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Abstract
In this paper, a new process to deal with measurement error is proposed using smoothing, regression, and model selection. 
The main objectives of this research are to construct a theoretically reliable process to deal with the measurement errors and 
to validate the process with a case study for refractive index estimation of water. The proposed process for measurement error 
treatment consists of (1) smoothing of spiky fluctuation, (2) integration of multiple measurements into a single prediction 
model with statistical regression, and (3) physics-based model selection. The first and third processes enhance the nominal 
accuracy, and the second process improves the precision of the estimation. In particular, a methodology for intensive local 
smoothing with a new criterion is proposed for physically unreasonable spikes that cannot be smoothed enough with exist-
ing criteria. Before applying all the proposed processes to refractive index estimation of water, three candidate models of 
the refractive index are generated according to their physics-based possibility. The generated models are tested through the 
proposed processes, and a final model is selected according to the principle of Occam’s razor. The proposed process results in 
much improved estimation of the refractive index of water by reducing the estimation error from 3.90% to 1.95% of absolute 
error. Through this study, a useful methodology to deal with measurement errors is successfully established and it can be 
also applied to problems with similar type of measurement data.

1  Introduction

There are several error sources in measurements due to 
inherent uncertainties such as distribution of physical prop-
erties, setting error, equipment resolution, and environmental 
effect. Certain errors affect the nominal accuracy that causes 
bias, and some errors disperse repeated measurements that 
cause deviation. Throughout the literature survey, there have 
been methodologies commonly used in measurement error 
treatment. As one of the representative methods, smoothing 
has been widely used and studied to squash out invalid fluc-
tuations of data. Smoothing has been implemented by kernel 
smoothing [1], process convolution [2, 3], Gaussian process 
regression (GPR) with multi-kernel [4], GPR with random 
inputs [5, 6], spline smoothing [7, 8] and various filters [9]. 

A problem of almost all smoothing methods is to determine 
the level of smoothness controlled by their model param-
eters. For example, there have been researches to determine 
the frame length of the Savitzky–Golay (SG) filter [10–15] 
and kernel bandwidth of kernel soothing [16–19]. There 
also exists a criterion to determine smoothness for general 
purpose regardless of smoothing method [8]. In addition, 
studies on boundary problems [19–22] have been proposed 
to solve boundary errors occurring in smoothing.

Next, regression is often utilized for deviation treatment 
to integrate multiple measurements into a single prediction 
model with statistical synthesis. GPR, one of the most well-
known statistical regression methods [23–28], constructs a 
regression model by hyperparameter optimization through 
likelihood maximization. Since GPR often causes overfit-
ting by tracking all of meaningless spiky oscillations of data 
instead of smoothing them, smoothing must be preceded 
before the regression.

In spite of the developed methods, measurement error 
treatment is still an unresolved area. The first reason is 
that the aforementioned error treatment methods cannot 
assure whether the error is removed and the actual signal is 
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preserved. Second, most of the smoothing methods cannot 
remove noise clearly, which means there could be a case of 
overfitting or under-smoothness. This is because the smooth-
ness selection criteria are based on the model accuracy such 
as cross-validation error or mean squared error. The final 
difficulty is that error treatment method depends on numeri-
cal or physical properties of data, which makes it difficult to 
select an appropriate method for given data.

To resolve the last problem, a case that commonly occurs 
but hard to handle is utilized in this study. The selected case 
is to estimate unmeasurable physical property from other 
measurable properties using an analytic function. This is 
hard to treat since the error of the measured properties 
may cause unpredictable and complex ramifications on the 
accuracy of the resultant estimated property. For the sec-
ond problem, this study suggests a new criterion for local 
intensive smoothing while maintaining a specified level of 
accuracy. Finally, for the first problem, model selection with 
prior knowledge is applied. Under high-uncertainty situa-
tion, several hypothetical models can be established and the 
most valid model among the candidates must be selected. In 
this case, we utilize physical knowledge and Occam’s razor-
based model selection [29–31]. The whole process is illus-
trated with a problem of refractive index estimation of water.

The remainder of this article is organized as follows: 
introduction on the optical property, characteristic of 
measured raw data, and problems of the existing method 
are explained in Sect. 2. The proposed process to remove 
measurement noise including smoothing, GPR, and model 
selection is described in Sect. 3. Application of the proposed 
process to refractive index estimation of water as a case 
study is illustrated in Sect. 4. Finally, Sect. 5 summarizes 
the application results.

2 � Optical property estimation 
and measured data characteristics

This section presents the fundamental physics of optical 
property estimation, the investigation of the measured data, 
and problems of the existing method in the optical property 
estimation without preprocess [32]. Especially, refractive 
index estimation of water and its experimental conditions 
that will be used as a case study in Sect. 4 are described.

2.1 � Introduction of optical property estimation

Optical properties of materials have practical importance 
in many engineering fields such as solar thermal collector 
or glass fibers. Recently, various studies to tune the optical 
properties of materials with nanoparticles have been inten-
sively reported [33, 34]. Plasmonic nanofluid is a suspension 
employing the plasmonic nanoparticles whose electron can 

couple with the light. It is possible to improve the absorp-
tion efficiency of a solar thermal collector and to minimize 
pumping loss simultaneously using an extremely small 
amount of metal nanoparticles.

In applications of the plasmonic nanofluids, it is impor-
tant to accurately predict absorption and scattering phenom-
ena of the nanofluids that depend on material, shape, and 
size of the nanoparticles and properties of the base fluid 
[35]. For the prediction, a refractive index of the base fluid 
is required, but there has been little information of optical 
constants about the base fluid for the direct solar thermal 
collector. Therefore, the measurement of the refractive index 
of the unknown fluid is essential for the prediction of absorp-
tion and scattering in nanofluids.

There have been two methods to obtain the refractive 
index: (1) to measure refraction angle or beam displace-
ment [36–38] and (2) to solve an inverse problem of Airy’s 
formulae using measured transmission (T) and reflection (R) 
spectra  [39, 40]. Using the second method, the refractive 
index (n) is directly determined through a simple calculation 
from ultraviolet–visible to the infrared range as

at a certain wavelength λ. Detailed explanation on Eq. (1) is 
found in Kim et al. [32].

If T and R are accurately measured, the refractive index 
of the base fluid can be precisely estimated.  However, esti-
mation of the refractive index using Eq. (1) is quite sensitive 
to measurement errors as can be seen in the subsequent sec-
tion. Consequently, it is essential to develop an uncertainty 
treatment method to estimate an accurate refractive index 
with this method when there exist measurement errors in 
T and R.

2.2 � Experimental conditions and problems 
of the existing method

This section presents measurement results of T and R of 
water, base fluid for the nanofluid, and the refractive index 
estimated using Eq. (1) with the mean of the measured T and 
R without any preprocess according to the existing method 
[32]. For the refractive index estimation of water, T and R 
are measured 30 times along the wavelength, as shown in 
Fig. 1a and b. As can be seen from Fig. 1b, the fluctuation is 
severe in short wavelength, and the deviation between meas-
urements is very large in long wavelength in R. As shown 
in Fig. 1a, T has a large interval between the maximum and 
minimum values compared with R, and T shows relatively 
small fluctuation along the wavelength and small deviation 
between measurements.

In the previous study [32], the mean of repetitive meas-
urements with no preprocess on T and R is used for the 

(1)n(�) = function(T(�),R(�))
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refractive index estimation that results in large errors, as 
shown in Fig. 2. The estimation accuracy of the refractive 
index can be quantified using Palik’s data that is known 
as the exact refractive index of water. The estimation error 
between the exact refractive index and  the mean of 30 
measurements is 3.95% at the wavelength of 575 nm that 
is a very low level of accuracy even the multiple measure-
ments cancel out most deviation errors. Hence, additional 
treatment is needed to reduce the estimation error under 
2%.

2.3 � Measured data characteristics

The reasons for the large estimation error come from (1) 
measurement bias and (2) noisy fluctuation of measured 
data. To examine the causes of errors, first, the region 
where T + R > 1 as shown in Fig.  3 must have a meas-
urement bias that needs correction. According to the 
nature of physics, T + R must be equal to or less than one 
since T + R + absorptance must be equal to one and the 
absorptance is always non-negative.

Second, as shown in Fig. 1b, spiky fluctuations along the 
wavelength are observed in R. Estimated refractive index is 
sensitive to the measurement error of R since the scale of R 
is small compared with T and the effect of the same amount 
of value change of R becomes larger than that of T.

However, the measurement error cannot be reduced by 
careful manipulation since it is originated from nature and 
experimental equipment. Therefore, a process to resolve the 
problems above is proposed by introducing appropriate error 
treatment methods in Sect. 3.

3 � Methods and process for data treatment

Proper data treatment to reduce measurement errors in T 
and R enhances the accuracy of refractive index estimation. 
For the purpose, a data treatment process is proposed that 
consists of smoothing of fluctuation, statistical regression of 
multiple measurements, and physics-based model selection 
explained in Sects. 3.2, 3.3, and 3.4, respectively. Before 
performing the process, data segmentation for local inten-
sive smoothing according to data characteristics needs to be 
carried out first that will be explained in Sect. 3.1.

3.1 � Data segmentation for local intensive 
smoothing

Data segmentation is essential to decide regions to perform 
local intensive smoothing. The third derivative of data is 

Fig. 1   Measured data of a T and b R from 30 experiments

Fig. 2   Estimated refractive index of water using the existing method 
[32] Fig. 3   T + R obtained using the mean of measured T and R 
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used as a fluctuation level index in this research. The relative 
third derivatives of T and R are shown in Fig. 4, where the 
relative third derivative of Y is calculated as |||

3rd derivative of �

max(�)−min(�)

|||. 
As shown in Fig. 4, T shows small fluctuation in the whole 
wavelength, whereas R shows very high fluctuation in short- 
and long-wavelength regions compared with the criterion of 
0.002. Therefore, region segmentation must be preceded to 
properly pick out regions to be smoothed intensively in R.

To establish the data segmentation standard, Gaussian 
mixture [41, 42] is utilized in this research. Gaussian mix-
ture, a kind of data clustering methods according to data 
similarity and dissimilarity, is applied to region segmenta-
tion according to the likelihood of the third derivative level 
of R with a specified number of regions. Using the Gaussian 
mixture, split positions with the highest loglikelihood (lnL) 
are selected for the best positions whose number is deter-
mined by AICc (Akaike information criterion corrected) [43, 
44]. ln L and AICc are calculated as

and

where Y means data to be segmented, k is the number of seg-
ment groups, tk−1 is the (k−1)th split position, Yj is the jth 
segment of Y, μj and σj are parameters of normal distribution 
fit for dataj, and n is the number of elements in vector Y. In 
the region segmentation process, only information about the 
split positions (t1 ~ tk−1) is used in the next procedure. AICc 
results obtained using the relative third derivative of meas-
ured R are shown in Fig. 5 which shows that the best number 
of regions is four due to the minimum AICc value. Detailed 
results from the region segmentation are shown in Sect. 4 
using a case study of refractive index estimation of water.

(2)lnL = ln p(�|t1, t2,… , tk−1) = ln

(
k∑

j=1

N(�j|�j, �j)

)

(3)AICc = −2 ln L + 2k +
2k(k + 1)

n − k − 1
,

3.2 � Strategies for local intensive smoothing

As aforementioned, local intensive smoothing is required for 
locally and highly fluctuating regions as observed in R. The 
SG filter, which is one of the existing smoothing methods 
and has been extensively studied including the bandwidth 
selection [16–19], is introduced in Sect. 3.2.1. However, 
since the SG filter has limitations in local intensive smooth-
ing, a new smoothing method is proposed in Sect. 3.2.2 to 
apply exclusively to high-fluctuation regions.

3.2.1 � Theoretical background of SG filter

An SG filter, which is a least square fitting method inside 
of moving frame with a predetermined frame length and 
polynomial order, is selected to be the basic smoothing 
method in this research. It follows the form of a weighted 
sum of nearby neighbor’s data within the frame with the 
frame length of len. With the determined len that must be an 
odd number and raw data before filtering y = [y1, y2, y3,…], 
filtered data Ynew at the jth point is calculated with a coef-
ficient matrix C as

For example, if len = 5, then i =  − 2, − 1, …, 2 where the 
minus i implies that the point yj+i is located in the left of yj. 
The coefficient matrix C is obtained using the least square 
fit of yj−2, yj−1, …, yj+2 with a low order of polynomials. For 
a case of equally spaced data, when z = [− 2, − 1, 0, 1, 2]T, 
the mth order polynomial approximation of the data within 
the frame can be expressed as

a = [a0, a1,…, am]T in Eq. (5) is obtained by solving the 
normal equation of

(4)����j = (�⊗ �)j =

len−1

2∑
i=

−len+1

2

�iyj+i.

(5)���� = a0 + a1� + a2�
2 +⋯ + am�

m.

Fig. 4   Relative third derivatives of T and R  Fig. 5   AICc results according to the number of regions of R 
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whose solution is given by

with

Therefore, the convolution coefficient C is expressed as

As shown in Fig. 6, as the frame length becomes larger, 
smoothing effect becomes higher, which means that the deci-
sion of the frame length directly affects noise removal.

3.2.2 � Proposed intensive smoothing method

The SG filter is appropriate due to its smoothness control 
ability by frame length and not distorting the front and rear 
parts of the data. The important problem is how to determine 
the frame length to control the smoothing level. To resolve 
the problem, the existing spline smoothing method [7, 8] 
utilizes the regularization equation [43, 44] given by

where the first term is conformity between true observa-
tion and prediction f and the second term is a roughness 
penalty. This regularization has been widely used to impose 
smoothness for other types of smoothing models such as 
bandwidth selection for kernel smoothing. In Eq. (9), α is 
determined by minimizing the cross-validation error [8]. 
Since the smoothing parameter of the SG filter is defined 

(6)� = a0 + a1� + a2�
2 +⋯ + am�

m

(7)� =
(
�T�

)−1
�T�

� =

⎡
⎢⎢⎢⎢⎣

�0
(1)

�1
(1)

⋯ �m
(1)

�0
(2)

�1
(2)

⋯ �m
(2)

⋮ ⋮ ⋯ ⋮

�0
(len)

�1
(len)

⋯ �m
(len)

⎤
⎥⎥⎥⎥⎦
.

(8)� =
(
�T�

)−1
�T

(9)g =

(∑(
�i − f (�i)

)2
+ � ∫

�2f (�)

��2
d�

)
,

by len, Eq. (9) can be rewritten in terms of two parameters, 
len and α, as

which needs to be minimized to obtain the optimal len with 
a specified α. α and len that minimize the cross-validation 
error (cve) given by

with specified α = α* is selected. As can be seen in Fig. 7, 
the smoothing effect becomes stronger as α increases. Espe-
cially, when there is no roughness penalty in Eq. (10), the 
smoothing result almost follows the measurement data.

The overall smoothing process is shown in Fig. 8. As shown 
in Fig. 8, the process includes two optimization loops: the 
inner loop for lenopt and the outer loop for αopt. That is, each 
α has its own lenopt, and α with the minimum cve is selected 
as αopt.

However, this parameter selection process does not guaran-
tee sufficient smoothness of spiky oscillation data since the cve 
criterion in Eq. (11) focuses on prediction accuracy. Moreover, 
in the case of R, the data oscillation along the wavelength is not 
even that requires locally adaptive smoothing. Existing locally 
adaptive smoothing methods have limitations that the frame 
length cannot be larger than the user-defined predetermined 
maximum, and the smoothing level is still under-smoothness. 
To resolve these problems, a new criterion for smoothness 
control is suggested in this study as

with a specified cve criterion Scve. This criterion maxi-
mizes smoothness as long as Scve is satisfied. The differ-
ence between the proposed and existing criteria is shown 
in Fig. 9. The existing method selects α that minimizes cve 
while the proposed method selects α that makes normal-
ized cve closest to the given Scve. αopt and lenopt of the pro-
posed method are larger than those of the existing method 
that results in higher smoothing. Scve = 0.03 is adopted in 
the proposed local intensive smoothing. As the polynomial 
order, intensive smoothing regions adopts one and the other 
adopts six.

(10)

g(len, �) =

(∑(
�i − f (�i;len, �)

)2
+ � ∫

�2f (�;len, �)

��2
d�

)

(11)cve(len) =

N∑
i

(
� − f∼i(�;len, �∗)

)2

(12)

lenopt = argmin
len

��������

�
1

n

∑�
�i − pred−i(�i, len, �∗)

�2
max(�) −min(�)

− Scve

��������

Fig. 6   Effect of frame length in SG filter
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3.3 � Data integration of multiple measurements

This section explains a method to integrate multiple meas-
urements into a single prediction model using GPR that is 
a well-known statistical regression modeling method with 
high accuracy. For derivations of GPR, it is assumed that 
data y follows the form of y(x) = f(x) + ε, f = f(x), where 
ε ~ N(0,σ2) with Gaussian noise σ2 and latent function f 
[23–28]. This is because it can converge to a normal distri-
bution according to the central limit theorem if the number 
of noise errors extracted from an independent process is 
large enough. In Bayesian approach,

with an identity matrix I and Gaussian prior as

where the mean function value m0 = m(x) with mean func-
tion m, the covariance matrix (K0)ij = k(xi, xj) with a covari-
ance function k. To calculate p(f*|y) that is a prediction on 
new input x* with given training data {x,y}, the marginaliza-
tion of joint posterior p(f,f*|y) along the latent function value 
f is implemented as

(13)� = � + �2�

(14)p(� ) ∼ N(�0,�0),

Fig. 7   Effect of α in the 
proposed intensive smoothing 
method

Fig. 8   The parameter selection 
process of the existing method 
using Eqs. (10) and (11)

Fig. 9   The proposed method for 
the determination of a α and b 
frame length
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since the joint posterior according to the Bayes’ rule is writ-
ten as

Each term in the integrand of Eq. (15) is expressed as

and

respectively, where (K*)ij = k(xi, x*j), (K**)ij = k(x*i, x*j), and 
m* = m(x*) with new input x*.

Using the previous research [45], Eq. (15) with Eqs. (17) 
and (18) is rewritten as

When the mean function is defined using polynomials, 
the mean function m0 and m* are expressed as H0

Tβ and 
H*

Tβ with basis matrices H0 and H*, respectively.
All the hyperparameters for the model including β, σ, 

and parameters for covariance function are obtained by 

(15)p(�∗|�) = ∫ p(� , �∗|�)d� = 1

p(�) ∫ p(� , �∗)p(�|� )d�

(16)p(� , �∗|�) =
p(� , �∗)p(�|� )

p(�)
.

(17)p(� , �∗) ∼ N

([
�0

�∗

]
,

[
�0 �∗

�T
∗
�∗∗

])

(18)p(�|� ) ∼ N(� , �2�),

(19)
p(�∗|�) = N(�post,�post)

= N(�∗ +�T
∗
(�0 + �2�)−1(� −�0), �∗∗ −�T

∗
(�0 + �2�)−1�∗).

maximizing marginal likelihood p(y) over the latent func-
tion value f given by

using Eqs. (14) and (18). A more detailed calculation pro-
cess is found in references [23–28].

3.4 � Model selection through physical validity‑based 
bias correction

This section presents a method for bias correction for cases 
of T + R > 1 where there is no way to find out which out of T 
or R causes the bias. Therefore, three cases are considered 
as shown in Fig. 10: Case 1 assumes that all the bias is 
caused by R, case 2 assumes that all the bias is caused by T, 
and case 3 assumes that the bias is caused equally by both 
T and R. After smoothing and GPR for each case, the best 

case is selected using the final model simplicity from each 
case based on the principle of Occam’s razor [29–31] that 
selects the simplest model as the best model. In the proposed 
process, the model with the highest linearity of the final 
estimated refractive index among the three cases is selected.

(20)

log p(�) = ∫ p(�|�)p(�)d�

= −
1

2
�T(�0 + �2�)−1� −

1

2
log

|||�0 + �2�
||| −

n

2
log 2�

Fig. 10   The overall process of data treatment
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According to the process in Fig. 10, Eq. (1) is modified as

whose inputs are noise removed and statistically synthesized 
regression data obtained from the proposed process.

4 � Case study: refractive index estimation 
of water

This section illustrates the estimation results of the refrac-
tive index of water using (1) mean of 30 measurements, 
(2) smoothing only, and (3) bias correction + smoothing. 
All the smoothed data apply GPR, and the most appropri-
ate bias case among three hypothetical cases assumed in 
Fig. 10 is selected in the final step. The region segmenta-
tion results with the best split points using the method in 
Sect. 3.1 are shown in Fig. 11. In the case of R, the best 
number of regions is four as shown in Fig. 5. Figure 11a 

(21)

n(case, �)

= function(GPR_T(case, �),GPR_R(case, �)), case = 1,2,3.

and b shows the probability density function (PDF) and 
segmentation results of the third derivatives of four regions 
of the second data with the smallest value of AICc, respec-
tively. Figure 11b also shows that four regions are appropri-
ately divided according to the fluctuation level. In addition, 
Fig. 11c shows the division of the regions at similar loca-
tions. In this figure, the 31st data are the result of applying 
the Gaussian mixture method using 30 data averages. Since 
regions 1, 3, and 4 exceed the criterion of the 3rd derivative 
as shown in Fig. 4, the regions are intensively smoothed 
using the proposed method in Sect. 3.2.

Smoothing results of T and R are shown in Fig. 12a and b, 
respectively. From the region segmentation result in Fig. 11, 
local intensive smoothing is applied using the proposed cri-
terion to regions 1, 3, and 4 for R. Meanwhile, only region 
2 for R is smoothed using the existing criterion because of 
its low third derivative value. On the other hand, T does not 
need intensive smoothing over all regions, and thus the exist-
ing criterion is adopted as shown in Fig. 12a.

For comparison, the Nadaraya–Watson method [1] and 
the spline smoothing [7, 8] are applied in regions 1 and 4 

Fig. 11   a Distributions of 3rd derivative values in each region of the second data, b region segmentation of R according to the 3rd derivative of 
the second data, c region segmentation of R according to the 3rd derivative of all 30 data
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of R where the 3rd derivative value is high. Given that the 
total range of R is from 0.03 to 0.08, regions 1 and 4 need 
to be intensively smoothed because these regions have very 
small range of R. However, as shown in Fig. 13, the spline 
smoothing and Nadaraya–Watson method do not smooth the 
given data. On the other hand, the proposed method shows 
clear smoothing results because users can adjust the smooth-
ing intensity.

Figure 14 illustrates refractive index estimation results 
of three cases in bias correction as assumed in Fig. 10 after 
smoothing and GPR. Case 2 is selected as the most probable 

bias correction case since it shows the highest linearity 
according to the principle of Occam’s razor.

It can be seen from Fig. 15 that the error is gradually 
reduced according to the process of smoothing, and bias 
correction and smoothing. Smoothing squashes the noisy 
peaks and enables stable prediction. Bias correction shows 
the best result by relocating physically invalid shifted val-
ues close to the correct position using the model selection. 
Moreover, the error estimated from a single measurement 
is very high in the long-wavelength domain as shown in 
Fig. 15. If the refractive index was estimated with only one 

Fig. 12   Data smoothing results of a T and b R using the proposed smoothing in Sect. 3.2

Fig. 13   Comparison of other methods in regions 1 and 4 of R 
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measurement data, the error would be very high, which 
shows the importance of the statistical approach.

The level of error reduction is quantified in Fig. 16. 
Bias correction and smoothing shows the highest improve-
ment that the absolute error compared with the result from 
the mean of 30 measurements is reduced from 3.90% to 
1.95%.

5 � Conclusion

In this paper, a theoretically reliable process for measure-
ment error treatment is proposed and applied to refrac-
tive index estimation of water which cannot be directly 
measured but can be estimated using other measurable 
properties such as transmittance T and reflectance R. It is 
apparent that the measurement errors of T and R are propa-
gated to refractive index, and an appropriate treatment of 
the errors enhances the resultant estimation accuracy of 
refractive index. A series of processes consisting of (1) 
smoothing of spiky fluctuation, (2) data synthesis of mul-
tiple measurements into a single prediction model using 
GPR, and (3) bias correction based on physical validity 
is proposed for the error treatment method. In addition, a 
local intensive smoothing criterion with data segmentation 
method based on data fluctuation level is proposed. The 
process is validated using a case study of refractive index 
estimation of water whose true refractive index is known. 
From the validation, it is shown that the proposed method 
reduces estimation error by 50% compared with the exist-
ing method. In addition, it is shown that the region requir-
ing intensive smoothing is well selected, showing clean 
smoothing results. Therefore, the novelty of the proposed 
method is that it is capable of smoothing any type of data 
by analyzing characteristics of the data and optimizing 
smoothing parameters. However, there exists weakness 
of the proposed method in that users need to empirically 
select Scve according to the characteristics of data. Scve 
selection method will be a new topic that can be studied 
in the near future.
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