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Abstract
Starting from the normalized dimensionless linear parabolic (Schrödinger-like) equation, by means of split-step Fourier 
numerical simulation, in this paper we investigate the interaction between two chirped Airy–Gaussian (CAiG) beams in a 
medium with a parabolic potential. We find that a parabolic potential provides interesting effects and supports the bound 
states of two CAiG beams. We also study the effect of chirps and found that large enough chirps will weaken the energy of 
bound states. Moreover, initial parameters of the beams, initial interval, amplitudes, and distribution factor, are taken into 
consideration as well.

1 Introduction

In 1979, Berry and Balazs first discovered that ideal Airy 
function was an exact solution of Schrödinger equation in 
the context of quantum mechanics [1]. However, true Airy 
wave packets, whose electric field profile is defined by an 
Airy function, are impractical as they contain an infinite 
amount of energy. Fortunately, Airy beams with finite 
energy were obtained experimentally by Siviloglou and 
Christodoulides in 2007 [2, 3]. This asymmetric beam has 
attracted wide attention on a world scale due to its unique 
properties. For example, it is diffraction free, and it exhibits 
self-acceleration and self-healing [3–6]. From the practical 
point of view, Airy beams have found useful applications, 
ranging from optical trapping [7] and optical switching [8] 
to plasma waveguide [9]. Recent analyses of temporal Airy 
pulses and spatial Airy beams suggest that different media 
have different effects on their propagation. When the pulses 
or beams propagate in nonlinear media, soliton is formed 
out of the main part of the energy about the Airy main lobe; 
Airy–soliton pairs are observed when Airy beams interact 
with each other [10–12]. In 2015, the propagation dynamic 
of chirped Airy pulse in an optical fiber was obtained 
analytically [13]. Strongly nonlocal and nonlinear media 
play crucial roles to make Airy pulse or beams propagate 

periodically [14, 15]. Such results have been discussed in 
numerous works. Furthermore, the dynamics of optical 
beams, such as Gaussian and Airy beams, in the context 
of the fractional Schrödinger equation (FSE) [16–18], have 
attracted great attention in recent years. Interestingly, in 
these studies the authors report that without potential and 
chirp, a one-dimensional (1D) Gaussian beam splits into 
two non-diffracting Gaussian beams, and a two-dimen-
sional (2D) Gaussian beam undergoes conical diffraction 
during propagation. On the other hand, with linear chirp, 
both 1D and 2D Gaussian beams are diffraction free and 
their trajectories are deflected. Interestingly, the transmis-
sion, partial transmission/reflection, and total reflection of 
approximate diffraction-free beams are determined by the 
potential depth in the FSE with a double-barrier potential. 
When Airy beams are modeled by the potential barrier-
induced fractional Schrödinger equation, the Lévy index 
plays an important role in diffraction, splitting, the number 
of reflected waves, and so on.

An Airy–Gaussian (AiG) beam can be seen as a more 
realistic Airy beam passing through Gaussian apertures. So 
AiG beams with finite energy retain some properties both 
of Airy and Gaussian beams. In consequence, AiG beam is 
becoming more and more popular today. Interestingly, the 
propagation properties of AiG beams indicate that self-bend-
ing is dependent on the distribution factor. Relevant numeri-
cal results are reported in Ref [19]. Thereafter, many investi-
gations have been performed to understand the propagation 
of one AiG beam and interactions of two AiG beams [20, 
21]. The results show that when the initial incident power 
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of the AiG beam is within a certain range, a stable soliton 
arises; and single breather and breather pairs can be formed 
in the interaction of two AiG beams with enough intensity in 
saturable media and Kerr-like media. In addition, it is found 
that the interaction can be attractive or repulsive, depending 
on the relative phase, and as decreasing the interval between 
two AiG beams in the incidence, the intensity of the interac-
tion increases. Moreover, chirp is found to support periodic 
and opposite intensity distribution of AiG beams [22].

In this paper, after introducing the normalized dimension-
less linear parabolic (Schrödinger-like) equation under the par-
axial approximation, we derive the interaction of two chirped 
Airy–Gaussian (CAiG) beams in a medium with a parabolic 
potential. We numerically find symmetric and/or asymmetric 
bound states generated by two separated CAiG beams. We find 
they are affected by the depth of the potential well, the distribu-
tion factor, the phase factor, amplitude and chirp.

2  Theoretical analysis

Under the paraxial approximation, the normalized dimen-
sionless linear parabolic (Schrödinger-like [23, 24]) equation 
is described as:

where � is the slowly varying envelope of the beam and V(x) 
represents the external potential of the medium. X = x

/
x0

 
and Z = z

/
kx2

0
 represent the dimensionless transverse coor-

dinate and the propagation distance, respectively. x0 is the 
transverse width and kx2

0
 is the Rayleigh range; k = 2�n

/
�0

 
is the wavenumber, n is the refractive index of the medium 
with a parabolic potential, and �0 is the free-space wave-
length. The parabolic potential is depicted as [14, 22, 25]

where � is the depth of the parabolic potential. In addition, 
the propagation of Airy and Airy–Gaussian beams in other 
media, such as ABCD optical system and graded index 
media, has been extensively studied [26–29].

Generally speaking, for a (1 + 1) dimensional CAiG 
beam, the initial field distribution can be written as [22]:

where A0 is the amplitude of the beam, Ai(X) is the Airy 
function, and a is the decay factor which is positive real to 
make the energy of the beam finite. �0 is the distribution 
factor to amend field distribution of the beam, that is, when 
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�0 takes a small value, the beam tends to an Airy beam, and 
while it is large enough, the beam tends to a Gaussian beam. 
�′ and � represent the chirp factors of the beam. When �� = 0 
and � = 0 , Eq. (3) shows the initial field distribution of the 
a AiG beam; when �′ ≠ 0 and � = 0 , Eq. (3) is the incident 
AiG beam with an initial velocity; when �� = 0 and � ≠ 0 , 
Eq. (3) represents the incident CAiG beam with a quadratic 
chirp. In this paper, we only study the CAiG beam with a 
quadratic chirp, that is, �� = 0 , � ≠ 0.

For the sake of further studying the interaction between 
two CAiG beams, we construct an initial incident beam con-
sisting of two CAiG beams, whose field distribution can be 
expressed as:

where A1 and A2 are the amplitudes of the two CAiG beams, 
respectively. B is the interval between the two CAiG beams. 
�1 and �2 represent the quadratic chirp factors of the two 
beams, respectively. Q is the phase factor controlling the 
phase shift between the two CAiG beams, that is, when 
Q = 0 , the two beams are in-phase, and for Q = � , they are 
out-phase. The interaction of two AiG beams is of great 
interest and has been studied in the context of the NLSE in 
some media [20, 21].

3  Simulation results

In this paper, numerical simulations are carried by using 
the split-step Fourier method [24, 30], which is a numerical 
method, dealing with the diffraction step and the nonlin-
ear step separately, used to solve the nonlinear Schrödinger 
equation and to study the interaction between two chirped 
AiG beams in a medium with a parabolic potential based on 
Eq. (4). To better understand the interaction, we first study 
the propagation dynamics of a single chirped AiG beam 
based on Eq. (3). In the following numerical simulations, 
we take a = 0.1.

3.1  For a single CAiG beam

We first study the propagation of a single chirped AiG 
beam with varying � based on Eq. (3). In this case, we take 
A0 = 2, �=0.03.

Figure 1(a1, a2, a3) demonstrates that when � = 0, after 
a short distance, the energy of the beam will rapidly drop. 
This phenomenon is attributed to the diffraction effect. With 

(4)

�(X, Z = 0) = A1Ai(X − B) exp

[a(X − B)] exp[−�2
0
(X − B)2] exp[−i�1(X − B)2]

+ A2 exp(iQ)Ai(−X − B)] exp[a(−X − B)] exp

[−�2
0
(−X − B)2] exp[−i�2(−X − B)2],
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the increase in �0 , the side lobes of the beam are weakened, 
and when �0=1 , the beam follows the Gaussian distribution. 
Moreover, the behavior of the energy diffraction changes 
drastically if � ≠ 0 . When �0 is small, Fig. 1(b1–b2) and 
(c1–c2) display interesting dynamics, that is, it exhibits 
a phenomenon similar to periodical oscillations, and the 
propagation curve exhibits an S shape. Also, we observe 
that with increasing � , the oscillation period and the width 
of the beam decrease. When �0=1 , the propagation of the 
beam develops into the propagation of a Gaussian beam in 
a medium with a parabolic potential, as shown in Fig. 1(b3, 
c3).

3.2  For two CAiG beams

Figure 2 depicts the interaction of two CAiG beams with 
different values of �0 at Q = 0 and Q = � , showing an inter-
esting process. When Q = 0 , the two beams are in-phase and 

the energy of the two beams converges to the center, and a 
periodic stable bound state is formed under the impact of 
both diffraction effect and parabolic potential. When Q = � , 
the two beams are out-phase and the energy of the two beams 
radiates symmetrically in opposite directions. As a result of 
the balance between diffraction effect and the influence of 
parabolic potential, a stable bound state is formed. No matter 
how large Q is, when �0 increases, the non-diffracting dis-
tance becomes short, the self-healing effect becomes weak, 
and their Airy patterns gradually break down. Conversely, 
with decreasing �0 , the non-diffracting distance increases 
and the self-healing effect becomes strong. When �0 is large, 
the self-healing effect is very weak, as shown in Fig. 2(e1) 
and (e2). As a result, we can obtain the desired non-diffract-
ing distance by changing �0 in practical application.

As is shown in Fig. 3, we discuss the effect of parabolic 
potential on the interaction of two in-phase CAiG beams. 
When �=0 , we can view two beams interacting in free space. 

Fig. 1  The propagation dynamics of a single CAiG beam in a medium with a parabolic potential for different � and �0:(a1–c1)�0 = 0.01, (a2–
c2)�0 = 0.1, (a3–c3)�0 = 1 when �=0.03
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After a short interaction distance, the diffraction effect 
results in the rapid liberation of energy. When � ≠ 0 , the 
two beams interact in a medium with a parabolic potential. 
From Fig. 3, we can see that bound breather forms in the 

interacting process. This is because the beams are rebounded 
back due to the potential well after outward diffraction. This 
will repeat periodically so that a periodic bound breath-
ing phenomenon occurs. In this process, the energy of the 

Fig. 2  The interaction of two CAiG beams with varying �0 when A1 = A2 = 2,B = −2 , �=0.2 , �1=�2 = 0.03 for Q = 0(a1–e1) and Q = �(a2–
e2)

Fig. 3  The interaction of two in-phase CAiG beams with �0=0.01 (the first line), �0=0.1 (the second line) and �0=1 (the third line), � = 0, 0.2, 
0.4, 0.6 when A1 = A2 = 2 , �1 = �2=0.03 and B = 1
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Fig. 4  The interaction of two in-phase CAiG beams with varying B and different values of �0 : (a1–e1)�0=0.01 , (a2–e2)�0=0.1 , (a3–e3)�0=1 
when A1 = A2 = 2 , � = 0.3 , �1 = �2=0.03

Fig. 5  The interaction of two in-phase CAiG beams with varying amplitudes and different values of �0:(a1–e1)�0=0.01 , (a2–e2)�0=0.1 , (a3–
e3)�0=1 when B = −3 , � = 0.3 , �1 = �2=0.03
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beams is mainly concentrated on the breather. It is clear that, 
with increase in the potential strength � , the period and the 
width of the breather decrease. The side lobes of the beams 
decrease as �0 increases, resulting in less width as shown in 
Fig. 3(b3–d3). So, we can control the period and the width 
of the bound breather by changing � and �0.

The results shown in Fig. 4 reveal indeed an effect which 
the interval between the two in-phase CAiG beams makes on 
their interaction. When the interval B is negative, the main 
lobes of the two CAiG beams interact mainly, accompanied 
by the side lobes repulsing and then being bounced back by 
the attractive force from the potential well, propagating as 
periodic bound states. When the absolute value of the inter-
val B decreases, the attraction becomes stronger. When B is 
positive and B > 1 , the side lobes of the two CAiG beams 
interact mainly, the main lobes being on both sides, also 
forming periodic stable bound states. When �0 is small, the 
strongest attraction is at B=0 , and when �0 is large, it is at 

B=1 as shown in Fig. 4(c1, c2) and (d3). Interestingly, we 
can clearly see that when �0 is large enough, self-healing 
and side lobes of the beams are drastically weak, and the 
two beams interacting in a medium with parabolic potential 
behave as two Gaussian beams.

Based on the results shown in Fig. 5, we have to realize 
that the amplitude has an important effect on the interaction 
between two CAiG beams. From the figure we can see that 
when the amplitudes of the two beams are not equal, interac-
tion is more obvious on the larger amplitude side shown in 
Fig. 5(a1–a3) and (e1–e3). As the values of the amplitudes 
are closer to each other, the asymmetry is weaker, as shown 
in Fig. 5(b1–b3) and (d1–d3). But at the same amplitudes, 
energy evenly distributes on both sides [see Fig. 5(c1–c3)]. 
Furthermore, the influence of the distribution factor �0 is 
similar to Figs. 2 and 4(a1, a2, a3). In fact, when �0 increases 
from 0 to infinity, the field pattern of the beams will change 
from Airy distribution to Gaussian distribution.

Fig. 6  The interaction of two CAiG beams in different initial phase factors with Q = −� , − 2�

3
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�=0.3 , �1 = �2= 0.03
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The influence of the phase factor Q on the interaction 
of two CAiG beams is shown in Fig. 6, where we take the 
values Q =−� , − 2�

3
 , − �

2
 , − �

3
 , 0, �

3
,�
2
 , 2�

3
 , � . Q=0 means the 

two beams are in-phase. In this case, the two beams attract 
each other, and bound breather is built in the center. When 
Q= ± � , the two beams are out-phase and they repulse each 
other, but the repulsion is balanced by the attractive force 
from the potential well, obtaining bound breathing states. 
While Q ≠ 0 and Q ≠ ±� , the beams transmit with center 
shift and energy deviation. In the case of −𝜋 < Q < 0 , the 
center of the beams shifts to the right first and then propa-
gates with periodic and opposite oscillation; in the situation 
of 0 < Q < 𝜋 , the center changes periodically and oppositely 
after turning to the left first. The smaller |Q| is, the more the 
energy converges to the center. In addition, the value of �0 
only affects the whole energy of the beams, not the energy 
shift, so it will not be discussed in this part.

Figure 7 shows the influence of the positive and nega-
tive chirps for different distribution factors �0 . For small 
�0 , when the chirps are very small, they have almost no 
effects on the two beams [shown in Fig. 7(a1, a2)]; with 
large enough chirps, the total energy of the two beams 
are weakened extremely [shown in Fig. 7(c1, c2, d1, d2)]. 
When the chirps are larger, and they are positive [shown in 
Fig. 7(b1, b2)], the focusing effect exceeds the diffraction at 
the beginning; on the contrary, while the chirps are negative, 
diffraction will overtake the focusing effect at the beginning 
[shown in Fig. 7(e1, e2)]. When one chirp of the beams 
is positive and the other is negative, the positive chirped 

AiG beam has the same phenomena as in Fig. 7(b1) and 
(b2); the negative chirped AiG beam retains the phenomena 
in Fig. 7(e1) and (e2), then the beams will oppositely and 
periodically oscillate [shown in Fig. 7(f1) and (f2)]. Obvi-
ously, when the parameter �0 is large enough, the beams will 
become chirped Gaussian beams, as shown in Fig. 7(a3–f3). 
These indicate that chirps have profound effect on the inter-
action between two CAiG beams.

4  Conclusion

In summary, we mainly studied the interaction of two chirped 
AiG beams in a medium with a parabolic potential by way 
of numerical simulation. We found that bound states of the 
beams can be formed. The field patterns of these bound states 
depend strongly on the distribution factor χ0: side lobes are 
gradually lost and the non-diffracting distance gets shorter 
and shorter with increase in χ0. We also observed the effect 
of potential well, and found that potential well has a negative 
effect on the bound breathing period and width. In addition, 
the result showed that interval B plays a decisive role on the 
main interaction between the main lobes or side lobes. Sym-
metric/asymmetric bound states can be obtained via choosing 
equal or unequal amplitudes of the two CAiG beams. We can 
also steer the center of the bound beams by tuning the initial 
phase factor Q . Finally, we found that small chirps have very 
little influence on the interaction and large enough chirps will 
reduce the energy of bound states.

Fig. 7  The interaction of two in-phase CAiG beams in different chirp parameters �1, �2 and different values of �0:(a1–f1)�0=0.01 , (a2–
f2)�0=0.1 , (a3–f3)�0=1 when A1 = A2 = 1,B = −2, � = 0.3
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