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Abstract
The paradigm of cavity QED is a two-level emitter interacting with a high-quality factor single-mode optical resonator. The 
hybridization of the emitter and photon wave functions mandates large vacuum Rabi frequencies and long coherence times; 
features that so far have been successfully realized with trapped cold atoms and ions, and localized solid-state quantum 
emitters such as superconducting circuits, quantum dots, and color centers Reiserer and Rempe (Rev Modern Phys 87:1379, 
2015), Faraon et al. (Phys Rev 81:033838, 2010). Thermal atoms, on the other hand, provide us with a dense emitter ensemble 
and in comparison to the cold systems are more compatible with integration, hence enabling large-scale quantum systems. 
However, their thermal motion and large transit-time broadening is a major bottleneck that has to be circumvented. A prom-
ising remedy could benefit from the highly controllable and tunable electromagnetic fields of a nano-photonic cavity with 
strong local electric-field enhancements. Utilizing this feature, here we investigate the interaction between fast moving ther-
mal atoms and a nano-beam photonic crystal cavity (PCC) with large quality factor and small mode volume. Through fully 
quantum mechanical calculations, including Casimir–Polder potential (i.e. the effect of the surface on radiation properties of 
an atom), we show, when designed properly, the achievable coupling between the flying atom and the cavity photon would 
be strong enough to lead to quantum interference effects in spite of short interaction times. In addition, the time-resolved 
detection of different trajectories can be used to identify single and multiple atom counts. This probabilistic approach will find 
applications in cavity QED studies in dense atomic media and paves the way towards realizing large-scale, room-temperature 
macroscopic quantum systems aimed at out of the lab quantum devices.

1  Introduction

The field of cavity quantum electrodynamics (CQED) dates 
back to more than 50 years ago when Purcell in his seminal 
work reported that the radiation properties of an atom can 
be modified via its surroundings [3]. Within the last dec-
ades CQED has been a versatile and powerful testbed to 
investigate fundamental postulates of quantum mechanics 
such as superposition and entanglement [4, 5]. In addition, 

it has been the source of various developments in the fields 
of quantum technologies and quantum information [1, 6–8].

Early CQED experiments were considering the modifi-
cation of the atom lifetime and its radiation properties in 
the vicinity of a low-quality factor cavity. However, with 
the development of high finesse cavities, most of CQED 
studies shifted towards exploring strong coupling regime 
where the energy between the atom and cavity photon is 
exchanged coherently. Within that regime and starting with 
microwave CQED, entanglement between highly excited 
Rydberg atoms flying across superconducting cavities and 
microwave photons was observed [9]. Later, by combining 
low-lying atomic transitions and high-finesse dielectric cavi-
ties strong atom–photon couplings in the visible range was 
demonstrated  [10–16].

The introduction of nano-photonics to the field of quan-
tum optics and atomic physics has substantially broadened 
the capabilities of atom–photon systems. Nano-photonic and 
plasmonic structures provide quantum emitters with a large 
tailorability of the local density of the optical states (LDOS), 
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hence making a unique platform for studying well-designed 
and controllable atom–light interaction. In addition, quan-
tum optical platforms can exploit the typical high-quality 
factor (Q) and the small mode volume of photonic modes 
of nano-photonic devices to explore the very large coopera-
tive coupling regimes. Such unique capabilities have been 
actively investigated in various solid-state systems such as 
quantum dots [2, 17, 18], color centers [19, 20], and embed-
ded rare-earth ions [21, 22]. Each of these platforms has 
its strength and weaknesses and might be suitable only for 
specific problems.

However, unless particular treatments are considered, in 
most of these systems, the coupling of quantum emitters to 
phonons of the host material causes large inhomogeneous 
broadening for the emitters which is a major bottleneck in 
these atom-like cavity systems.

On the other hand, atoms are naturally identical quantum 
emitters so the system composed of these quantum emitters 
combined with nano-photonic devices would substantially 
improve the inhomogeneous broadening of these hybrid 
systems [23, 24]. Therefore, the hybrid quantum systems 
of atoms and nano-photonic devices have a promising per-
spective for exploring new realms of CQED. Within the last 
2 decades and with the advancements of nano-photonics 
and nano-technology, quantum optics has witnessed a lot of 
efforts focused on interfacing these structures with neutral 
atoms [25–31].

Among the various nano-photonic devices photonic crys-
tal (PhC) cavities are some of the most promising candidates 
to obtain high-Q resonances and small mode volume, simul-
taneously. They are generally designed by creating an optical 
defect in the bandgap of a structure with periodic modula-
tion of the refractive index. Popular designs are based on a 
2D PhC, where one or several holes are removed from the 
otherwise periodic lattice [32–35]. The propagating mode of 
the waveguide at the center becomes evanescent at the edges 
and is thus confined, forming a resonant mode. Cavities are 
also obtained in 1D PhC and usually are made in a ridge 
waveguide in which a series of air holes are etched. The two 
series are usually separated by a distance L forming a cavity, 
where light is trapped.

In this article, we present the theoretical proposal of a 
CQED system based on thermal atoms coupled to 1D nano-
beam cavity where a periodic spatial modulation in dielec-
tric distribution is arranged over a dielectric nano-beam. The 
properties of such a photonic crystal have been exploited to 
engineer the optical dispersion. As suggested by our numeri-
cal calculations even in the presence of the inhomogeneous 
broadening of the thermal atoms and the large transit time 
broadening, a strong coupling between the atom and the cav-
ity photon is expected. We also calculate some of the impor-
tant atom-surface effects, like the Casimir–Polder potential, 
to incorporate the surface effects on the atoms. Moreover, 

we extend the study further to include the behavior of more 
than one atom in the vicinity of the cavity and show that the 
temporal and spectral information can be used to distinguish 
between different cases.

2 � Photonic crystal cavity

The structure of our interest is a suspended silicon nitrite 
(SiN) nano-beam with width w and thickness h. A 1D array 
of air holes with radius r and periodicity a modulates the 
refractive index of this waveguide as schematically shown 
in Fig. 1. Rubidium (Rb) atoms with thermal velocity v⃗ and 
Maxwell–Boltzmann distribution fly in the vicinity of the 
nano-device along random trajectories as denoted by black 
arrows in Fig. 1. The structure is assumed to be excited with 
coherent light via input grating couplers (In). The transmit-
ted light, after interacting with the atoms, will be collected 
from another grating coupler at the output (Out) and sent to 
a fast single photo diode.

The periodic modulation of the refractive index of the 
nano-beam in 1D leads to a partial photonic bandgap along 
the x-direction. Within the frequencies of our interest, i.e. 
near-infrared, SiN can be treated as a dispersion-less mate-
rial with fixed refractive index [36], nSiN = 2.05. Figure 2a 
shows the band structure of such 1D periodic structure, with 
w = 420 nm, h = 250 nm, a = 325 nm, and r = 91 nm, in 
the first Brillouin zone [0, �∕a] . With these parameters the 
structure supports a wide photonic bandgap with band edges 
at � = 881 nm and � = 754 nm for the dielectric (DB) and air 
band (AB), respectively. This wide bandgap implies that the 
periodic array of the holes serves as a good mirror for the 
photons within that energy range. These regions, indicated 
as mirror in Fig. 1, trap the photons for a long time in the 
cavity section ( �ph is on the order of ns). By optimizing the 
positions and radii of the holes in the middle part a defect 
center can be realized that supports a single, high-quality 
factor resonance. Since the atoms fly through the holes, the 
field intensity should be confined mostly inside the air holes; 
hence, the resonance frequency should be close to the air 
band (AB). In addition, to achieve the longest photon life-
time within the cavity, the spatial profile of the resonant 
mode should have a Gaussian distribution to minimize the 
leakage of the photons out of the cavity. These conditions 
result in the radii of r = 63, 67, 73, and 81 nm for the holes 
in the cavity region. These parameters lead to a resonant 
mode at 780 nm, i.e. D2-line transition of Rb. Figure 2b, c 
shows the field intensity profile of the cavity mode at three 
different cross sections. As can be seen the resonant mode is 
tightly confined within the cavity region close to the nano-
beam and is mainly polarized along the y-direction.

From these mode profiles, we can calculate the relevant 
CQED parameters of this atom-cavity system. Our numerical 
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calculations indicate the quality factor of Q = 65,000 equiva-
lent to a photon decay rate of �ph ≈ 3.7 × 10 10 1/s.

Aside from the Q-factor, mode volume is another important 
indication of the atom–photon coupling strength. For a disper-
sion-less material like SiN the mode volume is determined by

(1)Vmode =
∫
V
dV 𝜖(r⃗)|E⃗(r⃗)|2

Max(𝜖(r⃗)|E⃗(r⃗)|2)
,

where 𝜖(r⃗) is distribution of the structure permittivity as a 
function of position and E⃗(r⃗) is the electric field profile [37].

Due to the sub-wavelength features of the mode profile 
the vacuum Rabi frequency is highly position dependent 
and its maximum in the middle of the central hole is given 
by
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Fig. 1   a Schematics of the nano-beam photonic crystal cavity com-
posed of a slab with width w and height h modulated with 1D array 
of holes with radius r = d∕2 and periodicity a in the mirror section. 
The electronic energy levels of rubidium atoms flying along random 
trajectories in the vicinity of the structure has been shown as well. A 

pair of grating couplers at input and output will be used to excite the 
device with a coherent light (In) and collect the scattered light (Out) 
from the device and send it to a single-photon detector. The graph 
shows an example of the time-trace of the photons measured by photo 
diode

Fig. 2   a Photonic band-diagram 
of a 1D periodic hole array in a 
SiN nano-beam within the first 
Brillouin zone. The dashed lines 
show the photonic bandgap 
edges and DB and AB solid 
lines show the dielectric band 
and air band, respectively. The 
green line (horizontal solid line) 
shows the cavity resonance fre-
quency with respect to the band 
edges. Electric field intensity 
profile of the cavity mode in b 
YX and c XY, XZ cross sections. 
The solid white lines in panels b 
, c show the physical boundaries 
of the structure. d 1D electric 
field amplitude profiles along 
x, y, z-directions at the central 
planes
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where in the above relation �0 is the vacuum permittivity and 
dsp is the effective transition dipole moment of Rb at 780 nm 
in a linearly polarized field.

To determine the effective transition dipole moment and 
due to the degeneracy of Zeeman sub-levels one had to 
average over all allowed transition [38]. As the cavity field 
is linearly polarized the average should be performed on �
-allowed transitions, only.

where in general in the above equation CmFF′
 is the Cleb-

sch–Gordan coefficients of transitions from mF magnetic 
sub-level of the ground state to m′

F
 magnetic sub-level in 

the excited state. (For �-polarization field mF = m�
F
 .) In addi-

tion, D = ⟨J��er��J�⟩ is the reduced dipole moment of D2

-transition and is related to the excited-state lifetime as [39].

where D = 3.584 × 10−29 C.m for rubidium atoms. Using 
Eq. 3, the effective transition dipole moment will be deter-
mined as dsp = 1.6584 × 10−29 C.m.

The atom is flying through the device and will experi-
ence a transit-time broadening due to its finite interaction 
time with the field. For an atom at room temperature with 
the r.m.s velocity of � =

√
3kBT∕mRb ≈ = 295 m/s, the 

broadening due to the finite interaction time with the cav-
ity field can be approximated as

where in the above equation h is the slab height which is the 
shortest interaction length of the atom and the cavity. This is 
just an order of magnitude calculation to estimate the achiev-
able atom–photon cooperativity expected from this cavity. 
The effect of this transient interaction between the atom and 
the cavity field is properly modeled via Monte Carlo calcula-
tions presented in Sect. 4.

From these values, we can estimate the cooperativity of 
this atom-cavity system at the cavity center, a parameter 
that indicates the ratio between all the coherent and inco-
herent effects in a coupled system, and is determined as

Table 1 summarizes the important parameters of this cavity-
atom system.

(2)gmax =

√
�res

2ℏ�0Vmode

⋅ dsp,

(3)d2
sp
=

∑
mFF�

�CmFF�
�2

2F + 1

�
J��er��J�

�2
,

(4)
⟨
J||er||J�

⟩2
=

3��0ℏc
3

�2
sp

2J� + 1

2J + 1
Γsp,

(5)�int =
h

�
≈ 0.9 ns,

(6)C = 2
g2
max

�phΓatom

≈ 406.

3 � Body‑assisted Green’s function

3.1 � Local density of the optical states (LDOS)

As stated in the previous section, the cavity has a large qual-
ity factor (Q) and a small mode volume hence the radiation 
properties of an atom in the vicinity of the structure would 
be strongly modified. One of the interesting aspects of nano-
photonic devices is their ability to substantially modify the 
local density of the optical states (LDOS) due to the large 
gradient of the field profile on the order of or below the 
resonance wavelength.

The modification of an emitter properties in the vicin-
ity of the structure occurs in two ways: 1. via changing the 
decay rate of the emitter by a factor known as the Purcell 
factor. 2. Via modifying the electronic levels of the emitter. 
Since the refractive index of the device is rather large there 
would be a noticeable dipole–dipole interaction potential 
between the emitter and its image. This Casimir–Polder 
interaction induces a shift in the atomic line [40]. As both 
of these phenomena are related to the body-assisted Green’s 
function, in this section, we present the Green’s function and 
calculate its corresponding Casimir–Polder potential.

The electromagnetic Green’s tensor denoted as �(r, r�;�) 
is the electric field at location r generated by an infinitesimal 
current moment at location r′ and at frequency � . In other 
words, it is the impulse response of the Helmholtz operator 
determined via the following equation:

where in the above equation �(r) is the spatial distribution of 
the permittivity set by the nano-photonic device geometry.

Closed formulae for Green tensors are merely available 
for highly symmetric geometries; hence, in general, for most 
of the systems it should be determined numerically. In this 
work, we employed Lumerical an FDTD-based commercial 
software to solve this equation numerically.

The Green’s tensor is also an indication of the radiated 
power from the dipole in the system. Therefore, the larger 
the coupling to the modes the larger radiated power by the 
dipole. As mentioned in the previous section, for this nano-
beam geometry, the cavity mode is mainly polarized along 
the y-direction, specifically in the XY plane of symmetry. 
This implies that the best coupling to various dipole orien-
tations can be obtained for a y-directed dipole, the dipole 

(7)
(
∇2 −

(
𝜔

c

)2

𝜖(r)

)
�(r, r�;𝜔) = 𝛿(r − r�),

Table 1   CQED parameters of the nano-beam photonic crystal cavity

�res Vmode Q gmax �ph C

780 nm 0.08 �3
res

65,000 2�× 15 GHz 2�× 5.9 GHz 406
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oriented along the beam width. For the other two orienta-
tions, the radiated power is substantially lower, as the dipole 
and the cavity mode do not couple efficiently. This qualita-
tive prediction can be clearly observed in the numerical cal-
culations presented in Fig. 3a where the calculated Purcell 
factor for all of the x−, y - and z-oriented dipoles has been 
shown as a function of the dipole wavelength. As can be 
observed, the power emitted from a y-directed dipole sub-
stantially increases when the dipole energy approaches the 
cavity resonance wavelength. Moreover, the emitted power 
is noticeably higher compared to the power emitted from 
x, z-directed dipoles. Note that the radiated powers from the 
latter dipoles are not strictly zero since aside from the cavity 
mode, there are continuum of leaky modes that the dipoles 
could always couple to. The finite spikes in the radiation 
spectrum of the x−, z-oriented electric dipoles are due to 
some parasitic cavity effects in a finite-sized structure we 
considered in all of the simulations.

3.2 � Casimir–Polder effect

When an emitter radiates in the vicinity of a large-index 
dielectric surface its radiation properties not only will be 
affected by the change of the local density of the optical 
states (LDOS) as discussed in the previous part, but also its 
electronic levels will be affected by a dipole–dipole interac-
tion between the atom and its induced dipole image. This 
phenomenon known as Casimir–Polder potential is closely 
related to the modification of the emission properties of the 
dipole locally and is related to the Green’s function via the 
following relation [41]:

where �sc(r, r;�) is the scattered part of the Green’s ten-
sor ( �sc = � −�free space ) as defined in the previous sec-
tion and �n(�) is the dynamical polarizability tensor of the 
emitter at frequency � and in the �n⟩-state. Symbol P in 
front of the integral emphasizes that one has to calculate 
the Cauchy principal value of the integral. This is important 
as we need to calculate the Casimir–Polder potential of an 
excited atom in the vicinity of the structure, where �P(�) has 
a pole at D2 , corresponding to a real photon emission. Due 
to the large velocity of the atoms in a thermal gas the force 
exerted by UCP and its effect on altering the atomic trajec-
tory can be ignored. Therefore, one only needs to include 
the effect of this potential on shifting the atomic resonance 
as ℏ�CP = UCP.

In general, the induced potential consists of resonant and 
non-resonant parts. While the former is related to all of the 
virtual transitions from the emitter the latter is related to 
the real transitions of an atom in the �n⟩-state. Unless the 
emitter is very close to the body, often the contribution 
from real photons exceeds the virtual photon parts [41]. In 
addition, as suggested by the results in Fig. 3a, the body-
assisted Green’s function of this system is mainly peaked 
at the emitter resonance wavelength (i.e. �res ), suggesting 
a further increase due to the LDOS. Therefore, for such a 
high-Q, single mode cavity we can limit ourselves to the 
resonant part and approximate the Casimir–Polder potential 
with the body-assisted Green’s function in the vicinity of its 
resonance.

Employing this approximation and calculating the polar-
izability from the transition dipole moments and frequencies, 

(8)

U
(n)

CP
(r) = −

ℏ

2�
�0 P∫

∞
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(
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Fig. 3   a Purcell factor enhancement of a radiating electric dipole at 
the center of the cavity, i.e. x = y = z = 0 as a function of the dipole 
wavelength. The blue, red, and green lines correspond to the x,  y, 
and z-oriented electric dipoles. Purcell factors of x- and z-oriented 
dipoles are multiplied by a factor 500 to have comparable values to 
the y-dipole case. b Casimir–Polder-induced line shift as a function 

of z, away from the device surface, for an electric dipole at x = y = 0. 
The slab height h = 250 nm. The induced potential is calculated for a 
dipole emitting at D 

2
 line of rubidium. c Casimir–Polder-induced line 

shift as a function of y, along the beam width, for an electric dipole at 
x = z = 0. The radius of the central hole r = 63 nm. The filled circles 
in each case show the simulated data points
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we have calculated the Casimir–Polder potential at several 
positions close to the device. In Fig. 3b, c, we show some 
of the calculated results of the frequency shift due to the 
Casimir–Polder effect ( �CP ) away from the structure along 
the z-direction, and away from the cavity towards the hole 
edge along the y-direction, respectively. As can be seen, 
due to the induced dipole image, a Rb atom radiating at 
D2 experiences about tens of MHz line shifts in the transi-
tion frequency. Also due to the attractive force between the 
dipole and its image the shift in the energy is always nega-
tive. Comparing these values with the transit broadening an 
atom experiences as it flies though the structure it can be 
concluded that the Casimir–Polder potential does not have 
a large effect. Indeed, the effect becomes more and more 
pronounced for slower atoms where the energy shift can lead 
to measurable detuning between the atom and cavity hence, 
diminishing the strong coupling between them.

4 � Atom–light interactions and Monte‑Carlo 
simulations

In the previous sections, we conducted some orders of 
magnitude estimation of the atom photon coupling as well 
as more quantitative investigations on the Casimir–Polder 
potential to explore the behavior of a moving atom in the 
vicinity of well-designed high-Q PCC with small mode vol-
ume. Those analyses suggest that the achievable coupling 
between a flying atom and a photon cavity is strong enough 
to expect quantum interference effects from this hybrid sys-
tem even though moving atoms are typically subject to the 
large transit-time broadening. To fully evaluate the perfor-
mance of the hybrid system, however, one needs to treat 
the atom–photon coupling more accurately. In this section, 
we employ a Monte Carlo scheme that combines the spa-
tially varying photon field and the Casimir–Polder potential 
derived in the previous section with full quantum mechani-
cal description of the atom–photon coupling to investigate 
the interaction of a moving atom with the nano-cavity. We 
investigate the motion of a thermal atom with a random 
velocity v⃗ following a random trajectory r⃗(t) determined by 
its velocity. The evolution of the joint density matrix of the 
atom and photon at each time is determined via the following 
Liouville’s equation:

where ( �,Γ ) are the photon decay rate from the cavity and 
the atom lifetime in the excited state, respectively. a, a† are 
the annihilation and creation operators of the photon field, 

(9)

d�

dt
= − i[H, �] + �

(
a�a† −

1

2

{
a†a, �

})

+ Γ
(
�−��+ −

1

2

{
�+�−, �

})
,

and �−, �+ are the atomic lowering and raising operators, 
respectively.

Atom–photon interaction can be properly studied with 
Fock states and we investigate the scenario where photons 
are injected with a weak, coherent excitation at the rate �L . 
Therefore, the total Hamiltonian in the rotated frame of the 
laser is given via the following driven Jaynes–Cumming 
form as

where �c,�a,�L are the cavity, atom, and laser frequency, 
respectively, and g(t) is the vacuum Rabi coupling of the 
atom-cavity at atom position of r(t) and varies as the atom 
moves along the device. Also, due to the Casimir–Polder 
effect, the detuning between the atom and the laser is posi-
tion and, therefore, time dependent as well. We would like to 
emphasize that using a complex Rabi coupling, as g(t), the 
effect of position dependence of the photonic mode phase 
has been inherently included.1

Figure 4 shows the results of the Monte Carlo simulation 
for a moving atom in the vicinity of PCC for three different 
velocities and initial position. The joint density matrix has 
been evolved according to the above equation and the instan-
taneous expectation value of the intra-cavity photon numbers ⟨
a†a

⟩
 has been calculated for different cavity-laser detuning 

values ( ΔcL ) while the atom moves in the vicinity of the cav-
ity. The interaction time and the coupling strength between 
atom and cavity strongly depend on the atom velocity and 
its initial position; hence, the behavior drastically changes 
along different trajectories. The time-averaged photon num-
ber as a function of cavity-laser detuning has been shown 
in the second row for each case. The third row manifests 
the change of the intra-cavity photon number as a function 
of time when ΔcL=0. As can be observed the number of 
photons in the cavity drops when the coupling between the 
atom and the cavity photon is strong enough to induce a 
large detuning between the input laser frequency and the 
frequencies of the dressed states. In other words, the cavity 
becomes opaque to the input laser for a finite amount of 
time. The inverse scenario is observable as well. At large 
cavity-laser detuning, the presence of atom makes the cavity 
transparent for a while.

To produce a gated cloud of atoms one can employ the 
light-induced atomic-desorption (LIAD) process. In the 

(10)
H =

(
�c − �L

)
a†a +

(
�a(t) − �L

)
�+�−

+
(
g(t)a�+ + g∗(t)�−a†

)
+ �L

(
a + a†

)
,

1  For a traveling wave with well-defined wave vector(k⃗ ), hence a lin-
ear phase change in space, this is the well-known Doppler shift as 
𝜔D = k⃗ ⋅ v⃗ . However, due to the sub-wavelength features of the cavity 
field the phase is better to be included numerically and on the same 
ground as its amplitude.
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LIAD process, also known as the photo-electric effect for 
atoms, high-energy laser pulses hit the wall of an atomic 
vapor cell, which is coated with alkali atoms and desorb 
them from the surface  [42–45]. When chosen properly 
atomic clouds as dense as 1000 atoms/�3 can be gener-
ated [46]. The inset of Fig. 5 shows the typical trajectory 
of atoms released from the wall via LIAD process. Figure 5 
shows the normalized intra-cavity photon number as a func-
tion of cavity-laser detuning after averaging over 100,000 
atom trajectories. Due to the random paths, which give dif-
ferent atom–photon coupling, the dressed state splitting is 
trajectory dependent. However, the averaged vacuum Rabi 
coupling is still large enough to lead to the spitting of major-
ity of fast moving atoms at ΔcL = 0 as they transiently pass 
through the cavity. We would like to emphasize that the 
observed dip at zero detuning here is different from DIP 
(dipole-induced transparency) studied in the overdamped 
atom-cavity and plasmonic systems [47–49]. While DIP is 
a steady-state feature of those coupled systems the transpar-
ency window observed in the atomic ensemble here appears 
for thermal atoms transiently interacting with the field and 
far from their steady state.

The analysis can be extended further to investigate the 
behavior of multiple atoms interacting with the same cav-
ity mode. Figure 6a–c shows the instantaneous number of 
intra-cavity photons as a function of cavity-laser detuning for 
three different delays between two atoms for �t = 0, 2, 4 ns, 

respectively. The complete study of the many-atom cavity 
coupling in the dense atomic media is the topic of follow-up 
studies and as very different scenarios are imaginable here 
we only limit ourselves to atoms flying through the central 
hole, where the interaction is the strongest. In all of these 
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cases, the atoms follow the same trajectory along the line 
passing through the center of the cavity with the velocity 
of v⃗ = −200ẑ m/s. As can be seen depending on the delay 
between atoms the behavior is substantially different. When 
there is no delay and both atoms fly in the vicinity of the 
cavity simultaneously the behavior is similar to the single 
atom case (Fig 4a) except an increase in the effective Rabi 
coupling by 

√
2 . When there is a finite delay between atoms, 

as depicted in Fig. 6b, c, the first atom can make the cav-
ity opaque while the second atom can allow the photons to 
enter the cavity again. This behavior, which is strongly delay 
dependent, is depicted in panels (b) and (c) where multi-
ple oscillations in the instantaneous photon number can be 
observed. For longer delays the first atom is already far away 
from the cavity and its effect is so negligible that the second 
atom can be treated almost, independently.

5 � Conclusion

In this work, we proposed a new hybrid system for CQED 
studies with thermal atoms. Compared to their cold atom 
counterparts, thermal atoms are less controllable and fly 
along random paths. However, some pre-selection schemes 
such as geometrical treatments on the fabricated device, 
on-chip collimators [50], or dense LIAD generated clouds 
can be employed to limit the atomic trajectories to more 
favorable ones.

To overcome the typical problem of short interaction time 
between flying atoms and the cavity mode, we designed a 
high-quality factor photonic crystal cavity that provides 
large vacuum Rabi coupling and cooperativity. We studied 
the effect of cavity and LDOS modification in controlling 
the decay rate. In addition, we calculated the surface effect 
and Casimir–Polder effect in altering the atomic transitions. 
Using a Monte Carlo algorithm and combining the full 
quantum-mechanical description of atom–photon interaction 

with Casimir–Polder effects, we investigated the feasibil-
ity of observing coherent coupling between a flying atom 
and the cavity photon. Our results predict that the attainable 
coupling can be large enough to achieve the strong coupling 
regime in spite of all decoherence and transit time effects. 
In addition, we extended the study to more than one atom 
case and investigated multiple atom-induced transparency 
occasions that can be achieved in this system.

Our designs and analysis set the foundations for investi-
gating atom–photon interactions in more complicated nano-
photonic devices that support specific features such as topol-
ogy or chirality [51]. Furthermore, due the large attainable 
LDOS in nano-devices the coupling of atoms to non-desired 
modes will be substantially suppressed and photon-mediated 
coupling between atoms are expected to be enhanced. Inter-
facing atoms with custom nano-photonic devices is a bur-
geoning emerging field and new eras of quantum optics are 
ahead, which leads to novel types of interactions between 
the atoms and the engineered photonic states.
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