
Vol.:(0123456789)1 3

Applied Physics B (2020) 126:21 
https://doi.org/10.1007/s00340-019-7373-y

Photon‑limited non‑imaging object detection and classification based 
on single‑pixel imaging system

Yan Zhu1 · Jianhong Shi1  · Xiaoyan Wu1 · Xialin Liu1 · Guihua Zeng1 · Jun Sun2,3 · Lulu Tian2,3 · Feng Su2,3

Received: 11 October 2019 / Accepted: 25 December 2019 / Published online: 4 January 2020 
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Under photon-limited detection which is limited by the low-light illumination and short detection time, off-the-shelf clas-
sification methods based on clear imaging of the object cannot achieve considerable classification accuracy. To solve this 
problem, we propose a non-imaging classification method based on single-pixel imaging system. With low-intensity pulsed 
illumination and time-correlated single-photon counting detection, binarized feature sequence of the objects that need to 
be classified can be obtained. Combining with a simple machine learning algorithm trained with simulated data based on 
Poissonian photon detection algorithm, the objects could be classified with considerable accuracy. Proof-of-principle experi-
ments use the MNIST handwriting digit database, showing that up to 90% classification accuracy could be achieved with 
fewer than 1 detected photon per pixel.

1 Introduction

Photon-limited imaging has significant applications under 
extreme conditions, such as biological imaging [1, 2], 
remote sensing [3] and night vision [4, 5]. The conventional 
imaging system based on a multi-megapixel silicon focal 
plane would typically obtain an image by capturing of order 
1012 [6] photons. For many situations, it is very difficult to 
acquire high-quality image by collecting such a large number 
of photons because of low-light illumination, limitation of 
detecting time, long-distance attenuation, and so on.

The automatic classification of objects is a critical issue 
and has wide applications. Conventionally, the classification 
is performed by imaging the object first and then combin-
ing various algorithms to classify them, such as computer 
vision system [7, 8]. Those algorithms are directly based 
on high-quality images. However, under photon-limited 

conditions, off-the-shelf methods based on images face a 
big challenge. Nevertheless, while the image is significant 
for human vision, it is data that really matter to computer or 
machine visions. Thus, the classification of the object based 
on the image of the object is not imaging it firstly [9–15]. 
Single-pixel imaging (SPI) system is a computational imag-
ing system which does not image the object directly [16, 17]. 
SPI has been demonstrated to be superior over conventional 
imaging in some applications, such as three-dimensional 
imaging [16, 18–20], multi-wavelength imaging [21, 22] 
and X-ray imaging [23, 24]. In SPI system, varying spa-
tial modulated light patterns are employed to illuminate the 
object scene, and a light intensity sequence is recorded by a 
single-pixel detector without spatial information. The image 
could be reconstructed by the correlation of the modulated 
patterns and detected light intensity signals. Thus, such light 
intensity sequence could be used as a feature sequence to 
classify the object and the image reconstruction step could 
be skipped.

A comparison between imaging-free object classifica-
tion based on the SPI system and conventional approach is 
shown in Fig. 1. In photon-limited situation, a special type of 
single-pixel detector which could response to single photon 
might have improved performance: lower dark counts, faster 
timing response and higher detected efficiency [25]. Thus, 
SPI system could have a better performance than a conven-
tional imaging system under photon-limited conditions [26].
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In this paper, based on our previous research results of 
object recognition [12] and photon-limited detection [26], 
we propose a non-imaging object classification scheme 
with photon-limited measurements on the SPI system. 
The previous work of Ref. [12] cannot directly obtain the 
multi-classification results of the objects and not consider 
photon-limited condition, while the scheme proposed in 
this paper can perform multiclass classification under low-
light scenarios. We use the binarized sequence obtained by 
the Poissonian single-photon detection as the feature of an 
object and combine with machine learning (ML) algorithm 
to classify the object with few photon detections. Moreo-
ver, since Poissonian single-photon detection is a random 
process, we generate the training set by computer simula-
tion based on the average photon counts and the approxi-
mate background noise. A proof-of-concept experiment is 
performed with MNIST handwriting digit. A considerable 
accuracy higher than 90% could be attained with minimum 
0.71 photon detections per pixel, in which case the image of 
the object even could not be well reconstructed. We believe 

this scheme could provide a new possibility for object clas-
sification in some extreme environments or some special 
scenarios.

2  Method

2.1  Experimental setup

The schematic diagram of our experimental setup is shown 
in Fig. 2. A 1 MHz 532 nm intensity tunable pulsed laser 
illuminates onto a digital micromirror device (DMD) with 
series programmable patterns. The modulated light patterns 
then projected onto the object plane by a projection lens. The 
DMD used in our experiment is a typical spatial light modu-
lator, which consists of an array of 1080 × 1920 independent 
addressable micromirrors.

The photons echoed from the object are homogenized by 
an optical diffuser and detected by a single-photon avalanche 
diode (SPAD). The output digital signal is then fed into the 

Fig. 1  The process of conventional object classification based on 
image and imaging-free object classification based on the SPI system: 
the gray arrows denote the conventional process based on image, and 

the green arrows represent our proposed process. The dotted arrows 
denote imaging process which could be skipped if we only concern 
about the classification of the object

Fig. 2  The experimental schematic diagram. A series of spatial light 
modulated patterns controlled by computer are loaded on the DMD. 
After projecting patterns onto the object, echo photons are detected 
by the SPAD and then fed into TCSPC module, which also receives 
synchronization signals from pulsed laser and DMD. The arrival time 

sequence of the echo photons from the object and the synchronization 
signals are recorded by TCSPC and are shown in the inner bottom 
box. The pulses marked by R

i
, i = 1, 2,… ,M are synchronization sig-

nals of DMD
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time-correlated single-photon counting (TCSPC) module, 
which also receives synchronization signals from the pulsed 
laser and the DMD. The arrival time sequence of the echo pho-
tons from the object and the synchronization signals are both 
recorded as shown in Fig. 2. For each modulated pattern, the 
number of echo photons from the object is proportional to the 
inner product of the pattern with the object. In our experiment, 
the time interval between each pattern is set to 10 ms. Thus, 
echo photons from 10,000 laser pulses for one modulated pat-
tern are recorded.

Similar as in Ref. [26], a series of sparse binary ran-
dom patterns are employed as the modulated patterns. The 
MNIST written number database [27] which consists of 
70,000 labeled 28 × 28 grayscale images of handwritten 
numbers are used as the target object. Thus, each modulated 
pattern also has 28 × 28 pixels, and each pixel is formed by 
8 × 8 micromirror units. And hence only 224 × 224 units of 
the DMD are used. To simplify the replacement of objects 
to implement a large number of measurements, we load the 
modulated patterns and object simultaneously on DMD. The 
patterns loaded on DMD are the inner product of the spatial 
modulated light patterns and the object, and the light path 
between DMD and the object is omitted.

Based on this experimental setup, we measure the object 
to be classified and record the detection data. For each 
object, the same set of 1000 sparse modulated patterns are 
used and each test object is detected once.

2.2  Data acquisition and processing

In an experimental setup described above, for the ith modu-
lated pattern, the total detected intensity Si can be repre-
sented as [25]

where Ri(x, y) represents the modulated pattern and O(x, y) 
denotes the reflectivity function of the object. Iavg is the aver-
age illumination light intensity for an unit surface.

Under low-light pulsed illumination and single-photon 
detection, Iavg is small and the individual photon detection 
satisfies the Poisson statistics [28]. Assume � represents the 
detection efficiency, B represents the arrival rate of back-
ground photons to the SPAD, and T represents the pulse 
repetition period [26, 28]. Then the probability of no photon 
being detected within one single-pulse illumination can be 
denoted by

Excepting Si , the parameters depend on the experimental 
system and detection conditions, so they are settled under 
one same measurement environment. Different spatial light 

(1)Si = Iavg ∬ Ri(x, y)O(x, y)dxdy

(2)P0

(

Si
)

= e−�(Si+BT)

modulated patterns or objects might generate difference of 
Si , and hence, the probability of no photon being detected 
could be different.

Since each pulse is independent, the probability of exist-
ing k pulses before the first detected photon for one illumi-
nation pattern is

The pulse number of the first detected photon for ith pattern 
can be denoted by ni . In the absence of background light, the 
maximum-likelihood intensity estimator, Ŝi , is proportional 
to 1∕ni for ni ≫ 1 , denoted by [26]:

Then object image could be reconstructed by the correlation 
algorithm of 1∕ni with the modulated pattern, Ri . Thus, the 
pulse count, ni , contains the object information. We record 
pulse counts for further processing to obtain the feature 
sequence.

Since the echo photon detection under photon-limited 
condition is a random Poisson process, even for the same 
object being illuminated by the same set of spatial light 
modulated patterns, we might not obtain the same sequence 
from different detections. In our experiment, each test object 
is detected once with 1000 illumination patterns. After illu-
minations of 1000 patterns, a 1000-dimensional pulse counts 
sequence is obtained. To simplify the pulse count sequence, 
reduce the computation complexity and improve system 
efficiency, we binarize this sequence with a pulse number 
threshold n . If the first detected photon arrives before the 
n th pulse, the pulse count of this pattern is binarized into 
‘1’, otherwise ‘0’.

Assuming an object is illuminated by a series of pat-
terns, a schematic time sequence of the echo photons and 
the synchronization signals recorded by the TCSPC module 
and the procedure of data processing are shown in Fig. 3. 
Assume the number of patterns is M. The pulses marked 
by Ri, i = 1, 2,… ,M are synchronization signals of modu-
lated patterns which is 100 counts/s in our experiment. A 
total of 10,000 synchronization signals from the pulsed 
laser between each modulated pattern are recorded. The 
dark yellow dot denotes the first detected echo photon from 
the object for each pattern, and the number of pulses before 
the arrival of this first photon within the ith modulated pat-
tern is denoted by ni . The pale yellow dots denote succes-
sively photons detected after the first photon. Based on such 
recorded signals, we binarize the pulse counts to obtain the 
feature sequence. The green arrow and blue arrow denote 
two different values of threshold. As shown in the figure, 
one feature sequence of the object could be settled when 
the pulse number threshold and the length of the sequence 

(3)P[n = k] = P0

(

Si
)k−1[

1 − P0

(

Si
)]

(4)Ŝi = argmax log
{

e−�(ni−1)S
(

1 − e�S
)

}

∝
1

ni
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are set. Moreover, one same pulse count sequence might 
be binarized into different feature sequences under different 
thresholds and sequence lengths.

The selection of threshold affects the proportion of ‘1’s 
and ‘0’s in the feature sequence. If the threshold is set big 
(small), more pulse counts of the sequence would be bina-
rized to ‘1’s (‘0’s). The length of the feature sequence, which 
is equaling to the number of measurements (modulated pat-
terns) used for each object, influences the obtained informa-
tion of the object. In practical application, the length of the 
sequence and the threshold could be predetermined by the 
number of modulated patterns, the duration of each pattern 
and the laser pulse frequency, which determine the total data 
acquisition time.

2.3  Classification process

An overview of our classification process is depicted in 
Fig. 4. Random unknown samples that need to be classi-
fied are measured by the experimental setup. The pulse 
counts sequences of these objects are acquired. After the 
measurements of all these objects, an average number of 
detected photons per 10,000 pulses which corresponds to 
the illumination light intensity approximately are acquired. 
The background noise could be estimated by the detec-
tion rate of an all ‘0’s modulated pattern. Based on these 
data, the pulse counts sequences of training samples 
could be simulated according to the Poisson detecting 

process given in Eqs. (2–3). After the binarizing process 
described above, the feature sequences of these training 
objects are obtained. While the feature sequences of these 

Fig. 3  The time sequence recorded by the SPI system and the pro-
cess of binarizing pulse sequence with different thresholds and values 
of M: assuming an object is illuminated by a series of patterns. The 
pulses marked by R

i
, i = 1, 2,… ,M are synchronization signals of 

DMD. During the illumination of each pattern, pulses from the laser 
and photons measured by SPAD are recorded. The dark yellow dots 

denote the first detected photons, and the number of pulses before 
the arrival of first detected echo photon within the ith modulated 
pattern is denoted by n

i
 . The pale yellow dots are successively pho-

tons detected after the first photon. For each pattern, the pulse count 
is binarized by a settled threshold. The green arrow and blue arrow 
denote two different values of threshold

Fig. 4  The classification process of our scheme
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training objects combined with their labels are fed into 
an untrained classifier for training, a trained classifier 
is obtained. Then the measured feature sequence of the 
object to be classified is input into the trained classifier, 
and the predicted result is obtained.

3  Results

In order to settle the sparsity of random pattern, computer 
simulation is performed firstly and the change trend of 
classification accuracy with the increase in sparsity is 
recorded. As shown in Fig. 5, the accuracy keeps maxi-
mum between about 0.002 to 0.014. Thus, the sparsity is 
set to 0.01, which corresponds to 1% of random ‘1’ among 
all pixels.

After settling the sparsity, the actual experiments are 
proceeded. Generally, in the TCSPC module, the condition 
that at most one photon being detected in the same pulse is 
considered as photon-limited condition. When the number 
of photons accounts for less than 5% of pulses, the prob-
ability of two photons being detected in the same pulse 
is extremely low, which can be considered as a photon-
limited detection. In our experiment, 400 random samples 
from MNIST test set are measured by the experimental 
system. An average of 215 photons are detected in 10,000 
pulses for all those samples, and the background noise 
is 10 photons in 10,000 pulses. Given an average photon 
counting rate and the background noise rate, pulse counts 
sequences of 60,000 training samples from the MNIST 
database are simulated.

At first, a very simple classification algorithm, k-nearest 
neighbor (kNN), is used as the classifier.

3.1  Classification accuracy with different M 
and thresholds

As discussed in Sect. 2.2, two main parameters affect the 
performance of this system: the pulse number threshold and 
length of the feature sequence. The influence of the selec-
tion of threshold on classification accuracy is depicted in 
Fig. 6. It is analyzed by changing the threshold value with 
several fixed lengths of feature sequence. Figure 7 depicts 
the relationship of the classification accuracy and the length 
of feature sequence with several fixed thresholds.

As shown in the above two figures, while fixing the 
length of feature sequence, classification accuracy 
increases with the threshold value. When the threshold 
is small, the improvement is obvious. With the further 
increase in the threshold, the accuracy improves more 
and more slowly. However, the threshold cannot be set 
too big. As shown in Fig. 7, the overall accuracy is higher 
when the threshold is set 100 than 300. Thus, the threshold 
value cannot be set too big or too small. Meanwhile, while 
fixing a threshold and changing the length of the feature 
sequence M, the accuracy increases with the M. When a 

Fig. 5  The change trend of classification accuracy with the increase 
in sparsity

Fig. 6  Classification accuracy with different thresholds

Fig. 7  Classification accuracy with different lengths of the feature 
sequence
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very limited length of feature sequence is used for clas-
sification, the accuracy is relatively low, and the improve-
ment is obvious with the increase in M. With the further 
increase in M, the accuracy reaches saturation.

The threshold value and length of the feature sequence 
are considered together to analyze classification accuracy, 
which is depicted in Fig. 8.The yellow blocks represent 
accuracy which is higher than 90% . In the actual experi-
ment, the selection of threshold and length of feature 
sequence are important factors that affect system effi-
ciency. The threshold represents the pulse number used 
for each pattern, and the length of the feature sequence 
represents the number of patterns. The product of these 
two parameters determines the total data acquisition time 
of the system. Thus, in the actual application, the clas-
sification accuracy and the data acquisition time must be 
balanced.

We use the number of photons per pixel (PPP) to repre-
sent the photon efficiency for classification under photon-
limited condition, which can be expressed as

where Nph is the number of photons measured and N is the 
total number of pixels of the object.

To reach relatively high accuracy in the shortest time 
possible, we set an accuracy of 90% as a standard. In this 
case, a minimum value of the threshold is 130 and the 
fewest number of patterns is 200 in our experiment, and 
the corresponding number of photons per pixel (PPP) is 
0.71. As shown in Fig. 9, the object could be classified 
correctly while in such case the image of the object even 
could not be well reconstructed by the first-photon ghost 
imaging algorithm.

(5)PPP =
Nph

N

3.2  Classification accuracy with different numbers 
of detected photons

The selection of threshold and M jointly determines the 
number of detected photons. A bigger threshold means a 
larger number of photons to detect per pattern, and a bigger 
M represents more spatial light modulated patterns being 
measured for each object. The relationship between the 
number of detected photons and corresponding classifica-
tion accuracy is shown in Fig. 10.

As shown in the figure, the overall trend of accuracy 
increases with the increase in photon number and finally 
reaches a plateau. However, at the same level of photon 
number, the accuracy fluctuates. The reason for the fluc-
tuation lies in the different selections of the threshold and 
M. With the same number of detected photons, a bigger 
threshold means smaller M. As discussed in Sect. 3.1, the 
threshold cannot be set too big or small. Thus, when the 
threshold is settled too big with a small value of M or 
settled too small with big M, the classification accuracy 
is lower than the situation of the threshold being set mod-
erately. Therefore, within a certain range, the accuracy 

Fig. 8  Classification accuracy with different thresholds and the 
lengths of the feature sequence. The yellow blocks represent accuracy 
of more than 90%

Fig. 9  Reconstructed images using first-photon ghost imaging (FPGI) 
algorithm comparing with the classification result of our scheme. The 
images of the first row represent the original objects, and the middle 
row represents the images retrieved by FPGI based on our experimen-
tal data. The last row denotes our classification results without images
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could be improved by increasing the number of detected 
photons, and to obtain as high accuracy as possible with a 
fixed level of photon number, the threshold and M should 
be set moderately.

3.3  Classification accuracy with different classifiers

To select an appropriate machine learning algorithm to 
classify objects, several classical classifiers are employed 
and compared. The experiment is performed with the 
threshold fixed 200 and M increased from 10 to 200. 
Four algorithms are used for classification by the feature 
sequence, respectively support vector machines, Bayes 
classifier, decision tree and k-nearest neighbor. The result 
is shown in Fig. 11.

As shown in the figure, the accuracy of using the sup-
port vector machine (SVM) is almost equal to the k-nearest 
neighbor (kNN) and higher than the other two algorithms. 
The reason why we chose kNN is that it has less time over-
head in our system. The SVM requires hyperplane wx + b 
to segment data sets, and there would be a model training 
process to determine the values of w and b. After settling 
the w and b, the predicted result of the test set is deter-
mined directly based on this model. Many other machine 
learning algorithms or deep learning networks have com-
plex learning processes. Meanwhile, kNN is an algorithm 
called lazy learning. In the training phase, the samples 
are saved, and the training time is zero. After receiving 
the test samples, the predicted result is determined by the 
training set. Thus, when the test set is not very large, kNN 
prediction efficiency is higher than SVM and other eager 
learning algorithms. Therefore, to achieve high classifica-
tion accuracy effectively, kNN is employed in our system.

4  Conclusion

To perform object detection and classification with pho-
ton-limited detection, we propose a non-imaging clas-
sification method based on a SPI system. This method 
uses the binarized photon counts sequence obtained by 
the Poissonian single-photon detection as the feature of 
an object. In our system, the test object needs to be clas-
sified is measured by actual experiment, while the fea-
ture sequence of training object is generated by computer 
simulation based on the measurement conditions of the 
test set. Combining with simple machine learning (ML) 
algorithm, objects can be classified. Experimental results 
demonstrate that our proposed scheme could achieve con-
siderable accuracy efficiently with very limited photon 
detections, in which case the object image even cannot be 
well reconstructed.
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