. This leads to the issue 
that the collision is locally elastic (or inelastic). Furthermore, self-modulation zigzag-shaped pulses with compression, are 
remarked. We mention that the zigzag-shaped pulses, in an optical lattice, was not found in the literature. Thus, the results 
found in this work are original. It is found that the polarization of zig-zag optical lattice is self-focusing.

1 Introduction

Nonlinear Schrodinger equations NLSEs were the objec-
tive of numerous research works in the literature. It was 
inspected that these equations are integrable when the real 
and imaginary parts are taken linearly dependent [1–3]. A 
class of an infinite number of the stable bright and dark 
soliton, was obtained [3]. Non-local NLSE was introduced in 
[4]. In [5], the generalized Darboux transformation was per-
formed to solve NLSE. The solutions of NLSE coupled with 
Maxwell equations were considered in [6]. It was shown that 
pulses propagation may lead to a varying refractive index 
Kerr medium [1], which in turn may produce a phase shift in 
the pulse [7]. Mathematically, when an extra nonlinear cor-
rection to the NLSE is considered, indeed, the equation, for 
nonlinear short-pulse propagation, has to include the pulse 
envelope derivative. In the study of a system of cold bosons 
in an optical lattice, the emergence of interesting quantum 

phenomena such as fragmentation and coherence are dem-
onstrated [8].

There are several well-known methods for finding exact 
solutions of nonlinear Schrödinger equation, such as expo-
nential rational function method [9, 10], the m + G�∕G [11], 
extended sinh-Gordon equation exponentiation method 
improved expansion method [12] and generalized logistic 
equation method [13].

Optical lattices have are highly recognized tool to study 
many-body quantum physics for solid-state-type systems. 
A zig-zag optical lattice model of cold bosons was pro-
posed in [14]. The continuum approximation based on 
a discrete equation governing a system of cold bosonic 
atoms in zig-zag optical lattices was derived. Exact solu-
tions were found via the exp function method and the 
hyperbolic function methods [15]. In [16], a theoretical 
study on modulation instability and quantum discrete 
breather states in a system of cold bosonic atoms in zig-
zag optical lattices was presented. A density-dependent 
gauge field may induce density-induced geometric frus-
tration. That is the density-dependent hopping results in 
an effective repulsive or attractive interaction, and that 
for the latter case the vacuum may be destabilized lead-
ing to a strong compressible [17]. The ultracold bosons in 
zig-zag optical lattices present a rich physics due to the 
interplay between frustration induced by lattice geometry, 
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two-body interactions. These features were demonstrated 
in [18]. The zig-zag form of displacements and transverse 
shear stresses need to be appropriately modeled by relaxa-
tion of the assumptions. The zig-zag structure model has 
many applications and simulations in classical theory was 
formulated in [19]. The effects of the speed of matter-
wave propagation as a function of the lattice geometry 
was investigated in [20]. Indeed the zig-zag structure with 
the first- and second-neighbor interactions which may be 
referred to, as valence atoms lattice, sophisticate essen-
tially the theory. A model of chain backbone of coupled 
particles, in the secondary structure, was suggested in 
[21], which was taken subjected to a 2D on site poten-
tial with a zig-zag relief. The structure of the crystal is 
completely determined by the zig-zag angle and stretch-
ing or compression of the zig-zag backbone by one lattice 
spacing [22]. The solitons correspond to local topologi-
cal defects in crystalline polyethylene PE crystal tension, 
compression of a trans-zigzag chain on one lattice distance 
and tension were shown in [23].

In this work, a theoretical study on continuum analog to 
the discrete zig-zag optical lattice in a system of cold bos-
onic atoms is proposed. The model equation is dealt with by 
using the unified and generalized methods. The exact solu-
tions reveal multi-geometric structures. The novelty of this 
work stems from the observation of zigzag-shaped pulses 
in zig-zag optical lattices. Furthermore, zig-zag self-phaser 
modulation with compression are found, obtained by using 
the unified method [24–28].

The comparison between the method used here and the 
known methods is done in the following: 

1. In this paper, the unified method [24] presented by the 
author, was used. After this nomenclature , this method 
unifies all known methods such as, the tanh, modified, 
and extended versions, the F-expansion, the exponential, 
the G�∕G expansion method.

2. On the other hand, the extended unified method [25] 
proposed, also by the author may be sufficient to replace 
the analysis of inspecting the symmetries of PDEs that 
arise by using Lie groups.

3. Using the generalized unified method [26], presented by 
the author, is more powerful tool than using the Hirota 
method.

2  Basic equations

2.1  The continuum model

Based on the discrete model equation [14], we propose the 
continuum version by

Equation (1) is NLSE , where 2�2T2 is the coefficient of the 
drift force, �2(T1 − 2T2) is the dispersion coefficient and 
U0(N − 1) is the refractive index which is assigned to the 
polarization, if it self-focusing or self-defocusing accord-
ing to when it positive or negative, respectively. In (1) 
Ti, i = 1, 2 are the two side lengths of the zig-zag optical lat-
tice, (�0 − 2(T1 − 2T2))∕2�

2T2 is the phase speed and 𝛿 ≪ 1 
is a small parameter. Here, it is assumed that Ti ≪ 1, i = 1, 2.

2.2  Mathematical formulation

The zig-zag soliton in Eq. (1) has an impact on the propaga-
tion of pulses in optical fibers. That is, on the characteristic 
parameters, affecting its intensity, wave length, frequency, 
phase, polarization or spectral content. Thus, we are led to 
define the physical parameters that describe the propagation 
of optical pulses in such a complex medium [14]. To this 
issue, we write

where ∣ �(x, t) ∣ stands for the intensity, k̄ and �̄� are the wave 
number and frequency which are defined in

The spectrum is defined by

Equations (3) and (4) will be detailed in Sect. 3.2.
Now, we find the analytic solutions of Eq. (1). To this 

end, we introduce a transformation that allow to inspect the 
waves produced by soliton–periodic wave collision, which is

We mention that the types of optical pulses that will be 
found when using Eq. (5) allow to distinguish whenever the 
collision is elastic or inelastic.

By substituting Eq. (5) into Eq. (1), we get the equations 
for the real and imaginary parts:

(1)

i�t(x, t) = (�0 − 2(T1 − 2T2))�(x, t) − 2�2T2�x(x, t)

− �2(T1 − 2T2)�(x, t)xx

+ U0(N − 1) ∣ �(x, t) ∣2 �(x, t) .

(2)𝜑(x, t) =∣ 𝜑(x, t) ∣ ei(k̄x−�̄�t),

(3)

k̄ =
∫ ∫

ℝ×ℝ+ ∣ 𝜑(x, t)x ∣ dx dt

∫ ∫
ℝ×ℝ+ ∣ 𝜑(x, t) ∣ dx dt

,

�̄� =
∫ ∫

R×ℝ+ ∣ 𝜑(x, t)t ∣ dx dt

∫ ∫
ℝ×ℝ+ ∣ 𝜑(x, t) ∣ dx dt

.

(4)�(k0, t) =
1

2� ∫R

�(x, t)e−ik0xdx.

(5)

�(x, t) = ( u(x, t) + iv(x, t) ) ei(kx−�t)

∣ �(x, t) ∣ =
√

u(x, t)2 + v(x, t)2,

Re�(x, t) = u(x, t) cos(kx − �t)

− v(x, t) sin(kx − �t) .
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We find the traveling waves solutions, and we introduce the 
transformations u(x, t) = U(z), v(x, t) = V(z), z = �x + �t. 
When inserting these transformations into Eq. (6), we have

Here, the exact solutions of Eq. (7) (or(6)) are found by 
using the unified method [24–28]. This method asserts that 
solutions of a NLPDE are expressed in a polynomial or a 
rational functions in auxiliary functions that satisfy appro-
priate auxiliary equations.

3  Polynomial solutions of Eq. (7)

The solutions are represented in polynomial forms with an 
auxiliary function that satisfies an auxiliary equation, The 
solutions are represented in polynomial forms with an aux-
iliary function that satisfies an auxiliary equation:

We mention that, in Eq. (8), g(z) is the auxiliary function 
and the second equation is the auxiliary equation. The val-
ues of m1,m2 and r are determined from the balance and 

(6)

(−1 + N)Uu3 + u(−� + (−2 + k2�2)T1

− 2(1 + k2�2)T2 + �0

+ (−1 + N)U0v
2) + vt + �22T2(kv − ux)

+ 2k(T1 − 2T2)vx

− (T1 − 2T2)uxx) = 0 ,

− (� + 2T1)v + v(�0 + (−1 + N)U0(u
2 + v2))

− ut − 2T2

(v + �2k(u + kv − 2ux) + vx − vxx))

+ T1�
2k2v − 2kux − vxx) = 0 .

(7)

(−1 + N)U0U
3 + U(−� + (−2 + k2�2)T1

− 2(1 + k2�2)T2 + �0

+ (−1 + N)U0V
2) + �V � + �2(�(2kV �

− �U��) + 2T2(kV

+ �(−U� − 2kV � + �U��))) = 0,

+ V(�0(−1 + N)U0(U
2 + V2)) − �U�

+ �2ST1(k
2V − �2kU� + �V ��))

− (� + 2T2)V − 2T2(V + �2(kU + k2V

+ �(−2kU� + V � − �V ��))) = 0.

(8)

U(z) =

m1
∑

i=0

hi g
i(z), V(z) =

m2
∑

i=0

pi g
i(z) ,

g�(z)p =

pr
∑

i=0

ci g
i(z), p = 1, 2.

the consistency conditions, respectively. By balancing the 
highest order derivative with highest nonlinearity terms in 
Eq. (7), when p = 1, the balance condition reads mi = r − 1, 
i = 1, 2 . The values of r are determined from the consistency 
condition. It is based on: (i) The number of equations that 
arise by substituting from (15) into (11)–(14), by setting the 
coefficients of g(z)i, i = 0, 1, ... equal to zero, say r0 . (ii) The 
numbers of the arbitrary parameters, {, hi,, pi, cj} in Eq. (15), 
say d. This condition reads r0 − d ≤ m , where m is highest 
order derivative in Eq. (11) (or (12) (here, m = 2 ). We find 
that 1 ≤ r ≤ 3. The case when p = 2 can be analyzed by the 
same way, where mi and r are found by using the balance and 
the consistency conditions.

It is worthy to mention that, when p = 1 the solutions in 
Eq. (8) are elementary (or implicit ) functions, while they 
are elliptic (periodic) functions when p = 2.

3.1  The first case when p = 2 and r = 2

In this case, Eq. (8) becomes

By substituting Eq. (9) into Eq. (7), and for the real 
and imaginary parts to be linearly dependent, we take 
p0 = h0p1∕h1 . By setting the coefficients of g(z)j, j = 0, 1, ...,

equal to zero, we get

where ci, i = 0, 2, 4 are arbitrary. Here we take

The solutions are

(9)
U(z) = h1g(z) + h0, V(z) = p1g(z) + p0,

g�(z) =

√

c4g(z)
4 + c2g(z)

2 + c0.

(10)

� = −
1

p1
2�2�(kp1T1 − (h1 + 2kp1)T2), h0 = 0,

p1 =

�

−h2
1
(−1 + N)U0 + 2c4�

2�2T1 − 4c4�
2�2T2

√

(−1 + N)U0

,

� = �0 + (−2 + k2�2 − c2�
2�2)T1+

2T2(−1 − k2�2 + c2�
2�2)

+
k�2

�

−h2
1
(−1 + N)U0 + 2c4�

2�2T1 − 4c4�
2�2T2

h1
√

(−1 + N)U0

,

(11)c4 = −m2, c2 = 2m2 − 1, c0 = −m2, g(z) = cn(z,m).

(12)

u(x, t) = h1cn(z,m),

v(x, t) =

�

−h2
1
(−1 + N)U0 + 2c4�

2�2T1 − 4c4�
2�2T2

h1
√

(−1 + N)U0

cn(z,m) ,

z = �x + �t.
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The numerical results of the solutions in Eq. (12) are dis-
played in Fig. 1(i)–(iv) for Re�(x, t) and ∣ �(x, t) ∣ . (cf. Eq. 
(5)).

Figure 1(i) and (iii) shows zig-zag pulses with self-phase 
modulation. Figure 1(ii) shows zig-zag optical lattice,in the 
dark regions.

We remark that in Fig. 1(iii) and (v) the optical pulses 
are sharp (shock-like) pulse, thus the collision is inelastic.

3.2  The second case when p = 2 and r = 2

In this case, we use the solutions in Eq. (9), while the aux-
iliary equation

By substituting from Eq. (9) and Eq. (12) into Eq. (7), we 
have

(13)g�(z) = g(z)
√

a2 − b2g(z)2.

Finally, we get
(14)

� = −
1

p1
(2�2�(kp1T1 − (h1 + 2kp1)T2)), h0 = 0,

p1 =

�

−h2
1
(−1 + N)U0 − 2b2�2�2T1 + 4b2�2�2T2

√

(−1 + N)U0

,

� = �0 + (−2 + k2�2 − a2�2�2)T1+

2T2(−1 − k2�2 + c2�
2�2

+
k�2

�

−h2
1
(−1 + N)U0 − 2b2�2�2T1 + 4b2�2�2T2

h1
√

(−1 + N)U0

.

Fig. 1  In i and iv the 3D plot to Re�(x, t) and ∣ �(x, t) ∣ . In iii the contour plot of Re�(x, t) is displayed, while in iii it is displayed against x for dif-
ferent values of t. When N = 0.9, h1 = 0.2,U0 = −0.1,T1 = 0.08,T2 = 0.1,m = 0.999, k = 5,� = 0.9, � = 0.1, �0 = 3
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3.3  When p = 1 and r = 2

In this case, we take the auxiliary equation

By using Eqs. (9) and (16) into Eq. (7), we have

Finally, we have

(15)

g(z) =
a

b
sech(a (z + B0),

u(x, t) =
a2 h1

b
sech(a (z + B0) ,

v(x, t) =

�

−h2
1
(−1 + N)U0 − 2b2�2�2T1 + 4b2�2�2T2

bh1
√

(−1 + N)U0

(a sech(a (z + B0)), N ≠ 1.

(16)g�(z) = c0 + c1g(z) + c2g(z)
2.

(17)

� =
��2

p1
((−2kp1 + 3c1h1� − 6c2h0�)T1 + 2(h1 + 2kp1

− 3c1h1� + 6c2h0�)T2), c0 =
h0

h2
1

(c1h1 − c2h0),

� = �0 + (−2 + k2�2 + 2c2
1
�2�2 −

8c1c2h0�
2�2

h1
+

8c2
2
h2
0
�2�2

h2
1
T1

−
1

h2
1

2(8c2
2
h2
0
�2�2 − h1�

2(kp1 + 8c1c2h0�
2)

+ h2
1
(1 + k2�2 + 2c2

1
�2�2))T2.

The results in Eq. (18) are used to display the 3D plot and 
contour plots of Re�(x, t) in Fig. 2(i) and (ii), respectively

Figure 2i shows optical pulses with gaps and mixed 
smooth and sharp tops (bottoms), while Fig. 2(ii) shows 
local zigzag-shaped optical lattices.

3.4  Characteristics of the pulses propagation

Here, we investigate the content of the spectrum, the wave 
length, the frequency and intensity.

The spectrum content is shown in Fig. 3(i) and (ii), 
while the wave length, frequency, and the intensity of the 
pulses in optical lattices are shown in Fig. 3(iii)–(v).

Figure 3(i) shows pulses with cusps, while ii shows ran-
dom pulses in an optical lattice.

The optical lattice is self-focusing polarized.

(18)

g(z) =
c1e

c1zh1 − Aoe
2c2h0z

h1 h0 − c2e
c1zh0

(A0e
2c2h0z

h1 − c2e
c1z)h1

u(x, t) =
ec1z(−c1h1 + 2c2h0)

−Aoe
2c2h0z

h1 + c2e
c1z

, v(x, t) =
p1

h1
u(x, t),

z = �(x +
t�2

p1
((−2kp1 + 3c1h1� − 6c2h0�)T1 + 2(h1

+ 2kp1 − 3c1h1� + 6c2h0�)T2)),

p1 =

�

−h2
1
(−1 + N)U0 + 2c2

2
�2�2T1 − 4c2

2
�2�2T2

√

(−1 + N)U0

.

Fig. 2  i and ii When N = 0.7, h1 = 0.3,U0 = 1.1, T1 = 0.08, T2 = 0.1, c2 = 0.07, k = 5 , � = 0.9, � = 0.1, �0 = 3, c1 = 0.3,A0 = 0.5, p1 = 2.5, h0 = 1.3
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Fig. 3  i–iii In i and ii the 3D and contour plots are done, respectively, when N = 1.7, h = 0.03,T = 0.3 
,T2 = 0.1, c2 = −1.7, k = 5,� = 0.9, � = 0.1, �0 = 3, c = 0.03,A = 0.5, p1 = 2.5, h0 = 1.3,U0 = 1.5

Fig. 4  i–iii In i and ii the 3D and contour plots for Req(x,  t) are done, 
respectively. In iii it is displayed against x for different values of t. When 
N = 0.7, h1 = 0.3,U0 = 1.1 , T1 = 0.2,T2 = 0.08, s2 = 0.7, s1 = 1.5 , 

s0 = −2.3, d = 0.5, s2 = −1.1, k = 5, �0 = 7.5,� = 0.9, � = 0.1, c1 = 0.3  , 
A0 = 0.5,B0 = 1.5, h0 = 1.3
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4  Rational solutions of Eq. (7)

4.1  Coupled auxiliary equations

For  l inea r ly  dependen t  so lu t ions ,  we  t ake 
p2 = h2p1∕h1, p0 = h0p1∕h1 . When inserting Eq. (19) into 
Eq. (7), we get

Finally, we have

The results in Eq. (21) are used to display Re�(x, t) in 
Fig. 4(i) and (ii) for the 3D and contour plots, respectively. 
In (iii) it is displayed against x for different values of t.

(19)
U(z) =

h0+h1g1(z)+h2g2(z)

s0+s1g1(z)+s2g2(z)
, V(z) =

p0+p1g1(z)+p2g2(z)

s0+s1g1(z)+s2g2(z)
,

g�
1
(z) = c1g(z) + c2g2(z), g�

2
(z) = c1g(z) + c2g2(z).

(20)

� = −
2�2

p1
�(kp1T1 − (h1 + 2kp1)T2), d2 =

−c2s
2

1
+c1s1s2+d1s

2

2

s1s2
,

� =
�

k2�2 +
1

2

�

−4 + c2
1
�2�2 +

2c1d1s2�
2�2

s1
+

d2
1
s2
2
�2�2

s2
1

��

T1

+
�

−2 − 2k2�2 +
2kp1�

2

h1
− c2

1
�2�2 −

2c1d1s2�
2�2

s1
−

d2
1
s2
2
�2�2

s2
1

�

T2 + �0,

p1 =

√

(c1s1+d1s2)
2�2�2T1−2(h

2

1
(−1+N)U0+(c1s1+d1s2)

2�2�2T2)
√

2
√

(−1+N)U0

.

(21)

g1(z) =
e
(c1−

c2s1
s2

)z
(d1s

2

2
A0+c2s1(−s2B0+e

c2s1z

s2
+
d1s2z

s1 +(s1A0+s2B0)))

c2s
2

1
+d1s

2

2

,

g2(z) =
e
(c1−

c2s1
s2

)z
(c2s

2

1
B0+d1s2((−1+e

c2s1z

s2
+
d1s2z

s1 (s1A0+s2B0)))

c2s
2

1
+d1s

2

2

,

u(x, t) =
h1(A0e

(c1+
c2s1
s2

)z
s1+Boe

(c1+
c2s1
s2

)z
s2−s0)

s1(A0e
(c1+

c2s1
s2

)z
s1+Boe

(c1+
c2s1
s2

)z
s2+s0)

, v(x, t) =
p1

h1
u(x, t),

z = �(x − 2kt�2T1 +
2(h1+2kp1)t�

2T2

p1
).

Figure 4(i) and (iii) shows zig-zag optical lattice with 
self-phase modulations and compression, while (ii) shows 
local zig-zag optical lattice.

4.2  Case when r = 2 and p = 1

We write

Inserting Eq. (22) into Eq. (7) results in:

The solutions of Eq. (7) are:

(22)
U(z) =

h0 + h1g(z)

s0 + s1g(z)
, V(z) =

p0 + p1g(z

s0 + s1g(z
),

g�(z) = c0 + c1g(z) + c2g(z)
2, p0 =

h0p1

h
.

(23)

� = −
2�2

p1
�(kp1T1 − (h1 + 2kp1)T2),

c0 =
c1(h0s1 +1 s0) − 2c2h0s0

2h1s1
,

� = �0 +
1

2h1s1
(2h1s1(−2 + k2�2)

+ (c1h1 − 2c2h0)(c1s1 − 2c2s0)�
2�2) ,

T1 − 2T2) − 2(2s1(h1 + k(h1k − p1)�
2) ,

p1 =

�

−2h2
1
(−1 + N)U0 + (c1s1 − 2c2s0)

2�2�2(T1 − 2T2)

√

2(−1 + N)U0

.

Fig. 5  i and ii The 3D and 
contour plots of Re�(x, t) are 
displayed against x and t in (i) 
and (ii), respectively. When 
N = 3, h1 = 0.3,U0 = 1.1, T1 = 0.2, T2
= 0.08, c2 = 0.7, s1 = 1.5, s0 = −2.3 , 
k = 5, �0 = 7.5,� = 0.9, � = 0.1, c1 =

0.3,A0 = 0.5,B0 = 1.5, p1 = 2.5,

h0 = −1.3 
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The results in Eq. (24) are used to display Re�(x, t) in 
Fig. 5(i) and (ii).

Figure 5i and ii shows the same geometric structures as 
in Fig. 2(i) and (ii).

5  Case when r = 2 and p = 2

In this case we use Eq. (22), but the auxiliary equation is

By the same way we have

The solutions are

(24)

u(x, t) =
�1

�2

,

�1 =
√

h1(c1h1 − 2c2h0)
√

s1

+ h1

√

c1h1 − 2c2h0)
√

c1s1 − 2c2s0)

tan h

�
√

c1h1 − 2c2h0
√

c1s1 − 2c2s0(z + A0))

2
√

h1s1

�

,

�2 =
√

h1s1(c1s1 − 2c2s0)

+
√

c1h1 − 2c2h0s1

√

c1s1 − 2c2s0)

tan h

�
√

c1h1 − 2c2h0
√

c1s1 − 2c2s0(z + A0))

2
√

h1s1

�

,

v(x, t) =
p1

h1
v(x, t).

(25)g�(z) =

√

c0 + c1g(z) + c2g(z)
2.

(26)

� = −
2�2

p1
�(kp1T1 − (h1 + 2kp1)T2),

s0 =
c1s1

c2
−

h0s1

h1
, c0 =

c2
1

4c2
,

� = �0 +
1

h1
(−1 + N)(h2

1
+ p2

1
)Uo)∕s2

1

+ (−2 + k2�2)T1

− (2(h1 + h1k
2�2 − kp1�2)T2,

p1 =

�

2h2
1
(−1 + N)U0 − c2s

2

1
�2�2T1 + 2c2s

2

1
�2�2T2

√

2U0(−1 + N)
.

(27)
u(x, t) = −

h1( (c1h1 − A0e
√

c2 z)h1 − 2c2h0)

( (c1h1 + A0e
√

c2 z)h1 − 2c2h0)s1

,

v(x, t) =
p1

h1
u(x, t).

6  Conclusions

A continuum model analog to the zig-zag optical lattice 
is established. Exact solutions of the model equations are 
found by using the unified method. Graphical representa-
tions of the results obtained are carried. They exhibit local 
zig-zag optical lattice. Further pulses with different geomet-
ric structures are observed. Mixed sharp and smooth pulses 
with local gaps occur. Also, zig-zag optical lattice with self-
phase modulations is observed. We think that these results 
consolidate the pretension of zigzag-shaped optical lattice. 
Further, the collision of pulses is shown to be inelastic, 
which may be argued for the formation of sharp optical lat-
tice with self-phase modulation and compression. We think 
that the results found, here, for the propagation of zigzag-
shaped pulses in optical lattice are completely novel. It is 
inspected that the collision is locally elastic (or inelastic), 
which may be due to the occurrence of mixed smooth and 
sharp optical pulses. Further, it is found that the zig-zag 
optical lattice is self-focusing.

References

 1. V.N. Serkin, A. Hasegawa, Novel soliton solutions of the nonlinear 
Schrödinger equation model. Phys. Rev. Lett. 85, 21 (2000)

 2. M. Ablowitz, Z.H. Musslimani, Integrable nonlocal nonlinear 
Schrodinger equation. Phys. Rev. Lett. 110, 064105 (2013)

 3. B. Guo, L. Ling, Q.P. Liu, Nonlinear Schrödinger equation: gen-
eralized Darboux transformation and rogue wave solutions. Phys. 
Rev. E 85, 026607 (2012)

 4. P. d’Avenia, Non-radially symmetric solutions of nonlinear 
Schrödinger equation coupled with Maxwell equations. Adv. 
Nonlinear. Stud. 2, 177–192 (2002)

 5. L.D. Carr, W.C. Charles, W.P. Reinhardt, Stationary solutions of 
the one-dimensional nonlinear Schrödinger equation. II. Case of 
attractive nonlinearity. Phys. Rev. A 62, 063611 (2000)

 6. R.R. Alfano, S.L. Shapiro, Observation of self-phase modulation 
and small-scale filaments in crystals and glasses. Phys. Rev. Lett. 
24, 592 (1970)

 7. M.D. Perry, T. Ditmire, B.C. Stuart, Self-phase modulation in 
chirped-pulse amplification. Optics. Lett. 19, 2149–2152 (1994)

 8. D. Raventós, T. Graß, M. Lewenstein, B. Juliá-Díaz, Cold bosons 
in optical lattices: a tutorial for exact diagonalization. J. Phys. B 
At. Mol. Opt. Phys. 50(11), 113001 (2017)

 9. B. Ghanbari, H. Günerhan, O. Alp İlhan, H.M. Baskonus, Some 
new families of exact solutions to a new extension of nonlinear 
Schrödinger equation. Phys. Scr. 95(7), 075208 (2020)

 10. W. Gao, B. Ghanbari, H. Gunerhan, H.M. Baskonus, Some mixed 
trigonometric complex soliton solutions to the perturbed nonlin-
ear Schrödinger equation. Modern Phys. Lett. B 34(3), 2050034 
(2020)

 11. W. Gao, H.F. Ismael, A.M. Husien, H. Bulut, H.M. Baskonus, 
Optical soliton solutions of the nonlinear Schrödinger and reso-
nant nonlinear Schrödinger equation with parabolic law. Appl. Sci. 
10(1), 219 (2020)

 12. H.M. Baskonus, T.A. Sulaiman, H. Bulut, T. Akturk, Investi-
gations of dark, bright, combined dark-bright optical and other 



On continuum model analog to zig-zag optical lattice in quantum optics  

1 3

Page 9 of 9 120

soliton solutions in the complex cubic nonlinear Schrödinger 
equation with delta-potential. Superlattices Microst. 115, 19–29 
(2018)

 13. H. Rezazadeh, A.R. Korkmaz, M.M.A. Khater, M. Eslami, D. Lu, 
R.A.M. Attia, New exact traveling wave solutions of biological 
population model via the extended rational sin h–cos h method 
and the modified Khater method. Modern Phys. Lett. B 33(28), 
1950338 (2019)

 14. N.K. Efremidis, D.N. Christodoulides, Discrete solitons in non-
linear zig-zag optical waveguide arrays with tailored diffraction 
properties. Phys. Rev. E 65, 056607 (2002)

 15. E. Tala-Tebue, H. Rezazadeh, Z.I. Djoufack, M. Eslam, A. Ken-
fack-Jiotsa, A. Bekir, Optical solutions of cold bosonic atoms in 
a zig-zag optical lattice. Opt. Quant. Electron. 53, 44 (2021)

 16. X. Chang, J. Xie, T. Wu, B. Tang, Modulational instability and 
quantum discrete breather states of cold bosonic atoms in a zig-
zag optical lattice. Int. J. Theor. Phys. 57, 2218–2232 (2018)

 17. T. Mishra, S. Greschner, L. Santos, Density-induced geometric 
frustration of ultra-cold bosons in optical lattices. New J. Phys. 
18, 045016 (2016)

 18. S. Greschner, L. Santos, T. Vekua, Ultracold bosons in zig-zag 
optical lattices. Phys. Rev. A 87, 033609 (2003)

 19. L. Demasi, Partially layer wise advanced zig-zag and hsdt models 
based on the generalized unified formulation. Eng. Struct. 53, 
63–91 (2013)

 20. M. Metcalf, G.-W. Di Chern, M. Ventra, C. Chien, Matter-wave 
propagation in optical lattices: geometrical and flat-band effects. 
J. Phys. B: At. Mol. Opt. Phys. 49, 075301 (2016)

 21. P.L. Christiansen, A.V. Savin, A.V. Zolotaryuk, Soliton analysis 
in complex molecular systems: a zig-zag chain. J. Comput. Phys. 
134, 108–121 (1997)

 22. A.V. Savin, L. Manevitch, Solitons in crystalline polyethylene: 
a chain surrounded by immovable neighbors. Phys. Rev. B 58, 
11386–11400 (1998)

 23. A.V. Savin, J.M. Khalack, P.L. Christiansen, A.V. Zolotaryuk, 
Twisted topological solitons and dislocations in a polymer crystal. 
Phys. Rev. B 65, 054106 (2002)

 24. H.I. Abdel-Gawad, Towards a unified method for exact solutions 
of evolution equations. An application to reaction diffusion equa-
tions with finite memory transport. J. Stat. Phys. 147, 506–518 
(2012)

 25. H.I. Abdel-Gawad, N. El-Azab, M. Osman, Exact solution of the 
space-dependent KdV equation. JPSP 82, 044004 (2013)

 26. M. Tantawy, H.I. Abdel-Gawad, On multi-geometric structures 
optical waves propagation in self-phase modulation medium. 
Sasa-Satsuma equation. Eur. Phys. J. Plus. 135, 928 (2020)

 27. H.I. Abdel-Gawad, H.M. Abdel-Rashied, M. Tantawy, G.H. Ibra-
himcd, Multi-geometric structures of thermophoretic waves trans-
mission in (2 + 1) dimensional graphene sheets. Stability analysis. 
Int. Commun. Heat Mass Transf. 126, 105406 (2021)

 28. H.I. Abdel-Gawad, M. Tantawy, A novel model for lasing cavities 
in the presence of population inversion: bifurcation and stability 
analysis. Chaos Solitons Fractals 144, 110693 (2021)

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	On continuum model analog to zig-zag optical lattice in quantum optics
	Abstract
	1 Introduction
	2 Basic equations
	2.1 The continuum model
	2.2 Mathematical formulation

	3 Polynomial solutions of Eq. (7)
	3.1 The first case when  and 
	3.2 The second case when  and 
	3.3 When  and 
	3.4 Characteristics of the pulses propagation

	4 Rational solutions of Eq. (7)
	4.1 Coupled auxiliary equations
	4.2 Case when  and 

	5 Case when  and 
	6 Conclusions
	References




