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Abstract
Recent advances in wavefront shaping, i.e., wavefront modulated by a spatial light modulator, have opened hopeful venues 
to focus light through scattering media in particular and unparalleled ways, by means of codifying the values of pixels of the 
modulator. The transmission matrix approach is one of the most exciting recent advances to obtain optimal phase distribu-
tions, due to the consent of enabling turbidity suppression, in both transmitted and reflected waves, with high resolution and 
large efficiency. However, the transmission matrix is ill-conditioned, which seriously affects the precision of phase distribu-
tions. In this paper, we study the ill-condition of the transmission matrix in detail. An idea of optimizing the singular values 
of the transmission matrix is proposed, which improves the accuracy and stability of the phase distribution. Experiments 
verify this idea.

1 Introduction

Wavefront shaping techniques opened a whole new exam-
ple in optics and engineering by controlling optical waves 
propagating through scattering media [1–5]. These include 
focusing beyond the diffraction limit [6, 7], image through 
turbid media [8, 9], and enhanced transmission through cou-
pling to the open eigenmodes [2]. In these studies, the trans-
mission matrix (TM), which encodes completely multiple 
scattering in the scattering material, is a mighty tool. The 
TM is the input–output relation for a basis of orthometric 
modes, and in essence, enables the restoration or prediction 
[10, 11]. Once it is obtained, the scattering medium is no 
longer a stochastic object, and the output field can be deter-
minately related with the input field. The TM can be directly 
obtained by monitoring the output field for each input field 
[10], or it can be indirectly achieved by means of feedback 
algorithms [12].

For many years, it has been known that elastic multiple 
scattering would cause Anderson localization of optical 
waves, and that, even in a diffusive system, it introduces cru-
cial correlations in the TM of a complex medium [13]. Thus, 
the TM is typically ill-conditioned [14]. The input field can 

be attained by TM inversion, and the ill-condition of the TM 
seriously affects the accuracy of phase distributions. Numer-
ically, due to the fact that the solution to the inverse matrix 
does not rely continuously on the matrix elements, a tiny 
error in calculating the inverse matrix of the TM produces 
an extremely large error to the phase distribution. To solve 
this problem, Mickael and coworkers have applied singular 
value decomposition (SVD) to the TM before inversion [14]. 
The purport of SVD is to delete some of the singular values 
of the TM which are close to zero. This is a valid way to 
decrease the extent of the ill-condition of the TM, attaining 
receivable focusing results.

In this work, we study the ill-condition of the TM in 
detail. A condition number analysis is utilized to evaluate the 
extent of the ill-condition of the TM quantitatively. Based 
on this analysis, we propose our opinion that tiny singular 
values of the TM would introduce a large error in TM inver-
sion. An idea of optimizing the singular values of the trans-
mission matrix is proposed, which improves the accuracy 
and stability of the phase distribution. Then, we perform 
experiment to verify this idea. The conclusion summarizes 
the whole paper.

The ill-condition of the TM.
Waves propagating through complex random media expe-

rience multiple scattering. Unless the intensity of the optical 
wave is intense enough to bring about nonlinear optical effects, 
wave propagation is a linear course, which is described by a 
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TM. The TM connects the input and output channels, which 
can be expressed by [15]

where Eout
m

(m = 1, 2, 3, …, M) is the electric field at the mth 
output channel; Ein

n
(n = 1, 2, 3, …, N) is the electric field at the 

nth input channel; and t
mn

 is the element of the TM in the mth 
row and nth column. Equation 1 can be written as matrix form:

Here, the first matrix on the right is the TM, which can be 
obtained utilizing the approach described in Ref. [10]. Since 
we aim at achieving a focal point through the medium, the 
output field Eout

m
 is set to the single-channel optimizing mode, 

where the output channel of the focal point is one and the oth-
ers are zero:

where the superscript T denotes the matrix transpose. 
According to the TM inversion mentioned in Ref. [16], Ein

n

(n = 1, 2, 3, …, N) can be theoretically attained as long as 
M ≥ N . However, the TM is representatively ill-conditioned, 
which severely influences the accuracy of Ein

n
 . Most references 

emphasize that elastic multiple scattering would cause Ander-
son localization of optical waves, which induces important 
correlations in the TM of a scattering medium. The ill-con-
dition of the TM is due to the correlations of the row vec-
tors, which causes several approximate solutions [17, 18]. 
The correlation of the row vectors indicates degeneracy of the 
transmission matrix. Since the degeneracy of the transmission 
matrix, multiple solutions would be obtained by transmission 
matrix inversion.

The basic structure of focusing coherent light through a 
scattering medium is shown in Fig. 1. A plane wave is inci-
dent on a spatial light modulator (SLM). The modulated light 
propagates through a disordered medium, and the scattered 
light is recorded by a detector. Using a correct phase distri-
bution of the SLM, a focal point can be formed behind the 
medium. Suppose that
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Then, Eq. (2) can be written as

For simplicity, we assume that the number of output 
channels M equals the number of input channels N. There-
fore, by solving the matrix equation, the solution of �

��
 

can be attained:

where T−1 is the inverse matrix of T. Assume a system 
with 256 input channels and 256 output channels (i.e. 
M = N = 256). The scattering medium is represented by a 
random matrix with uniform distribution. Thus, the matrix 
T can be measured using the approach described in Ref.[10]. 
If the output field is set to

using Eq. (5), the input field Ein can be calculated. Using 
the full-field of Ein, we calculate the output field using the 
method of ray tracing. Here, ‘full-field’ means the amplitude 
and phase of the electric field. If we do not consider noise in 
this simulation (i.e. the TM is definitely precise), the inten-
sity distribution of the output field is shown in Fig. 2a. In this 
case, the full-field inversion gives exactly the same solution. 
If we add 0–1.5% of random noise to T and Eout in Eq. (5) 
to simulate measurement errors, the intensity distribution of 
the output field is shown in Fig. 2b. In this case, we cannot 
see any focal point in the image plane, since this inversion 
is very unstable in the presence of noise. This phenomenon 
is called as the ill-condition of a matrix, which indicates that 
the solution of the linear system of equations is inaccurate. 
Figure 3 shows the amplitude and phase distribution of the 
incident field. Figure 3a and c are amplitude and phase dis-
tribution of no random noises (i.e. well-posed case), respec-
tively, while Fig. 3b and d are amplitude and phase distri-
bution with 0–1.5% of random noise (i.e. ill-posed case), 

(4)Eout = TEin.

(5)Ein = T
−1
Eout,

(6)E
out
m

=

{
1, m = 120
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Fig. 1  Basic structure of focusing light through scattering media
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respectively. The correlation coefficient between amplitude 
vector values in Fig. 3a and b is 0.043, while the correlation 
coefficient between phase vector values in Fig. 3c and d is 
0.068. Therefore, there exist large differences between the 
profiles of well-posed and ill-posed inversion.

Singular value decomposition and eigenchannel 
optimization

We further study the ill-condition of the TM by analyzing 
the singular values of the matrix. We perform singular value 
decomposition (SVD) of the TM

where � is a rectangular diagonal matrix with non-negative 
real numbers on the diagonal called singular values. V and U 
are unitary matrices mapping the input channels and eigen-
channels to eigenchannels and output channels, respectively. 
The square of a singular value is called an eigenvalue. The 
physical meaning of the eigenvalue of the TM is the intensity 
transmittance coefficient of the corresponding eigenchannel. 
The eigenchannels with large eigenvalues are called open 
eigenchannels, while the eigenchannels with small eigen-
values are called closed eigenchannels. For the random 
scattering medium studied in Sect. 2, we plot eigenvalues 
after arranging them in descending order, which is shown 
in Fig. 4.

From Fig. 4, it can be seen that a large difference exists 
among the eigenvalues of the TM, and the smallest eigenvalue 
is close to zero. In fact, this is a general law for most disordered 
media. The largest eigenvalue is ~ 106 times larger than the 
smallest eigenvalue. Suppose that

(7)T = UV,

where λi (i = 1,2,…,N) are the singular values of the TM. 
The diagonal elements of matrix τ are sorted in descending 
order, i.e. �1 ≥ �2 ≥ ⋯ ≥ �

N
 . The inverse matrix of T can 

be expressed as

where the superscript − 1 stands for the inverse matrix, and 
the superscript H denotes the conjugate transpose. As men-
tioned above, the smallest eigenvalue (or singular value λN) 
is close to zero, which means that 1

�
N

 becomes extremely 
large. In the process of calculating T−1 computationally, 
some system errors—such as discretization errors—would 
be magnified by 1

�
N

 . Therefore, it is necessary to replace 
some of 1

�
i

(i = 1, 2, ...,N) by 1
�
 to reduce errors, where � is 

the average of λi and can be expressed as
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Fig. 2  The intensity distribution of the output field. a Well-posed simulation; b ill-posed simulation
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The condition number (CN) is an indispensable param-
eter that reflects the condition of a matrix. The CN of 
matrix T is defined as the ratio between the largest singular 
value and the smallest singular value:

where ‘| |’ stands for the absolute value. The larger the CN 
is, the more ill-conditioned the matrix will be. The CN of 
T−1 is equal to the CN of T. From Eq. 11, it can be seen 
that when we replace �

N
 with 𝜆 (𝜆 > 𝜆

N
) , the value of cond 

(T) descends, which means the condition of the T−1 matrix 
becomes better than the original T matrix.

(11)cond(�) =
||||
�1

�
N

||||,

Table 1 shows the CNs of T−1 when the replaced singular 
values are in different ranges. The first and third columns are 
indices of replaced singular values, while the second and the 
fourth columns are the CNs of T−1. The indices of replaced 
singular values are in ranges 1–20 (step size: 1), 21–40 
(step size: 1), …, 237–256 (step size: 1), 1–80 (step size: 4), 
176–256 (step size: 4), in each of which 20 singular values 
are replaced by � . In the following parts, when we mention 
the range of replaced singular values, it means the index 
range listed in Table 1. The results in Table 1 show that, 
if the number of replaced singular values is the same, the 
CNs of T−1 that correspond to the singular values replaced 
in the final range [e.g. 237–256 (step size: 1)] are smaller 

Fig. 3  Amplitude and phase distribution of Ein. a Amplitude distribution of well-posed condition; b amplitude distribution of ill-posed condi-
tion; c phase distribution of well-posed condition; d phase distribution of ill-posed condition
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than those in other ranges. This result is mainly due to the 
fact that the singular values λi of T are sorted in descending 
order, which means that 1/λi are sorted in ascending order. 
If 1/λi in final ranges (i.e. large singular values of T−1) are 
replaced by 1∕� , the maximum singular value of T−1 is 
decreased. Therefore, the CN of T−1 descends (see Eq. 11). 
The lowest CN in Table 1 corresponds to the indices in range 
176–256 (step size: 4), indicating that some eigenchannels 
with medium eigenvalues should also be closed.

Table 1 indicates that the CN of T−1 when the singular 
values in range 176–256 (step size: 4) are replaced by 1∕� 
is smaller than the CN of T−1 when the singular values in 
range 1–80 (step size: 4) are replaced by 1∕� . As mentioned 
above, a more accurate incident wavefront can be attained 
using a TM with a smaller CN. We verify this result through 
simulations. The enhancement factor of a focal point behind 
a disordered medium is defined as the ratio between the 
intensity of the focal point and the average intensity of the 
background. By comparing the enhancement factors of the 
focal points, we can judge that a range of replaced singular 
values is acceptable for TM inversion.

The comparison is between replacing the singular values 
in range 1–80 (step size: 4) and replacing those in range 

176–256 (step size: 4) by 1∕� . The incident wavefront is 
attained by

where �̂−1 is optimized T−1 with the replaced singular val-
ues mentioned above. The concrete simulation process is 
described as follows:

• Generate a matrix with elements stochastically selected 
from a uniform distribution to substitute the disordered 
medium. Then, measure the TM of the disordered mate-
rial according to the procedures described in Ref. [10].

• Add 0–0.2% stochastic noises to the TM to simulate 
experimental errors. Calculate the incident wavefront 
�̂in using Eq. (12). The �̂−1 in Eq. (12) is achieved by 
replacing the singular values in range 1–80 (step size: 4). 
Then the intensity of the focal point behind the medium 
is obtained using Eq. 1.

• Calculate the incident wavefront again using Eq. 12. The 
�̂−1 in Eq. 12 is achieved by replacing the singular values 
in range 176–256 (step size: 4). Then the enhancement 
of the focal point is achieved by Eq. 1.

The process is repeated 20 times. Thus, 40 enhancement 
factors can be attained, in which 20 for the replaced singular 
values in range 1–80 and 20 for the replaced singular values 
in range 176–256. The results are shown in Fig. 5. From 
Fig. 5, it is easy to see that the enhancement from the index 
range of 176–256 is higher than the enhancement from the 
index range of 1–80.

Methods of reducing errors of the inversion process
Popoff and coworkers proposed a pseudo-inversion 

method [19], in which the inverse operator is expressed as

where the superscript H means conjugate transpose, s is the 
standard deviation of the environment noise, I is unit matrix.

As mentioned above, the condition of the TM is sensi-
tive to the replaced singular values. Therefore, it is very 
important to select appropriate singular values of the TM 
for inversion. Here, we propose an idea to optimize the 
singular values using a simulated annealing algorithm. 

(12)�̂in = �̂
−1
�out,

(13)T̂
−1 = [TH

T + 𝜎I]−1TH ,
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Fig. 4  Eigenvalue distribution of the TM

Table 1  Comparison of the CNs 
of the TM for different replaced 
singular values (N = 256)

Index of replaced singular value CN of T−1 Index of replaced singular value CN of T−1

1–20 (step size: 1) 7.28 × 106 177–196 (step size: 1) 8.20 × 104

21–40 (step size: 1) 6.49 × 106 197–216 (step size: 1) 6.78 × 104

41–60 (step size: 1) 3.73 × 106 217–236 (step size: 1) 5.12 × 104

61–80 (step size: 1) 2.56 × 106 237–256 (step size: 1) 4.81 × 104

81–100 (step size: 1) 1.23 × 106 1–80 (step size: 4) 7.65 × 105

101–120 (step size: 1) 9.24 × 105 176–256 (step size: 4) 3.24 × 104
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First, randomly generate 256 binary numbers (either 0 or 
1) as the initial solution, in which each binary number 
corresponds to an index of a singular value. Here, 0 means 
the corresponding �

i
 is replaced by � , while 1 means that 

the corresponding �
i
 keeps the same as its original value. 

Calculate the cost function of the initial solution. The 
cost function in this task is the intensity of the focal point 
behind the medium. Next, randomly perturb the initial 
solution to get a new solution. This perturbation means to 
randomly select half of the pixels and replace them by the 
other binary value. Then, calculate the cost function of the 
new solution. The new solution is accepted according to 
the Metropolis principle:

where P is the acceptance probability, Enew is the value of 
the cost function of the new solution, and Eold is the value of 
the cost function of the old solution. Tk is the temperature of 
the k-th iteration, which can be expressed by

where T0 is the initial temperature, and α is the decay fac-
tor. In this experiment, α = 0.99 and T0 = 90. This process 
is repeated indefinitely, until the intensity of the focal point 
is saturated. The output solution is shown in Fig. 6, which 
shows that the simulated annealing algorithm judges that 

(14)P =

⎧
⎪⎨⎪⎩

exp

�
−
Enew − Eold

T
k

�
, Enew − Eold < 0

1, Enew − Eold ≥ 0

(15)T
k
= 𝛼

k
T0 (T0 > 0, k = 1, 2, 3, ...)

all the singular values in the index range of 240–256 should 
be replaced by �.

The optimized singular values using the output solu-
tion in Fig. 6 are expected to attain a higher enhance-
ment factor of the focal point. We verify the validity of 
the optimized singular values through experiment. We 
use the optical system shown in Fig. 1 to compare the 
enhancement factors from the optimized singular values 
in Fig. 6 with those from the replaced singular values in 
range 176–256 (step size: 4). We also compare this new 
algorithm with the method provided by Popoff [19]. The 
scattering medium in the experiment is a ground glass, 
and the wavelength of the incident light is 632.8 nm. The 
instrument model of the SLM is Holoeye Pluto 1080P, and 
the detector is a charge coupled device (CCD, Thorlabs). 
Due to the existence of random noise in the experiment, 
each experiment is performed 20 times, and the results 
are sorted in ascending order, which are shown in Fig. 7a. 
The comparison in Fig. 7a shows that the optimized sin-
gular values using a simulated annealing algorithm obtain 
the highest enhancement factor of the focal point among 
the three algorithms. The enhancement factor of pseudo-
inversion method is higher than the enhancement factor of 
replaced singular values in range 241–256. Figure 7b–d 
shows intensity transmission through the scattering media. 
Figure 7b is the intensity transmission of replaced singular 
values in range 241–256, while Fig. 7c is the intensity 
transmission of pseudo-inversion method. Figure 7d is 
the intensity transmission of optimized singular values. 
The enhancement factors in Fig. 7b–d are 25.6, 43.2, and 
48.7, respectively. The enhancement factor for an accurate 
solution is given as ~ pi/4*N, where N is the number of 
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controlled optical modes. The enhancement factor of 200 
is expected but the experimentally acquired factor was 50. 
The origin of the low enhancement factors is the noises in 
the experiment. Apparently, our proposed approach works 
very well in this noisy condition.

2  Conclusion

In this paper, we have studied the ill-condition of the TM in 
focusing light through disordered media. A method to opti-
mize the singular values of the TM using a simulated anneal-
ing algorithm is proposed, which improves the enhancement 
factor of the focal point behind the medium. We have com-
pared this method with previous algorithms by experiment, 
which shows that this new algorithm obtains the highest 
enhancement factor. Our study helps understanding a new 
aspect of wave propagation through scattering materials, and 
can be applied to biological imaging of highly disordered 
tissue.
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