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Abstract
We have studied numerically the influence of intrapulse Raman scattering (IRS) on the dissipative solitons with extreme spikes 
(DSES). The following scenarios of the influence of IRS have been identified. In the anomalous dispersion regime, there has 
been found a transformation of the single spike DSES and pulsating in x and t DSES into Raman dissipative solitons. We 
should mention a good performance of the finite-dimensional system in the description of all pulse parameters in the first 
case. In the other scenario, the DSES moving with fixed velocity pulsating in x and t transforms into single spike DSES mov-
ing with fixed velocity. We have also observed a transformation of double spike DSES into single spike moving DSES as 
well as a transformation of a single spike DSES into a single spike moving DSES accompanied by the change in the period 
of the spikes appearance. In the normal dispersion regime, we have found a transformation of a single spike DSES into a 
single spike moving DSES and the change of the period of the spikes appearance. For a large strength of IRS, an appearance 
of a chaotic DSES has been observed.

1 Introduction

The complex cubic–quintic Ginzburg–Landau equation 
(CCQGLE) has been used to describe many phenomena 
including second-order phase transitions, superconductiv-
ity, superfluidity, Bose–Einstein condensation, liquid crys-
tals, and string theory [1]. In optics, the CCQGLE models 
passively mode-locked solid-state and fiber lasers as well as 
soliton transmission lines [2–4]. For ultrashort optical pulses, 
it is necessary to include some additional higher-order effects 
(HOE): third-order of dispersion (TOD), self-steepening (SS) 
and intrapulse Raman scattering (IRS) [5–7]. The formation 
of fixed-shape solutions from the localized pulsating solu-
tions of the CCQGLE under the influence of HOE has been 
numerically shown in [5, 6]. In [7], the existence of periodic 
non-chaotic explosions in the CCQGLE under the influence 
of IRS has been numerically observed.

Recently, a strongly pulsating regime of dissipative solitons 
has been numerically observed in the normal and anomalous 
dispersion regimes [8–10]. The basic feature of the former 
is extreme ratios of maximal to minimal energies (or ampli-
tudes) in each period of pulsations [8]. In the normal disper-
sion regime, the solution structure can be considered as sharp 
peaks developing on top of a more stable wider soliton that 
serves as a background. Later on, such strongly pulsating dis-
sipative solitons have been named dissipative solitons with 
extreme spikes (DSESs) [9, 10]. It has been shown that the 
variation of the parameters of the CCQGLE results in a variety 
of bifurcations. Bifurcation diagrams have been constructed 
representing the peak amplitude (or energy) versus any of 
the parameters of the CCQGLE: dispersion and saturation 
of the nonlinear gain [8]; linear loss–gain, spectral filtering, 
nonlinear gain, saturation of the nonlinear gain and saturation 
of the nonlinear refractive index [9]; and finally, dispersion, 
spectral filtering and nonlinear gain in [10]. The bifurcation 
diagrams represent different forms of the DSES [8–10]. The 
DSES can be either periodic or chaotic. The periodic DSES 
can be of the following types: single spike pulsating in x (or 
single spike DSES); double spike pulsating in x (or double 
spike DSES), moving with fixed velocity single spike pulsat-
ing in x (or single spike moving DSES), moving with fixed 
velocity pulsating in x and t (or asymmetric solution with the 
profile inverted after every period [10]), and others [8–10].
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Our aim is to study the influence of IRS on DSES. Here, 
we apply the simplest quasi-instantaneous approximation of 
the IRS [11, 12]. This can be modeled by the CCQGLE per-
turbed with Raman term (see Eq. 1 below). The main approach 
for identifying its solutions is the numerical solution [2, 3, 
8–10]. We have numerically solved the CCQGLE using two 
different numerical approaches: the fourth-order Runge–Kutta 
in the Interaction Picture (RK4IP) method and the Agrawal 
split-step method. Our investigation is based on the numeri-
cal findings of [8–10] for regions of parameters for which the 
above-metioned forms of DSES exist. Although the types of 
the DSES are very different, some of them like the single spike 
pulsating in x, centered in t and symmetric in t DSES could 
be described by the proper finite degrees of freedom model.

Using the method of momentum [13] we have developed 
the finite degrees of freedom model for the analysis of the 
influence of HOE on the solutions of the CCQGLE in the 
anomalous dispersion regime [14]. Here we have applied 
a finite degree of the freedom model to describe the transfor-
mation of a single spike pulsating in x centered in t and sym-
metric in t DSES into Raman dissipative solitons with large 
amplitudes. We started to use the model [14] in the study of the 
influence of IRS, SS, and TOD on some of the solutions of [4]. 
Using this model, we have predicted and numerically observed 
by the direct numerical solution of Eq. (1) the appearance of 
a) a pulsating solution in the presence of SS and IRS as well as 
b) a pulsating solution in the presence of IRS and large values 
of nonlinear gain coefficient [15]. Recently, the same dynami-
cal model has helped us to find the existence of Raman limit 
cycles in the presence of SS, IRS and large nonlinear gain [16].

In the second paragraph, we introduce the CCQGLE per-
turbed with IRS [see Eq. (1)] as well as the finite degrees of 
freedom model derived in [14] (Eq. (3)). Next, we discuss the 
numerical methods as well as the numerical parameters used 
for the calculation of Eq. (1). The third paragraph contains 
our results. Finally, we present the conclusions we have drawn 
from our investigations.

2  Basic equation and dynamical model

The dynamical behavior is described by the following CCQ-
GLE perturbed by IRS [2, 4–7]:

where U is the normalized envelope of the electric field, t 
and x are the evolutional and spatial variables, D denotes 
dispersion, being anomalous when D > 0 and normal if 
D < 0 , � is the linear loss–gain coefficient, � describes spec-
tral filtering, � is the nonlinear gain or absorption coefficient 
(the nonlinear gain arises from saturable absorption), � , if 
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,

negative, accounts for the saturation of the nonlinear gain, 
� , if negative, corresponds to the saturation of the nonlin-
ear refraction index. In this equation, we have implied that 
the group-velocity dispersion is anomalous. The param-
eter � is responsible for the effect of IRS in the simplest 
quasi-instantaneous description. The linear approximation 
to the frequency-domain Raman response function has 
been applied in this case [11, 12].

Eq. (1) has been used to model the propagation of optical 
pulses in soliton transmission systems as well as a master 
equation in the theory of mode-locked solid-state and fiber 
lasers [2–4].

We have  solved numerically the  CCQGLE with the 
fourth-order Runge–Kutta in the Interaction Picture (RK4IP) 
method [17] and the Agrawal split-step method with two 
iterations [18]. The choice of these numerical approaches is 
related to the results of our recent study [19]. A comparison 
of the performance of the different numerical methods for 
the numerical calculation of the influence of the IRS (in 
the quasi-instantaneous description) on the soliton propa-
gation can be found in [19]. The results presented here are 
obtained by the step-size adaptive versions of the fourth-
order Runge–Kutta in the Interaction Picture (RK4IP) 
method [17] and the Agrawal split-step method with one and 
two iterations. As an adaptive step-size selection criterion, 
we have applied the nonlinear phase increment [20].

We have used the following values of numerical param-
eters: time window T = 80 and number of grid points 
N = 32768 . The corresponding temporal resolution and fre-
quency resolution are Δt = 0.00224 and Δ�∕2� = 0.0125 , 
respectively. In some cases, we also  use time window 
T = 400 and number of grid points N = 524288 . The cor-
responding temporal resolution and frequency resolution, in 
this case, are Δt = 0.00076 and Δ�∕2� = 0.0025 , respec-
tively. The step Δx is an adaptive quantity.

The following numerical quantities have been calculated 
by the numerical solution of Eq. (1): central circular fre-
quency:�

n(x) = ∫ +∞

−∞
�|U(x,�)|2d�

/
∫ +∞

−∞
|U(x,�)|2d� , 

peak amplitude: �
n(x) = max|U(x, t)|,∀t , time position: 

k
n(x) = ∫ +∞

−∞
t|U(x, t)|2dt

/
∫ +∞

−∞
|U(x, t)|2dt  and width: 

�
n(x) = �(x)∕�(0), where �(x) = ∫ +∞

−∞
|U(x, t)|2

/
�
n(x)

2dt.
To study DSES, we have used symmetric and asym-

metric initial conditions for the numerical solution of 
Eq.  (1). As is well known, using asymmetric initial 
conditions can lead to the appearance of moving solu-
tions [10]. Our symmetric initial condition has the form: 
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U(0, t) = �0 sech
(
t
/
�0
)
 (including �0 = 1

/
�0 ), where �0 

and �0 are the initial amplitude and width, respectively. This 
form of the initial conditions allows us to obtain numerical 
results comparable to those of the dynamical system (DS) 
(3). The asymmetric initial conditions are the following: 
U(0, t) = �1 sech

((
t − k1

)/
�1
)
+ �2 sech

((
t − k2

)/
�2
)

 , 
where k1 and k2 are the initial positions of the pulses.

To derive a finite degrees of freedom model, we have used 
the following trial function [4, 13]:

where �(x) , �(x) and k(x) are, respectively, the amplitude, 
width and position of the pulse maximum, �(x) is the cir-
cular frequency, c(x) is the chirp parameter. Applying the 
method of moments of [13], we have obtained the following 
dynamical system [14]:

With �
m(x) , �m(x),km(x) and �

m(x) , we denote the ampli-
tude, frequency, position and width calculated by the dynami-
cal system (3). These magnitudes will be compared in some 
of the following figures with the quantities calculated by the 
numerical solution of Eq. (1): frequency �

n(x) , peak amplitude 
�
n(x) , time position k

n(x) , and width �
n(x) as defined above.

The evolution of the DSES into a stationary solution with 
a sech-like form is crucial for the application of DS (3) in the 
description of the solution evolution. Obviously only a small 
part of DSES of Eq. (1) have this type of evolution. As we 
will see further, DS (3) can be successfully applied for the 
description of the transformation of a single spike pulsating in 
x centered in t and symmetric in t DSES into Raman dissipa-
tive solitons with large amplitudes.

3  Influence of IRS on DSES

The regions of the parameter space in  the CCQGLE 
where different types of DSES exist have been identified in 
[8–10]. Our aim here is to study whether under the influence 
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of the IRS, there appear transformations in the different 
types of DSES. In addition, we will check the applicability 
of DS (3) in the description of such phenomena.

We have  fixed the following  values of the physical 
parameters: � = −0.1;� = 0.3;� = −0.001 [9, 10]. Our 
study is based on the bifurcation diagrams represent-
ing the peak amplitude vs � , for two different values of 
� ∶ � = 0.1;� = 0.01 [9, 10]. We should mention that the 
comparison with the numerical  results presented there 
could have qualitative character (the initial conditions for 
the numerical calculations are not given in [9, 10]).

First we consider the  case of � = 0.01 . As it is well 
known for � = 0.24 , a single spike pulsating in x centered 
in t and symmetric in t DSES should be expected [9, 10]. 
We will consider symmetric and asymmetric initial condi-
tions. Here we fix the symmetric initial condition as follows: 
U(0, t)= 2.7sech(3t).

As could be expected in this case, we have observed a sin-
gle spike and symmetric in t DSES [9, 10]. Figure 1a–c, rep-
resent the existence of an initial transition period ( x ∼ 5 ) for 
the appearance of DSES. A nice preservation of the shape 
of the DSES symmetric in t, as well as its spectrum at fixed 
distances can be seen in Fig. 1c, d.

Next in Fig. 2, we have studied what happens to the single 
spike DSES pulsating in x and symmetric in t in the presence 
of IRS. We have fixed the value of the parameter describing 
IRS as: � = 0.05.

As we see under the influence of IRS � = 0.05 at very 
short transformation distance x ∼ 1 from the initial single 
spike and symmetric in t DSES there appears a stationary 
solution or a Raman dissipative soliton with an amplitude 
larger than the minimum but smaller than the maximum 
peak amplitude of the pulsating solution. The Raman dissi-
pative soliton possesses fixed values of its amplitude, central 
frequency, and time width. As can be well seen from Fig. 2a, 
b, these parameters as well as the process of their appearance 
are very well described by DS (3). An excellent preservation 
of the time shape and spectrum of the Raman dissipative 
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soliton with respect to distance is observed in Fig. 2c, d, 
respectively. Figure 2d shows the frequency shift of the cen-
tral frequency in the spectrum of the numerical solution. The 
symmetric form of the spectrum should be mentioned also in 
Fig. 2d. In next Fig. 3, we study the performance of DS(3) 
in the region of 𝛾 ⊂ [0.05 ÷ 0.09] by comparing its results 
with those obtained from the numerical solution of Eq. (1).

We should mention that there is a good agreement 
between the results obtained with DS(3) for the amplitudes, 
positions, frequencies and time widths and those obtained 
from the numerical solution of Eq. (1).

Keeping all physical and numerical parameters as in 
Fig. 1, we have applied the asymmetric initial condition: 
U(0, t)= 2.7sech(3t) + sech(2t + 3) . The results for the case 
without IRS ( � = 0 ) are presented in Fig. 4 below.

As can be seen from Fig. 4a, b after some initial transi-
tion period, there appears a DSES pulsating in x and t (or 

asymmetric solution with the profile inverted after every 
period [10]) with a maxumum value of the amplitude around 
9. Comparing Fig. 1a and Fig. 4a, we can conclude that 
the symmetry of the initial condition is important for the 
further evolution of the generated DSES. For distances 
x = 4.28;4.67 , there are no oscillations in time; while for the 
distances x = 19.56;19.93 , such oscillations exist. Figure 4c 
shows the shape of the DSES oscillating in time. Figure 4d 
shows a preservation of the spectrum of the DSES in the 
propagation in x can be seen.

In Fig.  5, we have  shown how the presence of IRS 
( � = 0.05 ) changes the DSES pulsating in x and t but not 
centered in t (presented in Fig. 4).

In Fig. 5a, we can see that after some initial transi-
tion period, there appears a Raman dissipative soliton 
with amplitude around 5. The Raman dissipative soliton 
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Fig. 1  Results obtained by numerical solution of Eq. (1) with param-
eters: � = −0.1; � = 0.3; � = −0.001 , � = 0.01; � = 0.24; � = 0 
and numerical parameters N = 32768; T = 80 . Initial condition: 
U(0, t)= 2.7sech(3t) . a Contour plot of the amplitude on the (t, x) 
plane. b Evolution of the peak amplitude of DSES in accordance with 

Eq. (1). c Comparison of the shapes of DSES at x = 0 (dash–dot–dot 
line) and x = 8.05; 10; 18.19; 19.74 (with different colors and lines 
but they practically coincide). d Comparison of the spectrums of the 
DSES at x = 8.05; 10; 18.19; 19.74 (with different colors and lines 
but they practically coincide)
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Fig. 2  Results obtained by numerical solution of Eq. (1) and DS (3)  
with parameters: � = −0.1; � = 0.3; � = −0.001 , � = 0.01; � = 0.24;

� = 0.05 ; numerical parameters: N = 32768; T = 80 . Initial condi-
tion: U(0, t)= 2.7sech(3t) . a Comparison of the evolutions of solution 
amplitudes—1,2 and temporal positions—3,4 calculated by Eq.  (1) 
and DS (3). b Comparison of the evolutions of central circular fre-
quencies ( �

n
 and −�

m
)—1, 2 and time widths—3, 4 of solutions cal-

culated by Eq. (1) and DS (3). Notation for a and b: 1—black solid 
line, 2—red dash, 3—black dot, 4—blue dash–dot. c Comparison of 
the shapes of DSES at x = 0;8;10 . d Comparison of the spectrums of 
the DSES at x = 0;8;10 (x = 0—black solid line, x = 8, 10—red dash 
and blue short-dash lines but they practically coincide)
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possesses fixed values of its amplitude, central frequency, 
and time width. Comparing Fig. 4 and Fig. 5, we should 
conclude that in the presence of IRS, pulsating in x and 
t but not centered in t DSES transforms into Raman dis-
sipative soliton with amplitude smaller than the maximum 
amplitude and larger than the minimum amplitude of pul-
sating in x and t DSES. From Fig. 5b, the preservation of 
the time shape of the dissipative Raman soliton can be 
seen. No asymmetry in the pulse can be observed. Fig. 5c 
presents the initial frequency shift toward lower frequency 
and then the preservation in the position of the spectrum 
with respect to distance. Specific frequency oscillation 
should be mentioned just in the center of the frequency 
domain. There has also been observed a similar influence 

of the IRS with � = 0.05 on the pulsating in x and t but not 
centered in t DSES in the case of � = 0.25.

Next, we have looked at what happens with the same asym-
metric initial condition: �(0)= 2.7∕cosh(3t) + 1/cosh(2t + 3) 
for � = 0.48 under the influence of IRS. For � ≈ 0.48 , a solu-
tion with two spikes per period is expected [9, 10]. Fig-
ure 6 presents the numerical solution for � = 0.48 without 
IRS ( � = 0).

Figure 6a clearly expresses the existence of DSES mov-
ing with fixed velocity pulsating in x and t (or asymmetric 
solution with the profile inverted after every period [10]). 
Note that from Fig. 6b, this DSES can be considered as 
a pulsating with two spikes per period solution. The dis-
tances that were chosen in Fig. 6c, d are the distances of the 
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Fig. 4  Results obtained by numerical solution of Eq.  (1) with  
parameters: � = −0.1; � = 0.3;� = −0.001� = −0.1; � = 0.08;  
� = 0.01; � = 0.24; � = 0 and numerical parameters N = 32768;T = 80 .  
Initial condition:U(0, t)= 2.7sech(3t) + sech(2t + 3) . a Contour plot 
of the amplitude on the (t, x) plane. b Evolution of the peak ampli-
tudes of the numerical solution with x. c Space evolution of time 

shape of DSES at x = 4.28; 4.67—black and red dash lines and 
x = 19.56; 19.93—blue (left) and green (right) solid lines. d Space 
evolution of the spectrum of DSES at x = 4.28; 4.67; 19.56; 19.93

(with different colors and lines but they practically coincide)
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last four spikes in the propagation of the DSES. Figure 6c 
demonstrates the DSES pulsating in t. Figure 6d presents 
the corresponding pulsation in the spectrum of the DSES. 
In Fig. 6c, d we can also see that during pulsations there 
exist mirror symmetry in the time domain.

Figure 7 shows how the moving with fixed velocity pul-
sating in x and t DSES from Fig. 6, in the presence of IRS 
( � = 0.05 ) transforms into a moving with fixed velocity sin-
gle spike DSES.

As can be seen from Fig. 7a, the moving with fixed 
velocity pulsating in x and t DSES from Fig. 6 under the 
influence of IRS transforms into moving with fixed velocity 
single spike pulsating in x DSES. Figure 7b clearly shows 
the appearance of a single spike solution. The distances that 

were chosen in Fig. 7c, d are the distances of the last four 
spikes in the propagation of the DSES shown in Fig. 7a. The 
main observation from Fig. 7c is the appearance of asym-
metric single spike DSES. Its maximum amplitude reduces 
to approximately 14. Figure 7c also demonstrates the time 
shift of the DSES under the influence of the IRS. Finally, 
Fig. 7d presents the asymmetric form of the spectrum of the 
moving with fixed velocity single spike DSES.

Next, we consider the case of � = 0.1 . As it is well known 
for � = 0.4 and � = 0.42 , a double spike and a single spike 
DSES should be expected, respectively [9, 10]. The influence 
of IRS � = 0.05 on these solutions is presented in the Figs. 8 
and 9. Below you can see first the case of � = 0.4. 
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Fig. 5  Results obtained by numerical solution of Eq. (1) with param-
eters: � = −0.1; � = 0.3;� = −0.001 ; � = 0.01; � = 0.24; � = 0.05 ; 
numerical parameters: N = 32768;T = 80 . Initial condition: 
U(0, t)= 2.7sech(3t) + sech(2t + 3) . a Spatial evolution of the peak 

amplitude (solid line) and temporal position (dash) of the DSES. b 
Space evolution of time shape of DSES at x = 0;8; 10; 18; 20 . c Space 
evolution of the spectrum of DSES at x = 0; 8; 10; 18; 20
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As expected, a pulsating in x double spike DSES is 
observed in Fig. 8a, c. Figure 8c shows the transforma-
tion of the double spike DSES into a single spike moving 
DSES. The spike profiles in Fig. 8a, b and all the other 
3D-space profile figures are arranged in a formation of 
the spikes along the x-axis which shows the distance of 
the formation. The main observation from Fig. 8b is the 
appearance of asymmetric single spike DSES pulsating in 
x. Its maximum amplitude is smaller than the amplitude 
of the largest initial double spike (Fig. 8c). The corre-
sponding time shift due to IRS is observed in Fig. 8b. 
Under the influence of IRS there appear changes in the 
distance between the spikes. There follows the case of 
� = 0.42.

As expected, a single spike DSES is observed in Fig. 9a, 
c (in black). In Fig. 9b, c (in red), we observe a transforma-
tion of a single spike DSES into a single spike DSES moving 
with constant velocity under the influence of IRS. However, 
as can be seen from Fig. 9b to Fig. 9d, the DSES moving 
with constant velocity has an asymmetric shape in time. 
This asymmetric time shape of the moving DSES is preser-
eved very well with the distance. Despite the asymmetry of 
the shape of DSES, its central part can be well approximated 
with the symmetric function whose maximum amplitude and 
full-width at half-maximum (FWHM) time width are not 
affected by distance. The corresponding time shift due to 
IRS is well observed in Fig. 9b, d. Figure 9c shows a reduc-
tion in the amplitudes. The change between distances at 
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Fig. 6  Results obtained by numerical solution of Eq. (1) with param-
eters: � = −0.1; � = 0.3;� = −0.001 ; � = 0.01; � = 0.48; � = 0 and  
numerical parameters N = 32768;T = 80 . Initial condition: U(0, t) =

2.7sech(3t) + sech(2t + 3) . a Contour plot of the amplitude on 
the (t, x) plane. b Evolution of the peak amplitude of the numerical 

solution. c Spatial evolution of the time shape of four consecutive 
DSES at x = 9.39; 9.58 (black and red solid line) and x = 9.77; 9.95 
(blue and green dash lines). d The spectrum of these DSES 
( x = 9.39; 9.58; 9.77; 9.95)
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which successive spikes appear under the influence of IRS 
is demonstrated in Fig. 9e. Clearly, the distance between the 
single spikes increases under the influence of IRS.

Finally, we present some examples of the influence of 
IRS on DSES in the normal dispersion regime. In Fig. 10, 
we study the case of large � = 0.95 with which demon-
startes the existence of a single spike DSES [8].

Figure 10a, b, in the absence of the IRS, shows the exist-
ence of a single spike pulsating in x DSES [8]. In the pres-
ence of IRS after an initial transition distance (~ 4, increases 
with � ) there appears a moving single spike pulsating in x 
DSES that propagates practically with full preservation of 
its shape in time regardless of the large value of the param-
eter describing IRS. This is quite an interesting robustness 
of the time shape of the moving single spike pulsating in 

x DSES in the presence of IRS. It can clearly be seen in 
Fig. 10a that under the influence of IRS there appears well-
expressed time shift of the DSES to the left. As expected, 
in Fig. 8 and Fig. 9 due to the influence of IRS, the distance 
in x between the single spikes increases. In the case of � = 0 , 
the distance between single spikes is �x ≈ 0.28 ; while for 
� = 0.15 and � = 0.3 , it is �x ≈ 0.32 and �x ≈ 0.6 . A simi-
lar type of behavior is observed in the case of � = 0.15 . 
The important conclusion which can be drawn from these 
results is that for � = 0.1 and � = 0.95 even in the presence of 
a strong IRS influence (values of � = 0.15;0.3 ), the generated 
moving single spike DSES demonstrates full preservation of 
its shape. In Fig. 10c, we can first see the typical spectrum 
shape of the DSES in the normal dispersion regime found in 
[8] as well as its preservation during its propagation. In the 
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Fig. 7  Results obtained by numerical solution of Eq. (1) with param-
eters: � = −0.1; � = 0.3;� = −0.001 ; � = 0.01; � = 0.48; � = 0.05 
and numerical parameters N = 32768;T = 80 . Initial condition: 
U(0, t)= 2.7sech(3t) + sech(2t + 3) . a Contour plot of the ampli-
tude on the (t, x) plane. b Spatial evolution of the peak ampli-

tude of the DSES. c Space evolution of time shape of DSES 
at x = 7.72; 8.81; 8.89; 9.47 (black solid, red dash, blue solid, 
green dash–dot lines). d The spectrum of the same DSES at 
x = 7.72; 8.81; 8.89; 9.47 (the spectrums practically coincide)
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presence of IRS, this spectrum becomes slightly asymmetric 
and on its left side, the value of the maximum lobe ampli-
tudes increases. There can also be seen a full preservation of 
the modified spectrum of the DSES with distance.

The results for a larger IRS coefficient value � = 0.5 are 
presented in the Fig. 11.

Figure 11a, b shows that under the strong influence of the 
IRS, the generated single spike moving DSES starts chaoti-
cally to change its positions and later, its form. A similar 
behavior has been observed at a shorter distance (before the 
disappearing of DSES) and for � = 0.75 . The important con-
clusion here is that there may appear chaotic behavior of 
DSES under the influence of IRS.

4  Conclusions

We have studied numerically the influence of intrapulse 
Raman scattering (IRS) on the dissipative solitons with 
extreme spikes (DSES). We have solved numerically 
CCQGLE perturbed with IRS  using the fourth-order 
Runge–Kutta in the Interaction Picture (RK4IP) method [17] 
and the Agrawal split-step method with two iterations [18]. 
As adaptive step-size selection criteria, we have applied the 
nonlinear phase increment [20]. There has been found a very 
good agreement between the results obtained by these two 
methods. There has also been applied a finite degrees of 
freedom model for the analysis of the influence of IRS on 
the solutions of the CCQGLE proposed in [14].

There has been found  the following scenarios of the 
influence of IRS in the anomalous dispersion regime. In 
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Fig. 8  Results obtained by numerical solution of Eq.  (1) 
with parameters: � = −0.1; � = 0.3 � = 0.1;� = −0.001 . The 
numerical parameters are: N = 32768;T = 80 . Initial condi-
tion:U(0, t)= 2.7sech(3t) + sech(2t + 3) . Space evolution of time 
shape of DSES for cases a � = 0.4;�= 0 and b � = 0.4;�= 0.05 . The 

spike profiles in these 3D-space profile figures are arranged in the 
order of formation of the spikes along the x axis—where the distance 
of formation is shown. c Peak amplitude of DSES as function of x 
for: a (black solid line) and b (red dash)
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Fig. 9  Results obtained by numerical solution of Eq.  (1) with 
parameters: � = −0.1; � = 0.3 � = 0.1;� = −0.001 . The numeri-
cal parameters are: N = 32768;T = 80 . Initial condition: 
U(0, t)= 2.7sech(3t) + sech(2t + 3) . a Space evolution of time shape 
of DSES for � = 0.42;�= 0 ; b Space evolution of time shape of DSES 
for � = 0.42;�= 0.05 . c Spatial evolution of peak amplitude of DSES 

as function of x for: a and b. d Time shape of DSES at distances: 
x = 5.31; 10.27; 15.24; 19.67 (solid, dash, dot, dash–dot lines). e The 
formation distance for each spike in the sequence presented in a with-
out (with black solid circles) and with IRS �= 0.05 (with red empty 
circles). The lines are built by the linear regression and had slopes 
correspondingly 1.9161 for the case without IRS and 2.4616 with IRS
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the case of � = 0.01 and nonlinear gain ( � = 0.24 ÷ 0.25 ), 
we have found a transformation of single spike DSES and 
pulsating in x and t DSES into Raman dissipative solitons. 
A  good performance of the finite-dimensional system 
in the description of all pulse parameters in the first case 
should be mentioned. In the other scenario with � = 0.48 , 
the moving with fixed velocity pulsating in x and t DSES 
transforms into a moving with fixed velocity single spike 
DSES. In the case of � = 0.1 for nonlinear gain � = 0.40 , 
we have observed a transformation of a double spike DSES 
into a single spike moving DSES. For � = 0.42 , the single 

spike DSES transforms into a single spike moving DSES 
accompanied by conservation of the peak amplitude and 
the FWHM time width as well as a change in the period 
of spikes appearance in x. In the normal dispersion regime 
for large values of nonlinear gain ( � = 0.95 ), we have found 
a transformation of a single spike DSES into a single spike 
moving DSES. We have also observed a change of the period 
of the spikes appearance for IRS � ≤ 0.3 and appearance of 
chaotic DSES for IRS � ≥ 0.5.

We believe that the different scenarios of the influence of 
IRS on the DSES could be practically important in the study 
of DSES in laser systems.
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Fig. 10  Results obtained by numerical solution of Eq.  (1) with  
parameters: � = −0.1; � = 0.125; � = 0.95; � = 0.1;� = −0.001 (these  
parameters have been used in [8]) and numerical parameters 
N = 32768;T = 80 . Initial condition: U(0, t)= 2.3sech(2.3t) . a Space 
evolution of time shape of DSES for the two cases: First case (in 
black)—� = 0 where 1 is the initial shape (dots), 2 and 3 (solid lines) 

are shapes at x = 0.45 and x = 9.97 (this case is presented in [8]). The 
second case (in red)—� = 0.3 , where 4 and 5 are shapes of the mov-
ing DSES at x = 4.22 and x = 9.59 (dash). b Space evolution of the 
peak amplitude of DSES in case � = 0 (black solid line) and � = 0.3 
(red dash). c The spectrum of the DSES for 2–3 (gray full area, black 
dots), 4–5 (red dash, solid)
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