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Abstract
A simple, highly sensitive, and all-fiber Mach–Zehnder interferometer (MZI) refractive index (RI) sensor was proposed 
and experimentally demonstrated, which was fabricated by welding a dual-waist photonic crystal fiber (DWPCF) with two 
single-mode fibers. The two waists in the PCF, which acted as splitter and combiner of the MZI, could be simply formed 
by fusion-tapering technique. The high-order cladding modes could be largely excited in the first waist region and propa-
gated along the cladding until the second waist region, where it would be returned into the fiber core and interfered with 
the core mode. When the RI around the DWPCF changed, an effective RI variation of the cladding modes might generate, 
which resulted in the shift of interference spectrum. Therefore, the external RI variation could be obtained by monitoring 
the wavelength position of the interference pattern. Experimental results showed that the interference wavelength shifted 
with the increase of the external RI, and high measurement sensitivity of 263.5 nm/RIU was achieved with good linearity.

1  Introduction

As a representative physical parameter, refractive index (RI) 
measurement has important applications in industrial pro-
duction, medical testing, biochemical sample analysis, food 
safety, and other fields [1]. Therefore, it is especially signifi-
cant to measure the RI of a substance quickly and accurately. 
In recent years, RI sensor based on optical fiber technol-
ogy has attracted great attentions, since their advantages of 
small volume, fast response, flexible structure design resist 
to electromagnetic interference, anti-corrosion, the potential 
of remote sensing, and so on [2, 3].

In general, the optical fiber RI sensors can be classified 
into fiber-grating sensors [4, 5], surface plasmon resonance 
sensors [6–8], Fabry–Perot sensors [9], and Mach–Zehnder 

interferometer (MZI) sensors based on thin core fiber [10], 
photonic crystal fiber (PCF) [11], few mode fiber [12], and 
tapered fiber [13, 14], and so on. Among them, the PCF-
based MZI sensors are widely used in sensing applications 
due to its great flexibility in structural design and low-tem-
perature sensitivity [15, 16]. Besides, it is much easier to 
excite high-order mode in PCF when compared to SMF, 
which is benefit for realizing high-sensitive RI sensing. In 
2014, Zhao et al. demonstrated an MZI RI sensor using a 
tapered PCF structure, whose sensitivity was 51.902 nm/
RIU [17]; in 2015, Tan et  al. presented an exploratory 
demonstration of an optical fiber MZI RI sensor by coat-
ing graphene on the PCF surface, and the RI sensitivity of 
the sensor in the range of 1.33–1.38 and 1.38–1.43 reached 
9.4 dB/RIU and 17.5 dB/RIU, respectively [18]; in 2017, 
Zhao et al. proposed another MZI RI sensor based on PCF 
with half-taper collapse regions, and the sensitivity was 
improved to 181.96 nm/RIU [19]. Although these results 
have demonstrated the possibility of PCF-based MZI for the 
measurement of RI, there also exist some problems such as 
low sensitivity, low repeatability, poor stability, and easy 
to break.

In this paper, we propose an all-fiber MZI RI sensor based 
on a dual-waist photonic crystal fiber (DWPCF). Through 
theoretical analysis and experimental demonstration, a 
highly sensitive RI sensor is verified. Besides, the proposed 
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sensor behaves good stability, robust structure, and can be 
prepared by simple fusion splicing method.

2 � Structure design and principle analysis

Figure 1 shows the schematic structure of the all-fiber MZI 
RI sensor. It consists of an ASE broadband source, a dual-
waist PCF-sensing head, and a BaySpec demodulation 
module. The PCF-sensing head (see the inset of Fig. 1) was 
fabricated by welding a PCF with two single-mode fibers 
(SMFs) and performing the fusion-tapering process of PCF.

As shown in Fig. 2, a broadband light emitted from the 
ASE source first entered and transmitted through the core of 
an SMF, and would partially couple to cladding of the PCF 
at the melting point of SMF and PCF, while the rest light 
propagated in the fiber core. Then, at the first waist position, 
more cladding modes will be excited and interacted with 
measured medium. These excited cladding modes would 
finally couple back into the fiber core of the PCF at the sec-
ond waist position and the second melting point of SMF 
and PCF, where the modal interferences between the core 
mode and cladding modes were generated due to that their 
transmission optical paths were different. After then, this 
interference signal entered into another SMF and received by 
the BaySpec spectrum analyzer, from which we can observe 
the resonant wavelength of the interference spectrum.

In the above process, the principle of double-beam MZI 
can be used as an example to analyze the interference light 

intensity and interference wavelength, which can be given 
as [20]

where I1 and I2 represent the light intensities of core mode 
and cladding mode of the PCF, respectively; I is the total 
output light intensity; � is the phase difference; �

m
 repre-

sents the m-order resonance wavelength; L is the interference 
length, which equals to the distance between the two fusion 
points; and Δn

eff
 is the effective RI difference between the 

core mode and cladding mode.
When the RI of the external environment changes, the 

effective RI of the cladding mode changes, while the RI 
of the core mode remains unchanged. Therefore, the wave-
length shift caused by the external RI variation can be 
expressed as

where Δ�
m
 is the shift of mth-order interference wavelength 

and Δn is the change in the RI difference between the core 
and cladding modes that caused by the change in the RI of 
the external environment. It can be seen from Eq. (3) that 
the amount of wavelength drift is affected by variation in 
RI difference Δn . When the interference length is constant, 
the shift of the resonance wavelength of the interference 
fringe changes linearly with the variation of Δn . It should 
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Fig. 1   Schematic structure of 
sensing system

Fig. 2   Transmission path of 
light in SMF–TWPCF–SMF-
sensing head
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be mentioned that there exists more than one cladding mode 
in the PCF, and any two of them will generate an interfer-
ence pattern. The final interference spectrum of the proposed 
sensor is the combination of all double-beam interference 
spectrum. However, the spectrum shifts on any one of the 
double-beam interferences will induce the shift of the final 
interference spectrum. Therefore, the RI of the external 
medium can be measured by monitoring the shift of the final 
interference spectrum.

3 � Fabrication and building of sensing 
system

The PCF used in the experiment has five layers of air 
holes, with fiber diameter of 125.2 μm, air-hole spacing of 
7.67 μm, air-hole diameter of 4.88 μm, and core diameter 
of 8.89 μm. The end face of the PCF is shown in the inset 
of Fig. 3. During the preparation of the sensor, the SMFs 
and PCF were welded by a German BAGGER S80A opti-
cal fiber fusion splitter using manual mode. The discharge 
current was 114 mA, the pre-discharge time was 50 ms, and 
the discharge time was 2 s. The whole length of the PCF 
was 29 mm. After the left and right ends of the PCF were, 
respectively, welded to the SMFs, the PCF was tapered by 

a fire-breathing device. The structural parameters (diam-
eter and length) of the waist can be controlled by adjusting 
the pulling speed of the PCF on the fire-breathing device. 
The images of the two waist regions under an electron 
microscope are shown in Fig. 3. The left-waist length was 
3009.79 μm with a waist diameter of 74.91 μm, while the 
right-waist length was 4842.69 μm with a waist diameter of 
55.47 μm.

D u r i n g  t h e  ex p e r i m e n t ,  t h e  fa b r i c a t e d 
SMF–TWPCF–SMF-sensing head would be fixed by two 
magnetic platen fiber clamps on two 3D adjusting plat-
forms and placed in a microfluidic control device, which 
has a groove and a U-shaped groove extending transversely 
through the groove. As shown in Fig. 4, the electron micro-
scope was used to observe the structural parameters of the 
sensing head, and the position of the sensing head could 
be adjusted using the two 3D adjusting platforms. Then, 
the fiber was placed in the U-shaped groove (as shown in 
Fig. 4b), and the TWPCF was in the groove and could be 
completely immersed in the liquid in the groove. A liquid 
inlet and a liquid outlet are provided in front of the groove 
for injecting liquid and discharging liquid. Finally, the sens-
ing head was linked to an ASE-C broadband light source 
with wavelength range of 1525–1568 nm and a BaySpec’s 
FBGA-F-1525-1605-FA spectral demodulation module.

Fig. 3   Images of different sec-
tions of PCF in sensing head

Fig. 4   Experimental devices of RI sensor
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4 � Experiment measurement and discussion

To find the relationship between the wavelength shift of 
the interference spectrum and the RI change, this paper 
uses different concentrations of NaCl solution as the test 
solution, which is cheap, easy to obtain, and easy to pre-
cisely adjust the concentration (refractive index). Besides, 
the Abbe refractometer is used to calibrate the relationship 
between the NaCl concentration and the RI, as shown in 
Table 1. The whole experiment was carried out at 24 °C. 
The prepared NaCl solutions of different concentrations 
were sequentially injected into the microfluidic control 
device to observe and record the data of the respective 
interference spectra. After each set of experiment, the 
microfluidic control mechanism and the sensing probe 
should be cleaned by distilled water.

Under different concentrations of NaCl, the interfer-
ence spectra are shown in Fig. 5. From the data collected 
by the spectrometer, the relationship between the wave-
length value at the resonance valley and the concentration 
C could be obtained, as shown in Fig. 6. It could be seen 
that the resonant valley was red shift with the increase of 
C, whose sensitivity was 0.4586 nm/%, and the linear fit 
was 0.981. Then, the relationship between the wavelength 
value at the resonance valley and the RI could also be 
obtained, as shown in Fig. 7. The RI sensitivity could be 
263.5 nm/RIU with high linear fit of 0.971. Compared 
with the performances of some published optical fiber RI 
sensors based on MZI [17, 19, 21–24], the measurement 

sensitivity of this RI sensor is larger than most of the 
reported results. Besides, the proposed sensor is low cost, 
simple in fabrication, and robust.

5 � Conclusion

A novel MZI RI sensor based on SMF–TWPCF–SMF 
structure was proposed in this work. The RI measurement 
experiment was done in a microfluidic control device. 
Experimental results demonstrated that the resonance val-
ley wavelength shifted with the increase of the RI of the 

Table 1   Relationship between 
concentration of NaCl solution 
and RI

Concentration of NaCl solution C (%) 2 3 4 5 6 7 8

RI (n) 1.3374 1.3388 1.3405 1.3422 1.3441 1.3458 1.3477
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Fig. 5   Interference spectrum under different concentrations of NaCl 
solution Fig. 6   Relationship between the wavelength of the resonant valley 

and the concentration of NaCl solution

Fig. 7   Relationship between wavelength of resonant valley and RI
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external NaCl solution. The sensitivity was 263.5 nm/RIU in 
the range of 1.3374–1.3477, and it had a good linearity. The 
proposed sensor behaved the advantages of small volume, 
good stability, high sensitivity, easy preparation, and robust, 
which were beneficial for practical applications.
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