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Abstract
In this paper, a new phase retrieval method using sequential phase modulations is proposed. Behind the unknown object, 
adding sequential phase modulations will change the diffraction intensities received by sensor. Through increasing the 
number of diffraction intensities patterns, the difficulty of retrieving the unknown object is decreased. To better select these 
modulation phases, the complexity parameter is defined to evaluate the complexity of unknown object. When the complexity 
parameter of unknown object is larger, it contains more spectrum information on different frequency bands and will be harder 
to retrieve. The complexity of unknown object should be contained between the maximum and minimum complexities of 
modulation phases. In this way, the information of each frequency band on the unknown object can be effectively retrieved. 
Meanwhile, the distribution of modulation phases should be continuous to avoid introducing high frequency noise. In addi-
tion, there is no limit on what kind of modulation phase distribution to choose. The effectiveness and fast convergence of 
this new method has been proved.

1  Introduction

Retrieving phase information is a vital part in various imag-
ing systems and plays an important role on many technical 
and scientific applications such as biological tissue imaging 
[1–3], X-ray crystallography [4–7], microwave holography 
[8], fringe pattern analysis [9], astronomy imaging [10–12], 
antenna detection [13], and adaptive optics [14–16]. In these 
fields, the object phase is significant but unmeasurable. 
There are various methods that can be divided in two groups: 
one using a reference beam (interferometry), and the other 
without using a reference beam (phase retrieval). The former 
methods with some forms of reference beam like hologra-
phy and speckle interferometry have been extensively uti-
lized in 3D imaging and in nondestructive testing [17, 18]. 
These interferometry methods may be the most appropriate 
methods to retrieve phase quantitatively, but they require 
an ideal reference. Therefore, for some imaging systems, 
these interferometry methods may not be applicable. Phase 

retrieval requires no reference beam but involves a difficult 
question as how to retrieve phase from measured diffraction 
patterns. Depending on the method used, various constraints 
and approximations are required and some constraints are to 
be given as a priori knowledge. In most practical manifesta-
tions of the technique, the measured diffraction pattern is 
the squared modulus of the first constrains set [19]. An addi-
tional support constraint requires the reconstructed image 
to be zero-valued outside a given region, corresponding to 
a finite support bounding the sample in the physical experi-
ment [20]. Expect for two common constraints mentioned 
above, the gradient descent algorithm, simulated annealing 
algorithm, or genetic algorithm can also provide strong con-
straints for phase retrieval [21–23]. In addition, combining 
multiple diffraction data sets with overlapping illuminations 
(PIE or ePIE) [24, 25], rotating a single cylindrical lens per-
pendicular to the optical axis (RSCL) [26], and recording 
multiple intensity patterns of the object at different positions 
(SBMIR) [27, 28] give more constraints for retrieving phase. 
However, these methods (PIE and SBMIR) need two-dimen-
sional or one-dimensional scanning to obtain multiple inten-
sity patterns. During the scanning process, the displacement 
error and the optical path tilt error will affect the retrieval 
accuracy [29–31].

In this paper, a new phase retrieval method using sequen-
tial phase modulations (PRSPM) is proposed in which dif-
ferent modulation phase plates with known distribution is 
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used to get different diffraction intensity patterns. Multiple 
diffraction intensity patterns give stronger constraints in 
phase retrieval. Compared with PIE or SBMIR, there is no 
displacement error and optical path tilt error and an algo-
rithm with fast convergence is obtained. The more complex 
spectrum information of unknown object is, the more diffi-
cult the retrieval is. Therefore, the complexity parameter is 
defined to guide the choice of modulation phases.

There are three requirements for modulation phases: 
(1) the complexity of unknown object should be contained 
between the maximum and minimum complexities of 
modulation phases. (2) The modulation phases with known 
distributions are continuous in this paper. Because multi-
ple diffraction intensities are obtained using random phase 
modulations, there is the effect of the pixel crosstalk of 
spatial light modulation (SLM) in the experiment [32–35]. 
To reduce the effect of pixel crosstalk of SLM, the SLM 
patterns should be locally smooth [35]. (3) The modulation 
phases should cover different frequency bands. In addi-
tion, there is no limit on what kind of modulation phase 
distribution to choose. In addition, what kind of relationship 
between different modulation phases is also no requirement. 
Through rigorous derivations and digital simulations, the 
feasibility of this method is confirmed.

2 � Theoretical model

2.1 � The principle of PRSPM

Figure 1 shows the schematic diagram of PRSPM. The 
unknown wavefront on the object plane (OP) is O

(
xo, yo

)
 . 

Then, O
(
xo, yo

)
 propagates over the distance of z1 to the 

modulation plane (MP). The incident wavefront of modula-
tion plane is

(1)Pj

(
xm, ym

)
= �WWAS

[
O
(
xo, yo

)]
,

After modulated by the jth modulation phase �j

(
xm, ym

)
 , 

the modulated wavefront is

Then Sj
(
xm, ym

)
 propagates distance z2 to the diffraction 

plane (DP) and the diffraction wavefront is

where Ij
(
xd, yd

)
 is

In the above propagation processes, the symbol �WWAS 
stands for Wide-window Angular Spectrum (WWAS) 
propagation [36].

Generally, Angular Spectrum (AS) propagation is 
equivalent to the Rayleigh–Sommerfeld formula which is 
the accurate diffraction formula in the scalar diffraction 
theory [37, 38]. However, AS propagation is calculated 
under short distance, and the sampling interval of input 
plane is the same as that of output plane which is gener-
ally limited by pixel size of the image sensor. Therefore, 
WWAS propagation is adopted instead of AS propagation 
in this method. WWAS propagation expands the object 
plane with zero-padding to satisfy arbitrary distances cal-
culation. Meanwhile, variable sampling interval in input 
plane can be used by introducing a scale factor.

The WWAS calculation between object plane and mod-
ulation plane is explained in detail as an example. Figure 2 
shows the geometry of the propagation model between 
object plane and modulation plane. Q is sampling point 
in object plane and modulation plane, and R is the sam-
pling point after zero-padding of the calculation window 
in object plane. R is determined by Eq. (5) as
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Fig. 1   Schematic of the recording arrangement of PRSPM Fig. 2   Geometry of the propagation model between OP and MP
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� is the wavelength. The sample interval in object plane and 
modulation plane is Δx1 and Δx2 , respectively. Then the dis-
crete Fourier transform of O

(
xo, yo

)
 can be written as

where x�

o
= �xo , y

�

o
= �yo , f1

(
x
�

o
, y
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o

)
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the scale factor is � = Δuq
/
Δx1 = 1

/(
QΔx1Δx2

)
 and ∗ 

denotes the discrete convolution operation. Then Pj

(
xm, ym

)
 

at the modulation plane is

where F−1 is the inverse Fourier transform (IFFT).
In the modulation plane, using different modu-

lation phases receives different diffraction intensi-
ties. When the number of phase modulation is n, 
then n modulation phases constitute a collection 
�
(
xm, ym

)
= k [�

1
(xm, ym),�2

(xm, ym)… ,�j(xm, ym),… ,�n(xm, ym)] , 
where k is a constant coefficient. Each time the modulation 
phase changes, the diffraction intensity also changes. The 
method using multiple diffraction intensities can enhance 
the constraint of phase retrieval.

Subsequently, the calculated intensity obtained by 
Eq. (4) is replaced by the measured intensity to retrieve the 
unknown complex amplitude of object plane. The iterative 
algorithm is shown in detail on Sect. 3.

2.2 � The requirements of PRSPM

To evaluate the complexity of the complex-valued function 
g(x, y) , the total variation (TV) is defined as [39] 
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(8)TV =
∑

all pixels

(
||∇xg

||2 + |||∇yg
|||
2
)
,

where ∇x and ∇y are the gradient operators of x and y, 
respectively. If g(x, y) is known, that may be implemented 
numerically by a central differencing scheme

However, for unknown complex-valued function g(x, y) , 
we have access to the Fourier intensity |||G

(
fx, fy

)|||
2

 . Taking 
the Fourier transform on the both sides of Eq.  (9) and 
employing the shift property of the Fourier transform, 
getting

A similar relation holds for the y derivative. To get an 
equivalent numerical value for TV  from the Fourier mag-
nitude data, we defined complex parameter � and use the 
equation given below [40]:

where Δx and Δy are the sampling intervals in the x and y 
direction of image space, respectively. In addition, 

(
fxp, fyp

)
 

denote spatial frequencies associated with the pth pixel in 
the Fourier domain. It is easy to verify that the computed 
numerical value � using Eq. (11) is equal to the TV. In this 
paper, the complexity parameters are all logarithmic values 
with a base of 10.

The complexity parameter � is proportional to Fourier 
intensity |||G

(
fx, fy

)|||
2

 . The higher the complexity is, the richer 
the spectrum information is. It is apparent that a random 
image will have very high fluctuations and thus has a high 
numerical value of � . Therefore, to retrieve the unknown 
object effectively, the spectral information contained in the 
modulation phases should cover the spectral information of 
unknown object. For convenience, Zernike polynomials are 
chosen as a set of modulation phases in the method. Because 
the different orders of Zernike polynomials represent low-, 
medium-, and high-frequency information, respectively.

3 � The algorithm of PRSPM

The algorithm of PRSPM has two crucial parts: the diffrac-
tion transmission calculation and the iterative calculation 
based on sequential phase modulations. The former can 
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make the sampling interval of object plane not limited to 
the sensor using WWAS propagation; the latter adds strong 
constraints to the iterative calculation through sequential 
phase modulations and accelerates convergence. The 
specific iterative process of PRSPM is following, whose 
operation is illustrated in Fig. 3:

Step 1 A constant or random phase �o

(
xo, yo

)
 is given 

as the initiation of object plane,and its complex ampli-
tude is 

Step 2 Keeping propagating to the phase modulation 
plane, Pj

(
xm, ym

)
 before phase modulation plane is cal-

culated by Eq. (1).
Step 3 Modulated by the jth phase modulation 
�j

(
xm, ym

)
 , Sj

(
xm, ym

)
 is calculated by Eq. (2).

Step 4 Sj
(
xm, ym

)
 propagates to the diffraction plane, 

giving detecting wave Dj

(
xd, yd

)
 calculated by Eq. (3).

Step 5 Ij
(
xd, yd

)
 is next replaced with the square root of 

the jth measured diffraction intensity Icj
(
xd, yd

)
 recorded 

by sensor so that 

Step 6 An updated modulated wave is then calculated 
via an inverse WWAS propagation 

(12)O
(
xo, yo

)
= exp

[
i�o

(
xo, yo

)]
,

(13)D
�

j

(
xd, yd

)
=

√
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(
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) Dj

(
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)
|||Dj

(
xd, yd

)|||
,

Step 7 Removing the effect of jth phase modulation, a 
new complex amplitude before phase modulation plane 
is gotten 

Step 8 An updated object complex amplitude is calculated 
by inverse WWAS propagation 

Step 9 Keep j = j + 1 and repeat Steps 3–8 until j = n . 
That all modulation phases are used. A round trip itera-
tive has done.
Step 10 Check the convergence of the reconstruction. If 
iterations reach defined number, continue with Step 11. 
Otherwise, jump back to Step 2.
Step 11 Obtain the complex amplitude O′(

xo, yo
)
 in object 

plane.

4 � Simulation and analysis

4.1 � Sequential Zernike phase modulation

To verify the effectiveness of this proposed method, the 
following simulation is performed. Figure 4 shows a sche-
matic diagram of the simulation of PRSPM. The wavefront 
of unknown object propagates the modulation plane. After 
modulated by the modulation phase, the modulated wave-
front keeps propagating to the sensor. Finally, the diffracted 
intensity patterns are recorded by sensor. The simulation 
parameters are as follows.

The sampling pixels are Q × Q = 256 × 256 , wave-
length is � = 635 nm , the sensor with the pixel pitch is 
Δx = 7.4 μm , the pixel pitches of object plane and modu-
lation plane are Δx1 = 2.4 μm , Δx2 = 2.4 μm , respectively. 
The distance between modulation plane and object plane 
is z1 = 2 mm , The distance between modulation plane and 
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Fig. 3   Flowchart of the phase retrieval algorithm for PRSPM
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Fig. 4   Schematic diagram of the simulation of PRSPM
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sensor is z2 = 80 mm . The sampling pixels after zero-pad-
ding are R × R = 487 × 487 calculated by Eq. (5).

The amplitude and phase of unknown object wavefront 
are shown in Fig. 5a, b, respectively. The intensity is normal-
ized within the range [0, 1] and the phase is normalized 
within the range [0,�] . Their Fourier magnitude is shown as 
|||G

(
fx, fy

)|||
0.25

 to suit the display in Fig. 5c, d, respectively. 
According to Eq. (11), the complexity parameters of ampli-
tude and phase are �a = 6.8749 , �b = 8.0309 , respectively.

The total number of phase modulations is n = 10. 
Their expressions are the top ten of Zernike polyno-
mials, as follows: �1

(
xm, ym

)
= xm , �2

(
xm, ym

)
= ym , 
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)
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m
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− 6
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m
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)
+ 1 , 
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− 3xmy

2
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 and �10

(
xm, ym

)
= 3x2

m
ym − y3

m
 . 

The modulation phases are normalized within 
[−�,�] and k = 1 . Their complexity parameters are  
�m = [8.7150, 8.7150, 6.2423, 6.5945, 8.2412, 8.1631, 8.1631,

6.0089, 7.7303, 7.7303] . The complexity parameters of 
unknown object satisfy 

[
𝜁m
]
min < 𝜁a <

[
𝜁m
]
max and [

𝜁m
]
min < 𝜁b <

[
𝜁m
]
max . In addition, their distributions 

are shown in Fig. 6. Their consistent intensity distributions 
obtained by sensor are shown in Fig. 7.

We assume the number of iterations is num = 200 . The 
algorithm stops with time spending 80 s. Figure 8a, b shows 
the retrieval of object amplitude and phase, respectively. 
Figure 8c, d shows the difference between theoretical and 
retrieval intensity and phase, respectively. To examine the 
convergence of the reconstruction, The Root Mean Square 
(RMS) can be calculated as the following expression:

where X is retrieval value and X is theoretical value.
The RMS of amplitude reduces from 1.3 × 10−3 to 

1.24 × 10−4 and the RMS of phase reduces from 8.7 × 10−3 
to 2.82 × 10−4 . Both the initial values of RMS of amplitude 

(17)RMS =

�∑
M,N

��X(M,N)� − ��X̄(M,N)��
�2

Q × Q
,

(a) (b)

(c) (d)

Fig. 5   Theoretical object. a Theoretical amplitude, b theoretical 
phase, c Fourier transform magnitude corresponding to theoretical 
amplitude, d Fourier transform magnitude corresponding to theoreti-
cal phase. The Fourier magnitude is shown as |||G

(
fx, fy

)|||
0.25

 to suit 
display

Fig. 6   Distributions of modula-
tion phases. Top row: 1–5 rep-
resent 1–5 modulation phases 
distributions; Bottom row: 6–10 
represent 6–10 modulation 
phases

Fig. 7   Diffraction intensi-
ties. Top row: 1–5 represent 
consistent diffraction intensities 
modulated by 1–5 modula-
tion phases. Bottom row: 6–10 
represent consistent diffraction 
intensities modulated by 6–10 
modulation phases
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and phase are small, indicating that this method converges 
fast and retrieves the contour of object even in one iteration. 
From Fig. 8c, the amplitude has been effectively retrieved, 
there is very small “burr” on the retrieval amplitude. From 
Fig. 8d, the error of phase is uniform and stable except for a 
few unique points on the edge.

4.2 � Different phase modulation coefficients k

To explore the relationship between different coefficient k of 
modulation phases and the unknown object. In the following 
simulation, the coefficient is set k = 0.5 , 1, 1.5 and 2, respec-
tively. The resulting changes in complexity parameters � of 
different modulation phases are shown in Fig. 9. The com-
plexity parameter of phase is greater than the complexity 
parameter of the amplitude, so the phase is more difficult to 
converge than amplitude. Under different coefficients k, the 
RMS of amplitude and phase are shown in Fig. 10. To show 
the changes clearly, their ordinates are taken the logarithm.

As k increases, the magnitude of modulation phases 
increases and the complexity parameters also increase. From 
Fig. 10, the larger k is and the smaller of amplitude’s RMS 
is. However, the RMS of phase does not strictly decrease 
as k increases. Figure 11 shows the retrieval phase and the 
difference between theoretical and retrieval phase under dif-
ferent k. Although the RMS of phase is the smallest when 
k = 0.5 , the noise is strong in the retrieved phase, as shown 
in Fig. 11a, b. Figure 11a, c, e are shown in grayscale for 
obvious display. That is because the complexity of the mod-
ulation phases is basically lower than the complexity of the 
unknown phase, and it is not enough to retrieved the high 
frequency information of object.

As iterations increases, the RMS of phase does not 
exhibit a strict reduction relationship. At the beginning of 

the iteration, there is a tendency for the oscillation to con-
verge. Meanwhile, Different k have different iterations of 
stable convergence. However, overall, the larger k is, the 
smaller the number of iterations is when converge stably. 
Meanwhile, the RMS of phase gradually approaches as k 
increases. Figures 10 and 11 can also prove this.

It is worth noting that k = 1 is not the best convergence 
of amplitude, while its RMS= 1.24 × 10−4 is small enough 
within the range can be accepted. Meanwhile, the complex-
ity of modulation phases is enough to retrieve the phase of 
object with RMS= 2.82 × 10−4 . Therefore, in the next simu-
lation, the coefficient is k = 1.

4.3 � Different phase modulation numbers n

From above simulation, retrieving phase is more difficult 
than amplitude, so we take the phase retrieval result to study 
on the effect of number of phase modulations. Under the 

(a)

(c) (d)

(b)

Fig. 8   Retrieved object. a Retrieval amplitude, b retrieval phase. c 
The difference between theoretical and retrieval amplitude, d the dif-
ference between theoretical and retrieval phase

Fig. 9   Variations of complexity parameters corresponding to the 
order of modulation n at different coefficient k. From top row to 
bottom row, a–d represent k = 0.5 , 1, 1.5, and 2, respectively. The 
dashed lines and solid lines represent the complexity parameters of 
amplitude and phase, respectively
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above discussion, the coefficient is k = 1 and other simula-
tion parameters do not change. In principle, phase modula-
tions should improve the reconstruction, this may lead to 
a reduction of the number of iterations. Figure 12 shows a 
matrix of representative reconstruction between the num-
ber of phase modulations and iterations on the quality of 
reconstruction.

Moving down a column, the number of phase modulations 
used to reconstruct the object is increased (reconstructions 
using 4, 5, 6, 8, 10 phase modulations are shown). Mov-
ing from left to right, the number of iterations is increased 
(from 10, 20, 30 and 40 to 50). Note that the first row, the 
reconstruction using 4 measurements only, it does not result 
in acceptable image quality after 50 iterations. However, the 
contour of retrieval phase can be distinguished. When the 

Fig. 10   RMS changes with iterations under different k. a Log (RMS) of amplitude; b Log (RMS) of phase, the inset shows Log (RMS) of phase 
when iterations from 0 to 20 and Log (RMS) of phase when iterations from 50 to 200, respectively

k=0.5

k=1.5

k=2

(a) (b)

(c) (d)

(e) (f)

Fig. 11   Retrieval phase and the difference between theoretical and 
retrieval phase under different k. The left column is the retrieval 
phase, and the right column is the difference between theoretical and 
retrieval phase. The first to last lines are k = 0.5 , k = 1.5 and k = 2 , 
respectively

10 20 30 40 50

Number of Iterations
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10

Fig. 12   Effects of number of phase modulations and iterations on 
the quality of reconstruction. Moving down a column, the number of 
phase modulations is increased from 4, 5, 6, 8 to 10; moving from left 
to right, iterations is increased from 10, 20, 30, 40 to 50
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number of modulations is 5, the quality of phase improves 
a lot after 50 iterations and the algorithm will gradually 
converge with more iterations. When the number of phase 
modulation is 6, 8, and 10, the quality of phase improves 
a lot after 30, 20, and 10 iterations, respectively. Under 50 
iterations, we can also get accurate results. The algorithm 
converges quickly.

In Fig. 13, we plot RMS of phase changes with iterations 
under different numbers of phase modulation. We can know 
the number of phase modulations is 5 at least, the algorithm 
begins to converge stably. As the number of phase modula-
tions increases, the method requires fewer iterations and con-
verges faster. From Figs. 12 and 13, there is the same results.

4.4 � Comparison with different modulation phases

As mentioned earlier, there are three requirements for modu-
lation phases. To prove the universality of these require-
ments, we add an additional set of modulation phases whose 
distribution is Gauss–Laguerre polynomials. When Any 
integer is t ≥ 0 , the Laguerre polynomials expression is as 
follows:

where L0(x) = 1 and L1(x) = −x + 1 . We construct the 
orthogonal two-dimensional Laguerre polynomials:

where i and j are integers starting from 0. Li(x) and Lj(y) are 
Laguerre polynomials with x and y as variables, respectively.

According to Eq. (19), the top ten of Laguerre polynomials 
is chose as modulation phases. Their complexity parameters are  
�m = [7.5109, 7.5109, 7.6269, 7.2773, 7.6269, 9.4668, 8.9403,

8.9403, 9.4668, 7.5720] . As such, the above requirements are 
satisfied. Figure 14a, b shows the retrieval of object amplitude 

(18)Lt+1(x) = (2t + 1 − x)Lt(x) − t2Lt−1(x),

(19)Pt(x, y) = Li(x) ⋅ Lj(y),

and phase, respectively. Figure 14c, d shows the difference 
between theoretical and retrieval amplitude and phase, respec-
tively. From Fig. 14, the complex amplitude of the object can 
be effectively retrieved.

In addition, ten random modulation phases are selected 
with a uniform distribution of 0–1 for comparing with 
Zernike polynomials modulations under k = 1 . Other simu-
lation parameters are unchanged. Figure 15a, b shows the 
retrieval of object amplitude and phase, respectively. Fig-
ure 15c, d shows the difference between theoretical and 
retrieval amplitude and phase, respectively. From Fig. 15, 
the complex amplitude of the object can be effectively 
retrieved.

The RMS values of amplitude and phase under the 
three types modulations are shown in Fig. 16. To show 
the changes clearly, their ordinates are taken the logarithm. 
From Fig. 16a, the RMS of amplitude under random phase 
modulations is much smaller than Zernike and Laguerre 

Fig. 13   Log (RMS) changes with iterations under different numbers 
of phase modulations n 

(a) (b)

(c) (d)

Fig. 14   Retrieved object under Laguerre polynomials modulation. a 
Retrieval amplitude, b retrieval phase. c The difference between theo-
retical and retrieval amplitude, d the difference between theoretical 
and retrieval phase

(a) (b)

(c) (d)

Fig. 15   Retrieved object under random modulation. a Retrieval 
amplitude, b retrieval phase. c The difference between theoretical and 
retrieval amplitude, d the difference between theoretical and retrieval 
phase
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phase modulations. However, the RMS values of phases 
under the three modulations gradually approach the same 
value as the number of iterations increases. Zernike poly-
nomials and Gauss–Laguerre polynomials are chosen 
because of their orthogonality. This choice can reduce 
redundancy, but it is not a requirement. Zernike polyno-
mials and Gauss–Laguerre polynomials are continuous, so 
the effect of the pixel crosstalk of spatial light modulation 
(SLM) in the experiment becomes smaller as mentioned 
earlier.

5 � Conclusion

In this paper, we have proposed a new phase retrieval 
method using sequential phase modulations. The unknown 
complex amplitude of object is modulated by a sequen-
tial of known phases to change the diffraction intensity 
received by sensor. By doing this, the difficulty of phase 
retrieval is reduced and the convergence speed is extremely 
fast. Meanwhile, the modulation phases just need to satisfy 
three conditions, continuous distribution, covering differ-
ent frequency bands and the complexity of unknown object 
should be contained between the maximum and minimum 
complexities of modulation phases. There is also no limit 
on what kind of modulation phase distribution to choose. 
In addition, what kind of relationship between different 
modulation phases is also no requirements. As increasing 
in the number of phase modulations results in a reduction 
of iterations. From those above simulations and discus-
sions, we have proved the feasibility of this new method. 
Our next work will be focus on the experimental validation 
of this new method.
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