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Abstract
We study a coherently driven semiconductor laser cavity containing a single quantum dot(QD) (as gain medium) with opti-
cal feedback under Markovian approximation. We have obtained coupled operator equations for the model Hamiltonian 
using standard input-output formalism of cavity-QED and have found that these equations do not have any finite steady state 
solutions. We have also used an exact numerical framework based on Matlab platform qotoolbox, to compute the temporal 
dynamics of the mean excitation number of laser cavity mode under high feedback coupling regime. We have further studied 
the photon correlations of both the cavity mode as well as external feedback mode to feedback identify the laser parameters 
and coupling strength that give the nonclassical sub-Poissonian photon statistics. This work is useful for coherent control of 
photon statistics and photon correlations in the semiconductor laser with optical feedback.

1 Introduction

The simplest way to increase the interaction between pho-
tons and atoms is to confine them inside a optical resonator. 
This system is described by well known Jaynes-Cumming 
model for cavity-Quantum Electrodynamics (cavity-QED) 
[1]. Inside the resonator, two main loss processes that affect 
the coherent dynamics of the system are: spontaneous decay 
from the excited atomic-level to ground level and the leak-
age of photons outside the cavity [2]. When the coupling 
strength of the atom with cavity mode dominates over the 
decoherence processes, strong- coupling regime of cavity-
QED is achieved [3]. Such a regime has been obtained in 
various microscopic systems like optical cavities with 
trapped ions [4] as well as in semiconductor microcavities, 
where excitons in quantum dot act as two-level system (TLS) 
[5]. One of the most important applications of strong cou-
pling regime is photon blockade effect, where cavity reso-
nance frequency is modified in such a way that a second 
photon can not enter the cavity before the first leaks out 
[6]. Many other interesting and useful quantum optical phe-
nomena have also been observed in cavities, such as photon 

antibunching and squeezed light [7], stationary occupation 
inversion [8] and sub-natural linewidths [9]. Optical cavities 
have been also used for slow light propagation using electro-
magnetic induced transparency (EIT) [10]. Furthermore, two 
mode entanglement has been generated in between two spa-
tially separated cavities [11], where entanglement dynamics 
can be controlled via cavity parameters. Due to all these sig-
nificant features, cavity structures are most promising can-
didate for technical implementation of quantum information 
algorithms as well as construction of a quantum network.

Rapidly evolving experimental progress in cavity-QED 
has led to the coherent feedback scheme, where quantum 
coherent output of a given system is directly used as feed-
back into an input channel. Coherent feedback for coupled 
cavities system was first given by Wiseman and Milburn [12] 
and due to its coherence preserving nature, it become more 
useful as compared to its measurement based counterpart 
[13–16]. Since then, seminal experiments using coherent 
feedback are used in various ways, to enhance the efficiency 
of intrinsic quantum processes [17–20], tune the coupling 
between different system components [21], alter the stability 
landscape of the whole quantum system [22–24] and imple-
menting quantum computation tasks [25]. Similarly, in the 
semiconductor nanostructure domain, it is well known that a 
semiconductor laser with external optical feedback can dem-
onstrate very complex non linear dynamics depending upon 
the feedback phase and strength [26–29]. Furthermore, in 
more generalized scenario, a semiconductor laser with finite 
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number of emitters and photons has been used with output 
power in high-gain (mW) regime. In all these works, a semi-
classical treatment of light shows a very diverse dynamics 
which have also been observed experimentally [30]. On the 
other hand, for a low-intensity (low-gain) regime, where a 
very small number of emitters are involved, it requires a 
full quantum treatment, as the range of validity of the semi-
classical description is not clear. However, a fully analytical 
quantum optical treatment for the output field statistics of a 
microcavity laser with optical feedback, and above threshold 
in the few emitter regime (low gain regime) has been given 
in [31]. Therefore, recent advances in semiconductor nano-
technology have also lead to realisation of photonic devices 
in the quantum limit. One of the promising nanostructures 
are Quantum Dots (QDs) which act as gain medium in state-
of-the art microcavity lasers. In the semiconductor lasers, 
cavity quantum electrodynamics makes possible that a large 
fraction, � , of the spontaneous emission is coupled into the 
lasing mode. This leads into the designing of semiconductor 
microcavity lasers with ultra-low thresholds and a few QDs 
or even a single QD as gain medium [34–38].

In our present work, we have studied a fully quantized 
theory of optical feedback in a semiconductor microcavity 
laser coupled with a single two level emitter, i.e., Quantum 
Dot (QD) under Markovian approximation [41–43]. In this 
scenario, time delay corresponding to the feedback loop is 
considered to be very small as compared to cavity mode 
decay lifetime, since a longer feedback loop enforces non-
Markovian memory kernel [44–46].

This paper is organized as follows. In Sect. 2, we have 
considered the model Hamiltonian and its operator equa-
tions using the well known input-output formalism for cav-
ity-QED. In the same section, we have also given an exact 
numerical solution for the temporal dynamics of the mean 
cavity field excitation number using qotoolbox platform in 
matlab. Section 3 discuses the results with the photon statis-
tics of the lasing cavity as well as the feedback mode includ-
ing the cross-correlation between them. We have concluded 
our results in Sect. 4.

2  The model Hamiltonian

The basic scheme of our study is shown in Fig. 1. We have 
considered a single quantum dot (QD) inside a semicon-
ductor laser containing predominantly only a single lasing 
mode and it further includes light-matter interaction inside 
the laser cavity [31]. The coherent exchange phenomena 
between QD and microcavity mode leads to Vacuum Rabi 
oscillations. Although, the coexistence of vacuum Rabi 
oscillation and laser oscillation seems to be contradictory 
to each other, but it has recently been studied theoretically as 
well as experimentally that the strong-coupling effect could 

be sustained in laser oscillations [32, 33]. The electronic 
transition of QD is assumed to be in resonant with this lasing 
mode. This leads to a lower laser threshold as compared to 
off resonant QD. Furthermore, the laser cavity is also get-
ting a coherent optical feedback through a grating fixed at a 
distance L as investigated experimentally also in  [47, 48]. 
In these experimental works, output power fluctuations in a 
grating external cavity diode laser shows peculiar chaotic 
behaviour. We have also considered here that length l of the 
semiconductor cavity is very much greater than L, such that 
the feedback delay time can be neglected. This enables us to 
study the dynamics of the optical system under Markovian 
approximation.

Our system Hamiltonian under rotating wave approxima-
tion is given by,

where �c is the cavity photon frequency of mode ĉ , �d 
is the frequency of the optical feedback mode d̂ and �QD is 
the frequency of the QD, whereas Aij = �i⟩⟨j� represents the 
two level QD system with A21 is the excitation operator from 
level 1 to level 2. In Equation (3) , g and G are respective 
coupling strengths of cavity mode ĉ with QD and feedback 
mode d̂ , whereas H.C. stands for Hermitian conjugate.

2.1  Analytical approach

The dynamics of the system is given using Quantum Lan-
gevin equations [50, 51],

(1)Ĥ = Ĥ0 + V̂

(2)�H0 = �
[
𝜔QDÂ22 + 𝜔cĉ

†ĉ + 𝜔dd̂
†d̂
]

(3)V̂ = �ĉ
(
gÂ21 + Gd̂†

)
+ H.C.

Fig. 1  Single mode semiconductor laser cavity containing a sin-
gle quantum dot (QD) as well as with an external optical feedback 
through a grating placed at a distance L, as shown in Fig.
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where kc represents decay of the cavity mode, Γ repre-
sents spontaneous decay of two level quantum dot (QD) and 
� is the noise operator of cavity mode. The inhomogeneity 
� for a cavity must be ascribed to the incoming part of the 
cavity field ĉin , i.e., 𝜏 = 𝛼ĉin , where � is an unknown coef-
ficient. Therefore, Eq. (4) can be written as,

now the time reversal of (7) must be equivalent to a 
change in sign and, we need to replace the incoming field 
with outgoing field as,

the boundary condition at one side of the mirror inside 
cavity is given by [50],

where k denotes the the fluctuations of the cavity mode.
For consistency of equations (7) − (9) , it requires � = kck . 

Hence, the relationship between k and kc is the manifestation 
of the quantum fluctuation-dissipation theorem [51] and is 
given as k2kc = 1 by C. W. Gardiner et al for cavity field 
operators in [50, 51]. So, the relation k2kc = 1 gives us 
k =

1√
kc

 and hence finally we get, � = kck =
√
kc

For the complete study of a given quantum system, we 
must need to find the expectation value of quantum mechani-
cal observable, so the above set of equations (10)-(12) will 
reduce to

(4)
.

ĉ = −i𝜔cĉ − i
(
g∗Â12 + G∗d̂

)
−

kc

2
ĉ + 𝜏

(5)
.

d̂ = −i𝜔dd̂ − iGĉ

(6)
.

Â12 = −i𝜔QDÂ12 − igĉ −
Γ

2
Â12

(7)dĉ

dt
= −i𝜔cĉ − i

(
g∗Â12 + G∗d̂

)
−

kc

2
ĉ + 𝛼ĉin

(8)
dĉ

d(−t)
= i𝜔cĉ + i

(
g∗Â12 + G∗d̂

)
−

kc

2
ĉ + 𝛼ĉout

(9)ĉ = k
(
ĉin + ĉout

)

(10)
.

ĉ = −i𝜔cĉ − i
�
g∗Â12 + G∗d̂

�
−

kc

2
ĉ +

√
kcĉin

(11)
.

d̂ = −i𝜔dd̂ − iGĉ

(12)
.

Â12 = −i𝜔QDÂ12 − igĉ −
Γ

2
Â12

(13)
� .

ĉ
�
= −i𝜔c⟨ĉ⟩ − i

�
g∗
�
Â12

�
+ G∗

�
d̂
��

−
kc

2

where expectation value of the noise operator is always 
zero i.e. ⟨ĉin⟩ = 0 as shown also in standard text [51–54]. 
These coupled set of equations (13)-(15) do not have any 
finite steady state solutions. However, for this Hamiltonian 
we can calculate the time evolution of the various second-
order quantum correlations like our earlier work of cavity 
based quantum system [55].

2.2  Numerical analysis

The above Hamiltonian in the interaction picture in terms of 
the various detunings read as,

where Δc = (�QD − �c) and Δd = (�d − �c) . Further-
more, we focus on the case of resonant coupling between 
QD and the lasing cavity mode as well as in between the cav-
ity and the feedback mode i.e. Δc = Δd = 0. Here, we would 
like to mention that a single QD on resonance with the cav-
ity mode results in an increase of the laser efficiency and a 
lower laser threshold as compared to a QD in off-resonance 
as also shown in the seminal experiment [38].

Therefore, for a small distance in between the laser cavity 
and the feedback grating (Markovian limit) [49], the cor-
responding density operator �̂� of the system obeys the von 
Neumann equation with Lindblad terms for the different 
decay channels.

For the cavity field decay, Langevin L is given by

whereas for the spontaneous decay process of QD, Lan-
gevin L is given by

Here Γ is the spontaneous decay rate of the QD and kc is 
the decay rate for the cavity mode ĉ . The average number 
of photons nSQD emitted spontaneously by a single resonant 
QD with the cavity mode is given by [38, 39].

(14)
� .

d̂

�
= −i𝜔d

�
d̂
�
− iG⟨ĉ⟩

(15)
� .

d̂

�
= −i𝜔d

�
d̂
�
− iG⟨ĉ⟩

(16)V̂ int = �ĉ
(
gÂ21e

−iΔct + Gd̂†e−iΔdt
)

(17)d̂𝜌

dt
=

1

i�
[H, �̂�] +

Γ

2
L[�̂�] +

kc

2
L[�̂�]

(18)L[�̂�] = 2ĉ�̂�ĉ† − ĉ†ĉ�̂� − �̂�ĉ†ĉ

(19)L[�̂�] = 2Â12�̂�Â21 − Â22�̂� − �̂�Â22
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where � denotes the spontaneous emission (SE) cou-
pling factor, which represents the fraction of the spontane-
ous emission coupled into the cavity mode and fQD is the 
occupation probability of the QD by a single exciton. Here, 
�ph and  �sp represents the photon lifetime and the spontane-
ous emission lifetime of QD, respectively. When the aver-
age number of photons inside the microcavity laser is larger 
than unity, then only we have lasing phenomena from our 
proposed system, i.e. the emission of a coherent beam of 

(20)nSQD =
��phfQD

�sp

photons [40]. As � and fQD can not exceed beyond 1, Equa-
tion (20) essentially requires the photon lifetime to be larger 
than the spontaneous emission lifetime of the QD, to realise 
a single QD laser. So, in throughout our numerical simula-
tions we have taken the decay rate for cavity mode kc smaller 
than the spontaneous decay rate Γ of the QD. From experi-
mental point of view, it is well known that both time scales 
can be tailored efficiently using the high-quality resonator 
structures. It has been also found that QD based laser has 
very low threshold power as compared to the conventional 
gaseous laser  [38].
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Fig. 2  Time evolution of mean number of cavity field excitation 
⟨
ĉ†ĉ

⟩
 for cavity decay rate �c = 0.5 × 10−12 s−1 and spontaneous decay rate of 

QD, Γ = 0.6 × 10−9 s−1 . a For the ratio of 
g

G
= 1000 . b For the ratio of 

g

G
= 100 . c For the ratio of 

g

G
= 10 . d For the ratio of 

g

G
= 0.1
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We have used here an object-oriented open-source frame-
work based on matlab for solving the dynamics of this feed-
back based quantum system  [56]. In this framework named 
qotoolbox, quantum mechanical Hamiltonians including 
time-dependent systems, are usually build up from opera-
tors and states defined by a quantum object class, and then 
subsequently passed on to a choice of master equation or 
Monte Carlo solvers. Furthermore, we have also used this 
qotoolbox for studying coherently driven Raman transition 
in bimodal cavity  [57]. So, based on our previously used 
numerical method, we have studied temporal dynamics and 
nonclassical photon statistics of a semiconductor laser with 
optical feedback. Here, we have used  odesolve routine for 
density matrix evolution at first given in  [56]. We would 
also like to mention here that a fully open-source framework 
designed for simulating open quantum dynamics using pro-
gramming language python named as Quantum Toolbox in 
Python (QuTiP)  has been given in [58].

We have studied here the time evolution of the density 
operator � of the system given in eq. (17), with the help of the 
numerical integration solver odesolve routine developed in 
[56]. Initially, we have considered that the QD is in ground 
state and both the cavity mode and the feedback mode are in 
their respective arbitrary fock states. In other words, we have 
defined initial density matrix in numerical simulation for this 
quantum system like earlier works on density matrix simula-
tions of cavity-QED [57, 58]. It can be seen that, for a very 
small feedback coupling strength G i.e. 

( g

G
= 1000

)
 , the 

mean cavity field excitation 
⟨
ĉ†ĉ

⟩
 shows collapse and revival 

phenomena (like our earlier work on a two level system inside 
the bimodal cavity  [57]) over the microsecond time scale as 
shown in the Fig. 2a. Although, it can also be observed that 
due to continuous optical feedback, 

⟨
ĉ†ĉ

⟩
 shows irregular 

behaviour with time as the feedback coupling through the 
external mode begin to dominate over the Rabi coupling 
strength of the QD with the laser cavity mode. As the feedback 
coupling strength G further increases gradually, 

⟨
ĉ†ĉ

⟩
 follows 

irregular behaviour as shown in the Fig. 2b, 2c. Finally, a 
higher value of G, leads to completely irregular behaviour of ⟨
ĉ†ĉ

⟩
 over the picosecond time scale as shown in the Fig. 2d. 

So, depending upon the feedback coupling strength G, we can 
have different kinds of behaviour for the mean excitation num-
ber of the cavity mode c i.e. from collapse and revival phenom-
ena to the irregular type behaviour. Our numerical results of 
quantum dynamics can be further analysed through the Fast 
Fourier Transform (FFT) to check the possibility for determin-
istic as well as chaotic properties. However, in the high gain 
regime, non linear dynamics of a single- mode semiconductor 
laser with optical feedback has been studied through the 
numerical simulation of classical Lang Kobayashi model [26]. 
The numerical simulations of classical Lang Kobayashi model 
always leads to the deterministic chaos.

3  Photon statistics

In many seminal experiments, semiconductor laser has been 
used to generate photon bunching of the lasing mode, although 
photon bunching can also be observed without the applica-
tion of the feedback if other disturbances act on the light fluc-
tuations. Photon bunching in semiconductor lasers has been 
already observed for a nearly degenerate weak light mode 
coexisting with the strong lasing mode [63]. The weak mode 
exhibits super-Poissonian statistics without feedback after get-
ting disturbed by the strong mode [64].

Here, we have studied the feedback induced effects on the 
photon statistics of a semiconductor laser. In single mode 
regime the observation of bunched photon statistics is possible 
due to the fact that coherent feedback in semiconductor lasers 
induces chaotic emission. For bunched photons the photon-
photon correlation g(2)(0) > 1; whereas g(2)(0) = 1 gives the 
pure lasing limit.

The second-order self-correlation functions for the cavity 
mode c, feedback mode d and the cross correlation between 
modes c and d, for zero time delay are, respectively, defined as

Since we know that the cross correlation between the 
two bosonic modes represents nonclassical behaviour for 
g
(2)

cd
(0) < 1 , or in other words follows sub-Poissonian photon 

statistics [65]. The regions where g(2)
cd
(0) = 1 and g(2)

cd
(0) > 1 

are similarly referred to as Poissonian and super-Poissonian, 
respectively. The second-order cross-correlation between 
two different bosonic modes are further used to study the 
entanglement dynamics between them [65].

Here, we have studied the effects of the coupling ratio (
G

g

)
 on the time evolution of g(2)

c
(0) , g(2)

d
(0) and g(2)

cd
(0) 

using qotoolbox framework in Matlab. We have again used 
odesolver routine for density matrix evolution and then 
calculated the expectation value of higher order quantum 
correlations which are related to photon statistics [56–58]. 
It can be seen that the second-order autocorrelation func-
tion for the cavity mode g(2)

c
(0) , without feedback coupling 

(G = 0) , strictly follows sub-Poissonian photon statistics 

(21)g(2)
c
(0) =

⟨
ĉ†2ĉ2

⟩

⟨
ĉ†ĉ

⟩2

(22)g
(2)

d
(0) =

⟨
d̂†2d̂2

⟩

⟨
d̂†d̂

⟩2

(23)g
(2)

cd
(0) =

⟨
ĉ†d̂†d̂ĉ

⟩

⟨
d̂†d̂

⟩⟨
ĉ†ĉ

⟩
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as shown in Fig. 3a; as well as even for a weak feedback 
coupling strength G, also shown in Fig. 3b. So, the laser 
operation get disturbed by the emission of single photons 
and leads to antibunching phenomena in the photon statis-
tics of the emitted light [61]. In all these cases, the coher-
ent interaction between single QD and cavity mode domi-
nates over the optical feedback coupling. So, the cavity 
mode always shows strong nonclassical behaviour as it is 
strongly coupled with a single QD and generates single 
photons on demand, also demonstrated in the seminal 
experiments [59–61]. In this regime, second-order auto-
correlation function for the feedback mode g(2)

d
(0) , also 

follows sub-Poissonian photon statistics, whereas the cross 

correlation between them g(2)
cd
(0) always obeys Poissonian 

photon statistics. Furthermore, as the feedback coupling 
strength G increases gradually, g(2)

c
(0) starts to vary from 

super-Poissonian to sub-Poissonian over time, whereas 
g
(2)

d
(0) becomes Poissonian and g(2)

cd
(0) strictly follows sub-

Poissonian statistics as shown in Fig. 3c. So, the feedback 
can induce bunched photon statistics for the cavity mode, 
as shown experimentally also [63, 64]. This is due to the 
irregular oscillatory dynamics of the mean light-field 
intensity arising from feedback which, leads to bunching 
phenomena even above the lasing threshold. Furthermore, 
when G becomes comparable to g, cross correlation 
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Fig. 3  Second-order autocorrelations g(2)
c
(0) (blue solid line), g(2)

d
(0) (green dash line) and g(2)

cd
(0)(red dot line) versus coupling ratio g/G for cav-

ity decay rate �c = 0.5 × 10−12 s−1 and spontaneous decay rate of QD, Γ = 0.6 × 10−9 s−1 . a G
g

= 0 ; b G
g

= 10−2 ; c G
g

= 10−1 ; d G
g

= 1.
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function g(2)
cd
(0) still follows sub-Poissonian photon statis-

tics as shown in Fig. 3d. This may further leads to the 
possible entanglement generation in between the cavity 
mode and investigation of the feedback mode in our model 
Hamiltonian.

4  Conclusion

We have studied a single mode semiconductor laser cavity 
coupled with a single quantum dot (QD) as well as having 
an external optical feedback through a grating under Mark-
ovian approximation. We have obtained the operator equa-
tions through the quantum langevin equations of input-
output formalism. Furthermore, we have also given an 
exact numerical solutions based on Matlab using qotool-
box for the temporal dynamics of the system. We have 
found that mean cavity field excitation shows quantum 
collapse and revival phenomena like cavity-QED to purely 
irregular behaviour depending upon the various coupling 
strengths. We have also studied the photon statistics of 
cavity as well as feedback mode including the cross cor-
relation between them for various coupling ratio strength (
G

g

)
. We have identified the regimes, where all the three 

correlations display strong sub-Poissonian photon statis-
tics. For a comparable value of (g and G) , cross correlation 
between them shows a nonclassical behaviour which may 
be further explored to investigate the possible entangle-
ment dynamics in our proposed quantum system. Our 
study is also useful for optical feedback based control on 
nonclassical generation of light from semiconductor 
nanostructures.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00340- 021- 07632-7.
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