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Abstract
Soot radiation-based thermometry is a popular approach for flame temperature diagnostics. However, it usually suffers from 
flame temperature information lost in the regions of soot absent or less significant area. The originality of the present work 
lies in the development of a two-step Multi-Layer Perceptron (MLP) neural network method to assist soot radiation-based 
thermometry for flame temperature field retrieval. It completes the whole temperature field in a steady axis-symmetric Santoro 
laminar flame, which was originally measured by the Modulated Absorption Emission technique (MAE). Using temperature 
fields provided by numerical simulation of this standard Santoro flame, the two-step Multi-Layer Perceptron neural network 
model is trained and tested, and the temperature recovery sensitivity to the noises is theoretically investigated. Moreover, 
this two-step MLP approach for flame temperature completion is further proofed by experimental temperature results. And 
the two-step MLP prediction uncertainty is estimated as ± 85.5 K experimentally. The developed approach could assist other 
soot radiation-based thermometry, i.e., spectral soot emission, to provide the complete flame temperature fields.

1 Introduction

Laminar diffusion flames are the ideal research targets 
for soot studies, since the fuel pyrolysis, soot inception, 
growth, and oxidation can be readily identified along with 
the flame height. A few systematic diffusion flame data-
sets are established worldwide soot research groups [1–4]. 
Accurate detailed flame temperature fields are essential to 
address the remaining soot inception/oxidation processes 
issues and refine the corresponding soot submodels. Some 
non-intrusive optical techniques could probe the total flame 
temperature field, no matter the soot exists or not in the 
flames, for example, Coherent anti-Stokes Raman Spec-
troscopy (CARS) [5], Filtered Rayleigh scattering [7], Two 
Line Atomic Fluorescence (TLAF) [6] and so on. These 
optical techniques base on the different principles that rel-
evant to the temperature and one common feature is that 

the temperature retrieval relies on the atom/molecule level 
behavior. Normally, these techniques require laser sources, 
sophisticated optical arrangements and post-processing pro-
cedures, which causes less application in practical combus-
tion scenarios.

Soot radiation-based thermometry for the soot tempera-
ture retrieval is widely applied in various non-intrusive 
optical techniques, i.e., two-color ratio pyrometry [8], three-
color pyrometry [9], spectral soot emission (SSE) [10], 
modulated absorption emission (MAE) [11, 12], two-color 
Laser-induced incandescence (LII) [13], etc., because it 
takes the advantages of the simple correlation between soot 
thermal emission intensity and soot temperature, and pro-
vides the merits of rapid time response, being non-intrusive, 
economic, and easy to set up. One major drawback is that 
in the region where soot particle is absent or the amount of 
soot particle is less significant, the flame (gas) temperature 
could not be retrieved.

To complete the flame temperature field in the non-
sooting region, some non-intrusive optical techniques are 
available. The tunable diode laser absorption spectroscopy 
(TDLAS) [14] is a promising one, in which the flame gas 
temperature is derived from molecular gas spectra and 
is, therefore, not affected with the absence of soot. How-
ever, it is more widely used for the line-of-sight-averaged 
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measurement due to the simple optical schematics. An 
alternative option is the variant Rayleigh scattering ther-
mometry, i.e., Filtered Rayleigh scattering (FRS) [7]. 
It typically places a molecular filter (molecular iodine 
vapor) in front of the ICCD to reject the stray lights and 
ensure the correlation between the temperature and the 
Rayleigh scattering intensity, therefore, the elimination 
of Mie scattering interference from soot is the key point 
of temperature measurement accuracy. The temperature 
field measurement was attempted in a lightly sooting flame 
[15], however, the temperature measurement accuracy and 
potential of FRS in more hostile combustion environments 
still need to be explored. On the other hand, an intrusive 
method, thin filament pyrometry (TFP) was developed to 
obtain the flame temperature in the non-sooting regions 
[16]. Basically, the thin SiC fibre is inserted into the flame 
and its radiative emission is recorded. The flame tempera-
ture could be detected by calibrating the radiative intensity 
to the thermocouple-derived temperature. One principal 
advantage against the thermocouple is less susceptible to 
soot interference and the ability of long-time measure-
ment, i.e., 10 min. The high spatial and temporal resolu-
tion of 42 μ m and 0.66 μ s were also reported [16].

The machine learning method emerges in the combus-
tion field recently and has proved to be a promising method. 
Machine learning extracts information from data automati-
cally by computational and statistical methods to find rela-
tions between inputs and outputs even if the dependent and 
independent variables are not clear [17]. García-Cuesta 
et al. [18] have tried to retrieve hot gas temperature profiles 
from infrared spectra of CO2 and H 2 O in the exhaust gas 
plume of a micro-jet engine via the artificial neural network 
approaches. Most recently, Ren et al. [19] developed an 
inverse radiation model based on the Multi-Layer Percep-
tron (MLP) neural network method to retrieve temperature 
and gas species volume fraction distributions from infrared 
spectral emission measurements for combustion gas mix-
tures. And the predicted temperature fields were in excel-
lent agreement with temperatures deduced from Rayleigh 
scattering thermometry. Furthermore, the prediction of soot 
volume fraction and temperature fields simultaneously in the 
ethylene laminar flames from infrared soot emission through 
the modified MLP neural network were further explored in 
Ref. [20] for N 2 and CO2 diluted flames. The results were 
compared with these obtained from the MAE technique and 
a good temperature prediction precision was found. How-
ever, the predicted flame temperature fields were still con-
fined to the soot-existing region in the flames. However for 
the flames studied, the soot particles are small and in the 
Rayleigh limit, the soot temperature and gas temperature are 
assumed to be the same. Therefore the retrieved soot tem-
peratures are just part of the flame temperatures. Using the 
information provided with soot temperature distributions, it 

might be possible to recover the complete flame temperature 
distributions.

In this paper, a novel two-step MLP approach is proposed 
to complete the flame temperature field from soot tempera-
ture field previously measured with the soot thermal radia-
tive intensity ratio, i.e., MAE technique. The feasibility of 
this novel MLP approach is first numerically assessed by 
recovering the complete flame temperature field and the 
robustness of this method is also investigated by incorpo-
rating Gaussian random noise into the training and the test-
ing data. The method is further experimentally validated by 
recovering the complete flame temperature field of a stand-
ard Santoro flame that is previously measured by a thermo-
couple. Additionally, the two-step MLP prediction accuracy 
is detailed.

2  The machine learning approach

The processes of MLP neural network method that applied 
to retrieve the flame gas species volume fraction and temper-
ature distribution or soot temperature and volume fraction 
fields were detailed in previous studies [19, 20]. The major 
features of the MLP method are briefly reminded. The MLP 
consists of an input layer, one or more hidden layers, and an 
output layer. Each layer comprises several nodes called neu-
rons. Neurons of one layer are directly connected to the next 
layer by weights. Each neuron in the hidden layers trans-
forms the values from the previous layer with a weighted 
linear summation, followed by a nonlinear activation func-
tion (how data processed within neurons refer to Ref. [19]).

An important part of modeling with neural networks is 
the so-called training of the network (learning). Training 
neural networks is done by adjusting appropriate weights 
� between neurons to minimize the error of the cost func-
tion so that the output values generated by the network are 
compared with the actual corresponding values. The cost 
function is,

where �p is the predicted scalar values by the neural network 
and MLP uses parameter � for regularization which helps to 
avoid overfitting by penalizing weights with large magni-
tudes. Learning is an iterative process and uses a relatively 
large number of samples, which should contain information 
spread evenly over the entire range of the system, which 
allows obtaining a sufficiently low error of the cost function. 
After training, the model can be directly used to predict new 
outputs by feeding new inputs. In the context of completing 
the flame temperature field, during the training process, the 
inputs are incomplete flame temperature (soot temperature) 
fields and the outputs are complete ones, which are both 

(1)F
�
�p,�,�

�
= ‖�p − �‖2 + �‖�‖2
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generated from numerical simulations. After training, the 
MAE measured soot temperature fields can be fed into the 
trained model to predict the corresponding flame tempera-
ture fields. The present study implements the scikit-learn 
Python library [21] and the MLP training uses a stochastic 
gradient-based optimizer proposed by Kingma and Ba [22].

2.1  Two‑step MLP model

For machine learning using the artificial neural network, a 
large set of training data has to be routinely available [19, 
20, 23]. These data can be either from experimental meas-
urements or numerical simulations or both. In the present 
study, the training inputs are the numerical temperature field 
of one standard Santoro flame (fuel ethylene flow 0.231 L/
min, air coflow 43 L/min) from Ref. [24]. To complete the 
non-sooting region temperature for the sooting flames, the 
total flame temperature fields as the priori for the training 
model are required. However, the numerical temperature 
field is the only available source that could be used. So the 
training data here are generated only based on the numerical 
temperature field from simulation of the standard Santoro 
flame. The training data are generated with series of soot 
temperature field “shapes” that normally obtained from 
the MAE technique. For example, for the diluted Santoro 
flames, the detectable temperature field region by the MAE 
technique was largely shrunk with increasing the N 2 or CO2 
fractions [4, 20]. So the training inputs are generated by 
mapping the “shapes” of the MAE soot temperature fields 
to the numerical temperature field, and only keeping the 
domain where MAE has values. Totally, there are 14 MAE 
soot temperature “shapes”, i.e., one flame is without any 
dilution, 7 flames are with different levels of N 2 dilution and 
6 flames are with different levels of CO2 dilution.

Two models are fostered in this novel MLP neural net-
work, both of them conduct 1-D soot temperature to 1-D 
flame temperature predictions. One model (MLP1) recov-
ers the soot temperature field horizontally and the other 
(MLP2) further recovers the soot temperature field verti-
cally, resulting in a complete 2-D flame temperature field. 
Since our MAE soot temperature field has a 915 × 80 pixels 
in dimension, so for each available MAE flame measure-
ment, it can be used to generate 915 pairs of horizontal 
datasets for training MLP1 and 80 pairs of vertical datasets 
for training of MLP2. During the training process, we first 
perturbed the temperature field with Gaussian random noises 
and then randomly hold out 90% of the data as a training 
set and use the remaining 10% for cross-validations to test 
the models. Two models have been trained and tested, with 
5% and 10% of Gaussian random noises in the training and 
testing data. The architecture of a MLP neural network is 
defined by a list of parameters called hyperparameters, such 
as number of hidden layers, number of neurons in each of 

the hidden layers and the regularization parameter � . There 
is no specific approach to determine the number of hidden 
layers and their neurons for different problems. The choice 
of the optimal hyperparameters remains more of an art than 
science and is usually made by trial and error. The criterion 
is to select a hyperparameters combination which makes the 
maximum training and testing scores. The training score and 
testing score are the R2 score, also known as the coefficient 
of determination, which is defined as,

and the best possible score is 100%. Where yp is the pre-
dicted value of the neural network and y is the actual value. 
So after trial-and-error, we found that 4 hidden layers with 
400 neurons in each of the hidden layer with � = 1000 for 
both MLP1 and MLP2 give best scores, thus used as the 
optimal neural network architectures.

Figure 1 demonstrates a representative process of flame 
temperature completion from the soot temperature field by 
the two-step model. It is noted that only the right half of the 
diffusion flame temperature field is represented since the 
total flame is axis-symmetry. Figure 1b displays the repre-
sentative soot temperature field, with a similar field shape 
as in the measured MAE soot temperature, which is used 
as the input of the MLP neural network. It is the numerical 
temperature field that mapped from the real experimental 
detectable soot temperature domain shape. Through the 
first MLP1 calculation, the temperature output is shown by 
Fig. 1c, which also is the input of the second calculation 
step of MLP2. As a result, the final flame temperature field 
output of the two-step MLP model is exhibited by Fig. 1d. 
As anticipated, the two-step MLP neural networks have pre-
dicted the “experimental” missing parts of the flame tem-
perature. Ideally, the field (d) should be identical to that in 
Fig. 1a, which is the original numerical temperature field 
from Ref. [24]. During the training process, data in Fig. 1b, 
c can be artificially generated from Fig. 1a, which then are 
used to train the two models MLP1 and MLP2.

2.2  Robustness of the MLP model

To show the robustness of the MLP model, the training 
data of the temperature field are perturbed with two sets 
of Gaussian random noises of 5% and 10%. After training 
of MLP neural network, the artificially generated soot tem-
perature field with the same level of noises added is fed into 
the neural network to predict new temperature distributions. 
Figure 2 shows the temperature field comparison among the 
ideal (without noise) and the recovered ones from the MLP 
neural network predictions. As shown in the figure, even 

(2)R2 = 1 −

∑�
y − yp

�2
∑

(y − ȳ)2
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with 10% of random noises in the training and testing data, 
the temperature field is recovered very well.

The correlation between the MLP predicted temperatures 
and the ideal ones for the 5% and 10% cases are shown in the 
upper two frames of Fig. 3 and the recovered temperature 
profiles at the height above burner z = 40 mm are shown in 
the lower two frames in Fig. 3. The noisy training data is 
also present for comparison, where the shadow represents 
the standard deviation intervals. As indicated in the figure, 
the discrepancies between the recovered and ideal values do 
not depend on the location within the flame. Despite rela-
tively large noises in the training and testing data in the case 
of 5%, almost all the recovered temperatures are within 80 
K discrepancies from the ideal values. While the noise level 
in the training and testing data increases to 10%, even the 
training temperatures can be as high as 400 K away from the 
ideal values, the MLP neural network models recovers the 

ideal temperatures quite well and the discrepancies from the 
ideal values are well within 100 K, as indicated in Fig. 3.

3  Experimental validation

3.1  Experimental santoro flame

Provided with the two-step MLP neural network, the temper-
ature completion for the real experimental temperature result 
is further executed. Figure 4a displays the measured soot 
temperature field of the standard Santoro flame by the MAE 
technique (details refer to Ref. [4]). Meanwhile, Fig. 4b, c 
show the intermediate and final flame temperature field out-
put by the two-step MLP models, respectively. In general, 
the two-step model could correctly recover the experimental 
temperature field trend, however, the recovered temperature 

Fig. 1  A representative process 
of temperature completion from 
the soot temperature field (b) to 
the final predicted entire flame 
temperature field (d)

Fig. 2  Comparison between the 
ideal and the MLP recovered 
flame temperatures fields with 
0%, 5% and 10% of Gaussian 
random noises added to both 
training and testing data
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is slightly lower than that of the numerical one (Fig. 1a). 
This is mainly attributed to the original experimental soot 
temperature by MAE is lower than the numerical one.

For further validation, the flame radial profiles at three 
heights of 20, 40 and 50 mm are compared with the dataset 
from literature, as shown by the right sub-images in Fig. 4. 
The asterisk ( ∗ ) stands for the experimental temperature 
profile obtained by MAE technique (in Fig. 4a). The red 

triangles ( △ ) represent the temperature profiles output 
by the two-step MLP model (in Fig. 4c). And the scatter 
blue square, yellow stars, Gray diamond and pink triangle 
represent the temperature profiles measured by the ther-
mocouple from McEnally et al. [25], Santoro et al. [26, 28] 
and McEnally et al. [27], respectively. The recovered tem-
perature profiles by the MLP models are consistent with 

Fig. 3  Comparison between the 
ideal and the MLP predicted 
temperatures with 5% and 10% 
of Gaussian random noises 
added to both training and test-
ing data

Fig. 4  Left sub-images: a representative process of temperature com-
pletion from experimental measured soot temperature field by MAE 
(a) to the final predicted entire flame temperature field (c). Right sub-
images: profiles comparison of flame temperature at different heights 
above the burner, black asterisk: experimental data from MAE [4]; 

red triangle: output from two-step MLP model; blue square: experi-
mental data from McEnally et  al. [25]; yellow stars: experimental 
data from Santoro et al. [26]; gray diamond: experimental data from 
McEnally et  al. [27]; pink triangle: experimental data from Santoro 
et al. [28]
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the experimental ones by MAE in the soot region. More 
importantly, in the soot absent region that highlighted in 
the shaded areas, the MLP models well predict the tem-
perature variation trends and the predicted profiles match 
with the thermocouple measurements.

3.2  Prediction temperature uncertainties 
estimations

Since the initial parameters, i.e., initial weights and the 
stochastic objective function in Adam Optimizer during 
the MLP model training are assigned randomly, the MLP 
model predicted temperature field has a slight difference 
in the individual model predictions. Thus, ten independent 
models were trained and every predicted flame temperature 
field errors were accounted for by Eq. (3).

Tt
PRE

(xi, yj ) is the tth predicted flame temperature field region, 
which is limited to the soot existing position that could be 
measured by MAE technique, while TMAE(xi, yj) is the exper-
imental soot temperature field probed by MAE technique 
and N is the total pixel numbers within the MAE probed soot 
temperature field. In the present study, the N is estimated as 
21,967.

Therefore, two parameters are further calculated to assess 
the prediction uncertainties performance. The ten averaged 
absolute temperature errors and the corresponding sample 
standard deviation are computed by Eqs. (4) and by  (5), 
respectively:

Table 1 summarized the ten averaged absolute temperature 
errors and the corresponding sample standard deviation 
in the two-step MLP models. Indeed, during the two-step 
MLP prediction, the temperature field in the soot region was 
predicted twice. Thus, these two-step predictions absolute 

(3)Tt
ave

=
1

N

i=n3, j=n4∑

i=n1, j=n2

|||T
t
PRE

(xi, yj) − TMAE(xi, yj)
|||

(4)Tave =
1

10

t=10∑

t=1

Tt
ave

(5)S =

√√√√1

9

t=10∑

t=1

(Tt
ave

− Tave)
2

errors and the corresponding sample standard deviations 
were displayed separately. The first step prediction perfor-
mance was better than that of the second (final) step, which 
could be attributed to the accumulation of the first step pre-
diction errors in the second model prediction. Nevertheless, 
the final step prediction still exhibited significantly low pre-
diction uncertainties and strong prediction stability. Besides, 
since the reported temperature measurement uncertainty by 
MAE technique was ± 50 K [12], as a result, the total two-
step MLP prediction uncertainty could be estimated as ± 
85.5 K.

3.3  Efficiency

Machine learning carries out the time-consuming parts 
beforehand, i.e., including training data generations, model 
training and validation. Once the model is ready, the recov-
ering processes are very efficient, i.e., MLP1 takes about 
0.43 s and MLP2 takes about 0.70 s of CPU time to recover a 
temperature field with 915 × 80 pixels on an Intel Xeon Gold 
6130 processor. The longer computational cost of MLP2 is 
due to more neurons in both input and output layers.

4  Discussion

The proposed two-step MLP model was trained by the 
numerical temperature field due to the limited total tem-
perature field source of that standard Santoro flame in the 
literature. Yet, the feasibility and robustness of this method 
were detailed. Furthermore, this two-step approach could 
be adapted to other soot radiation-based thermometry, no 
matter the input total flame temperature field comes from 
the simulation or experiment. Even though the model we 
got currently only works on Santoro-type burner with certain 
ranges of flow conditions, the method we proposed can be 
applied to other types of burners and other flames as well. 
New models can be trained corresponding to flame condi-
tion variations, i.e., different fuels, flow rates, dilutions, etc.

In fact, a more widely applicable model will be the target 
of our future work. For example, we could obtain series of 
N 2 diluted total flames temperature fields from numerical 
simulations and then foster a new model to complete any 
N 2 diluted fraction flame temperature field that probed by 
soot-radiation based thermometry. This universal model 
that could predict full temperatures for different fuels, flow 
rates, dilutions, etc. is our ultimate goal. However, additional 
experimental or numerical data sources are required as a 
priori, which helps for model training, testing and validation. 
After these, the applicability scope of the model could be 
significantly extended.

In addition, an experimental data-based MLP approach 
to recover the non-sooting region temperature in the sooting 

Table 1  Statistical averaged absolute temperature errors and sample 
standard deviation in the two-step MLP models

MLP1 MLP2 MAE Total

Tave (K) ± 24.3 ± 35.5 ± 50 ± 85.5

S (K) 6.4 11.8 − 11.8
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flame deserves further investigation. For example, in Ref. 
[19], the flame gas temperature could be retrieved by 
the mid-infrared flame radiation from CO2 or H 2 O mol-
ecules through MLP approach. Therefore, the total soot-
ing flame temperature field theoretically could be obtained 
by simultaneous infrared and mid-infrared flame radiation 
measurements.

5  Conclusion

This paper originally provides a two-step Multi-Layer Per-
ceptron (MLP) neural network method, which allows com-
pleting the absent flame temperature field that is obtained 
by the soot radiation-based thermometry, i.e., MAE tech-
nique. The two-step MLP model is fostered by the numeri-
cal temperature field of one standard Santoro flame. And 
the feasibility of this approach is verified by recovering 
the artificially generated “experimental” soot temperature 
field from the MAE technique. Furthermore, the robust-
ness of the approach is assessed by introducing 5% and 10% 
Gaussian random noises into training and the testing tem-
perature fields. It is found that the recovered temperatures 
are within 80 K and 100 K discrepancies from the ideal 
values, respectively. Moreover, the predicted temperature 
profiles in the soot absent region by two-step MLP models 
are further validated by independently thermocouple results. 
A consistent and more complete flame temperature field is 
obtained by the MLP method, compared to the soot tem-
perature field probed via MAE. As a result, the two-step 
MLP model exhibits significantly low prediction uncertain-
ties and strong prediction stability and the total prediction 
uncertainty is estimated as ± 85.5 K. Eventually, it is worth 
mentioning that the proposed two-step MLP method could 
help all kinds of soot radiation-based thermometry for com-
plete flame temperature field retrieval, if a total temperature 
field source was provided as a priori.
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