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Abstract
Soot from combustion processes often takes the form of fractal-like aggregates, assembled of primary particles, both of which 
obey polydisperse size distributions. In this work, the possibility of determining the primary particle size distribution through 
time-resolved laser-induced incandescence (TiRe-LII) under the influence of thermal shielding of polydispersely distributed 
aggregates is critically investigated for two typical measurement situations: in-flame measurements at high temperature and 
a soot-laden aerosol at room temperature. The uncertainty attached to the quantities is evaluated through Bayesian inference. 
We show how different kinds of prior knowledge concerning the aggregation state of the aerosol affect the uncertainties of 
the recovered size distribution parameters of the primary particles. To obtain reliable estimates for the primary particle size 
distribution parameters, specific information about the aggregate size distribution is required. This is especially the case for 
cold bath gases, where thermal shielding has a large effect. Furthermore, it is crucial to use the full duration of the usable 
LII signal trace to recover the width of the size distribution with small uncertainties. The uncertainty attached to TiRe-LII 
inferred primary particle size parameters becomes considerably larger when additional model parameters are considered.

1 Introduction

In most combustion processes, carbonaceous nanoparticles 
called “primary particles” form from partially pyrolyzed 
fuel molecules. Due to their diffusive motion, these primary 
particles collide with each other, forming random shaped 
fractal-like aggregates consisting of up to a few hundred 
primary particles. The morphological parameters of fractal 
aggregates can be described by the fractal relationship [1, 2]:

 

where Np is the number of primary particles per aggregate, 
Rg is the aggregate radius of gyration representing its size, 
dp is the diameter of the primary particles, and Df and kf are 
the fractal dimension and prefactor, respectively [3]. Due 
to the random process of aggregation the aggregate sizes 
follow a broad, self-preserving, size distribution, which can 
adequately be described by a log-normal distribution [4]. 
The probability density for a specific size z is then given by

where � is the median and �g the geometric standard devia-
tion of the distribution. Transmission electron microscopy 
(TEM) of soot samples reveals that a double log-normal 
distribution of Np may even be a better descriptor for some 
samples [5, 6]; however, in this work, we will use the com-
mon single log-normal distribution in Rg.

Primary particle diameters are also polydisperse, although 
less so than the aggregate sizes. Kiss et al. [7] showed that the 
residence time considering drift and diffusion mechanisms 
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in nanoparticle growth processes lead to a self-preserving 
log-normal size distribution. One possibility to measure the 
primary particle size distribution (PPSD) and the aggregate 
morphology is TEM, but it is a very time-consuming proce-
dure [8]. Moreover, intrusive sampling affects the flow field 
of the combustion process and results in distinct perturba-
tions and sampling bias towards hotter regions of the process 
[9]. Further uncertainties arise from the imaging process and 
the interpretation of 3D objects from 2D projection data [10].

For this reason non-invasive optical measurement tech-
niques with a high spatial and temporal resolution are benefi-
cial. Elastic light scattering (ELS), as an example, allows for 
the determination of the aggregate size and morphology in 
terms of Rg and Df [11]. Most often, the angle-dependent scat-
tering intensity is measured by either a single rotatable detector 
[12, 13], or by simultaneous acquisition of scattering signals 
with multiple detectors at different positions [14]. While most 
techniques suffer from a limited set of detection angles, the 
wide-angle light-scattering (WALS) approach, first introduced 
by Tsutsui et al. [15] and further developed by Oltmann et al. 
[16] and Huber et al. [17], acquires quasi-continuous scatter-
ing data over a wide angular range with high signal-to-noise 
ratios. While this approach is mainly used to infer the ensemble 
averaged aggregate sizes, the appearance of dp in Eq. (1) sug-
gests that it also offers the possibility for determining the size 
distribution parameters. However, the primary particle size is, 
except for very large dp , not accessible with ELS.

Time-resolved laser-induced incandescence (TiRe-LII) has 
developed into a powerful tool for measuring the particle vol-
ume fraction [18] as well as the primary particle size in vari-
ous applications [4, 19, 20]. Particle size determination with 
TiRe-LII is based on the principle of measuring the decay rate 
of the incandescence signal produced by an ensemble of laser-
heated soot particles as they thermally equilibrate with their 
surroundings. Most often, the spectral incandescence is meas-
ured at multiple wavelengths and used to define a pyrometric 
temperature. Small particles with a high surface-to-volume 
ratio cool rapidly, while the larger particles cool more slowly. 
Quantitative estimates of primary particle size distribution 
parameters are found by regressing simulated temperature 
decay curves generated using a heat transfer model to ones 
derived from experimental TiRe-LII traces. Over the years, 
cooling models have become progressively more detailed 
and elaborate, as summarized in Ref. [21]. While TiRe-LII 
is mainly used to make pointwise measurements of particle 
concentrations and sizes, using suitable optics and detectors 
it can also be extended to determine an average primary par-
ticle diameter over a plane, as shown by Will et al. [22]. It is 
well known that qualitative estimates of polydispersity can be 
inferred from the cooling curve, e.g., by the departure of the 
pyrometric temperature from an exponential decay at longer 
cooling times [23]. Following the work of Vander Wal et al. 
suggesting that LII can be used for the prediction of primary 

particle sizes [24], this paper is dedicated to the question of 
whether reliable quantitative estimates of particle size distri-
butions can be determined from TiRe-LII data.

The influence of polydisperse primary particle sizes (as 
defined by the primary particle size distribution, PPSD) on 
the incandescence signal has long been known. While pre-
dicting the signal for a known particle size distribution is 
straightforward (i.e., the forward problem), Roth et al. [25] 
showed that the inverse problem of inferring the particle size 
from the spectral incandescence decay involves deconvolving 
a Fredholm integral equation of the first-kind [26], which is 
mathematically ill-posed. At the same time, much work has 
been performed aiming at the determination the PPSD in the 
literature. Lehre et al. [27, 28] used direct non-linear regres-
sion to investigate the correlation between the flame tempera-
ture and the primary particle size distribution prospecting 
for a detailed uncertainty analysis of LII. Further work was 
done by Dankers et al. [29], who split the signal decay curve 
into two time regions based on the fact that small particles 
do not contribute significantly to the signal after several tens 
of nanoseconds. Kuhlmann et al. [30] obtained the primary 
particle size distribution parameters of a polydisperse aerosol 
by assuming a log-normal distribution and applying a fitting 
procedure based on the method of cumulants. Liu et al. [23] 
presented a simple approach for the multi variable optimiza-
tion to determine the size distribution parameters and further 
revealed that the temperature decay in the first nanoseconds 
after the laser pulse is related to the Sauter mean diameter for 
low-fluence experiments. All these approaches were reviewed 
by Daun et al. [31], who highlighted the ill-posedness of the 
problem due to the fact that some parameters in the LII model 
(e.g., the thermal accommodation coefficient) suffer from 
uncertainties [32] and cannot be considered as deterministic.

Most of the above works do not consider how the aggre-
gate structure may influence TiRe-LII derived primary par-
ticle sizes. This occurs mainly through the “shielding” effect 
in which primary particles near the center of the aggregate 
are screened from incident gas molecules by primary par-
ticles on the aggregate periphery [33–36]. Liu et al. [37] 
accounted for this effect using an equivalent diameter for 
the heat conduction term, which was a function of the 
aggregate parameters. They further state that temperature 
decay curves from LII within the flame environment are 
less affected by the aggregate structure, compared to cold 
aerosol cases [38]. Daun et al. [39] showed how directional 
scattering may influence heat transfer, while Johnsson et al. 
[35] emphasized the influence of “bridging” of primary 
particles on the LII signal. Singh et al. [40] recently high-
lighted how changed optical properties can influence the size 
determination. The aggregate structure can also influence 
the spectroscopic model, due to shortcomings in the Ray-
leigh–Debye–Gans polyfractal aggregate (RDG-PFA) theory 
that is almost exclusively employed to model the spectral 
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emission cross sections of soot aggregates [41, 42]. Though, 
most of these findings are mainly neglected in this work, 
they will introduce additional uncertainties to the results and 
emphasize the meaning of aggregation on LII.

The aim of this work is to critically assess the possibil-
ity of inferring the PPSD with TiRe-LII by considering the 
aggregate structure and their size distribution through a 
shielding approach for a hot gas and a cold gas case. Bayes-
ian inference is used to quantify the uncertainty induced by 
measurement noise and uncertainties about the aggregate 
size distribution. A more detailed analysis follows in which 
the uncertainty of model parameters is also considered, fol-
lowing Refs. [43–47]. These include the thermal accom-
modation coefficient � , the bath gas temperature, Tg , and, 
of course, the aggregate size distribution and morphology. 
The results show that in the absence of any prior information 
about the aggregate size distribution, the uncertainty in the 
inferred PPSD is large. With increasing knowledge about the 
aggregation state of the aerosol, the uncertainties in the pri-
mary particle size distribution parameters narrow, especially 
for the aerosol case. Nevertheless, since the uncertainties 
associated with many of the model parameters are large, 
especially for soot, determination of the PPSD with TiRe-LII 
becomes challenging.

2  Derivation of the measurement model

According to RDG-PFA theory [48], incandescence from 
a soot aggregate can be approximated as the superposition 
of incandescence from the constituent primary particles. In 
reality, due to various effects that include aggregate shield-
ing (discussed below), the primary particle temperatures 
within an aggregate are unlikely to be uniform at any instant, 
but instead obey a distribution having a finite width, which 
complicates calculation of the spectral emission from the 
aggregate. Moreover, these approaches neglect transition-
regime effects that would be important for larger aggregates 
[37].

Instead, to make the problem computationally tractable, 
we invoke the following assumptions from Liu et al. [37]:

1. The primary soot particles are in point contact (no bridg-
ing).

2. The primary soot particle diameters are uniform within 
an aggregate of size Np (containing Np primary soot par-
ticles), but are allowed to vary from aggregate to aggre-
gate, i.e., primary particles are only polydisperse within 
the particle ensemble, but monodisperse within a single 
aggregate.

3. There is no correlation between dp and Np , i.e., both 
dp and Np can vary independently. Consequently, the 
distributions of the primary particle diameter and the 

aggregate size are independent and both are assumed to 
be log-normal.

4. The potentially non-uniform temperature distributions 
among primary soot particles within an aggregate are 
neglected.

These assumptions are widely used and we assume the 
errors introduced by the approximations are mostly uncrit-
ical. In the result section, we could confirm the results 
of Johnsson et al. [35] concerning the effects of bridging 
on heat conduction. However, due to the lack of models 
including bridging for all heat transfer mechanisms, the 
major part of this work is based on assumption 1. Follow-
ing the assumptions, primary particle temperatures within 
each aggregate are modeled as uniform at any instant, but 
the instantaneous temperatures will vary between aggre-
gates. The incandescence signal is thus given by

where Ib,λ is the blackbody spectral intensity, p(dp) and p(Rg) 
are probability densities for the primary particle diameter 
and aggregate radius of gyration, Cagg

abs,λ
(dp,Rg) is the absorp-

tion cross section of an aggregate containing primary par-
ticles of diameter dp and radius of gyration, Rg , and C is a 
calibration constant that accounts for factors that include the 
particle volume fraction, beam width, and detection solid 
angle. According to RDG-PFA [48]

where E(m̃) is the absorption function of soot, here assumed 
as 0.3 [43] and independent of wavelength, while Np is given 
by Eq. (1).

In the case of low-fluence TiRe-LII, the instantaneous 
effective temperature of an aggregate containing primary 
particles of diameter dp and having radius of gyration Rg is 
obtained from an energy balance on the aggregate:

where Q̇abs is the rate at which energy is absorbed by the 
aggregate, Q̇cond is the rate at which heat is conducted from 
the aggregate, and Q̇subl models the heat loss due to subli-
mation. In this work additional heat transfer mechanisms in 
the energy balance, e.g., thermal radiation, are neglected as 
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they do not show significant contribution [4]. The absorption 
term is given by

where H is the fluence (here 0.09 J/cm2 ), g(t) is the temporal 
variation function, taken to be a Gaussian distribution of 
width �Laser = 3.3 ns , and Cagg

abs,λ
 is the absorption cross sec-

tion evaluated at the excitation wavelength of 532 nm.
In cases where the aerosol is composed of isolated nano-

spheres having diameters smaller than the molecular mean 
free path in the gas � , gas molecules travel ballistically 
between the nanoparticle surface at Tp , and a region of the 
gas at Tg , which acts as a thermal reservoir. In this case, the 
rate of heat conduction can be calculated from the average 
energy transferred when a gas molecule scatters from the 
nanoparticle surface. This average energy can be calculated 
from the maximum energy transferred weighted by the ther-
mal accommodation coefficient � [49, 50]. The maximum 
energy transfer mainly depends on the temperature differ-
ence (Tp − Tg) and the active degrees of freedom of the 
gas molecules [50, 51]. In many LII models, the number 
of accessible degrees of freedom is assumed to correspond 
to that of an equilibrium gas. These allow to calculate the 
specific heat ratio � and the heat conduction of a primary 
particle in the free-molecular regime is given by [49]

where mg is the average mass of gas molecules, pg is the gas 
pressure and kb Boltzmann’s constant. Filippov and Rosner 
[52] further advocate calculating a modified specific heat 
ratio according to

which accounts for the temperature dependence of the vibra-
tional energy models. Here, one should keep in mind that 
these modes are likely inaccessible during the gas-surface 
scattering underlying free-molecular heat conduction. Thus, 
although widely used for the modeling of LII, using Eq. (8) 
could lead to model errors as discussed in detail by Daun 
et al. [50]. These errors are assumed to be small as long 
as the thermal accommodation coefficient is calculated in 
a consistent way.

While this approach works for isolated nanospheres, 
it cannot be applied directly to soot aggregates due to the 
aggregate shielding effect. Filippov et al. showed that this 
effect can cause the heat conduction rates from primary par-
ticles within a single aggregate to differ by as much as an 
order of magnitude, depending on the size, fractal structure, 
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thermal accommodation coefficient, and the current flow 
regime [33]. To account for aggregate shielding, several 
authors [33, 37] suggest representing the aggregate using 
a hypothetical equivalent sphere of diameter deff , having an 
area �d2

eff
 that produces the same heat transfer rate in the 

free-molecular regime, as one would expect due to due to 
aggregate shielding. The temperature calculated using this 
area should, in principle, correspond to an average of the 
primary particle temperatures at any instant. Liu et al. [37] 
propose a fractal-like relationship:

where the parameters

and

are found from a quadratic fit to numerical results obtained 
by tracing the trajectories of gas molecules interacting with 
randomly generated fractal aggregates that correspond to 
kf = 2.3 , Df = 1.78 , and a range of values for � and Np . Due 
to the expense of performing further direct simulation Monte 
Carlo (DSMC) calculations, the dependency of the shielding 
parameters on the accommodation coefficient is extended 
for further aggregate parameters, assuming that Eqs. (10) 
and (11) are independent of kf and Df . The shielding effect 
is most pronounced for larger values of � (i.e., the greatest 
reduction in heat transfer area), since in this scenario, the 
outermost aggregates “perfectly accommodate” all incident 
gas molecules, whereas at lower values of � , it is more prob-
able that low-energy gas molecules can access the interior 
primary particles via nearly adiabatic primary and secondary 
scattering events with primary particles on the aggregate 
periphery.

The above analysis assumes that heat transfer occurs 
within the free-molecular regime, in which gas molecules 
travel ballistically between the soot aggregate and the equi-
librium gas at Tg . The situation is more complex when the 
aggregate gyration radius is comparable to � , in which case 
heat conduction takes place within the transition regime. In 
this scenario, the gas molecules undergo intermolecular col-
lisions in the vicinity of the aggregate, thereby reducing the 
effectiveness of heat transfer for a given pg and Tg . Even in 
the simplest case of an isolated sphere, the Boltzmann equa-
tion governing transition-regime conduction is analytically 
intractable, while numerical solutions (typically DSMC 
[49]) are time-consuming to carry out. Instead, a range of 
interpolation schemes are used that estimate the transition-
regime solution from the continuum and free-molecular 
regime rates based on the Knudsen number Kn = �∕dp . Of 

(9)deff =

(
Np

kh

)1∕Dh

⋅ dp,

(10)kh = 1.04476 + 0.22329 ⋅ � + 7.14286 ⋅ 10−3 ⋅ �2

(11)Dh = 1.99345 + 0.30224 ⋅ � − 0.11276 ⋅ �2
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these, the Fuchs boundary sphere method [49, 53] has been 
shown to be most suitable for LII calculations, since it can 
account for the temperature dependence of gas transport 
properties between the nanoparticle surface and the sur-
rounding gas. In this approach, the gas is envisioned as a 
free-molecular spherical shell (the “boundary sphere”) that 
envelops the particle, in turn surrounded by a continuum 
gas. The boundary sphere thickness, � , is typically set equal 
to the mean free-molecular path at the unknown boundary 
sphere temperature, �(T�) = �� . The boundary sphere tem-
perature, in turn, is solved for by setting the free-molecular 
heat transfer rate Q̇pp

cond,FMR
 between Tp and T� (given by Eq. 

(7) with T� substituted for Tg ) equal to the continuum heat 
transfer rate Q̇pp

cond,c
 between T� and Tg , with

where k̄ is the temperature-dependent heat conduction coef-
ficient of the surrounding gas.

In the case of soot aggregates, Liu et al. [37] suggest that 
the equivalent sphere diameter derived from free-molecular 
calculations, Eqs. (9)–(11), be substituted for dp in Eqs. (7) 
and (12). It should be noted, however, that to the best of 
the authors’ knowledge, this assumption has not been tested 
and the physical connection between this diameter and the 
fractal-like geometry of soot aggregates is not obvious. Nev-
ertheless, in lieu of any alternative, this approach is adopted 
here to account for both shielding and transition-regime 
effects from soot aggregates.

The sublimation term of the aggregate is modeled as 
Q̇

agg

subl,FMR
= Np ⋅ Q̇

pp

subl,FMR
 with

where �v = pv

√
(2�RsTp)

−1 is the mass flux of the sublimed 
gas crossing a unit area towards one side, Rs is the specific 
gas constant, pv the vapor pressure of evaporated carbon 
clusters above the phase interface, Mv is the mean molecular 
weight of the sublimed species, and �Hv is the energy 
required to liberate one cluster from the condensed phase. 
In this work, �Hv , pv , and Mv are found following the pro-
cedure of Smallwood et al. [54], who also describe some of 
the uncertainties associated with this calculation. Further-
more, the evaporation coefficient is assumed � = 1 . Moreo-
ver, Eq. (13) neglects the shielding and transition-regime 
effects described above, which should apply to both incident 
gas molecules for heat conduction and evaporated carbon 
clusters during sublimation. For hot bath gases or high flu-
ence measurements, Tp(t) could reach the sublimation tem-
perature. Completely neglecting sublimation in the energy 

(12)
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𝛽
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balance, Eq. (5), would lead to a relative error of approxi-
mately 10% in Tp(t) . For those cases, one should keep pos-
sible model errors in mind. However, for cold bath gas tem-
peratures and the low fluence assumed in this work, 
sublimation has no significant effect on the particle tempera-
ture (relative deviation for Tp(t) below 0.1%). Then, the influ-
ence of model uncertainties introduced by these approxima-
tions should also be negligible.

3  Methods

3.1  Bayesian inference

With the model described in the previous section and a pre-
sumed log-normal distribution for the primary particle diam-
eter as well as for the radius of gyration a straightforward 
calculation of a signal decay curve is possible. In this work, 
 (�,�) denotes a normal distribution with mean � and 
covariance � . The signal is a vector of n discrete time steps:

Recovering the primary particle size distribution from meas-
ured data requires a multivariate analysis for all quantities 
of interest (QoI) � = (�dp

, �dp ) commonly solved by a least-
square minimization [55]. This leads to the maximum likeli-
hood estimate ( �MLE ) for those parameters. However, besides 
the QoI, further, so-called nuisance parameters have to be 
incorporated into the evaluation, as they cannot be consid-
ered deterministic. Adding these parameters to the vector � 
increases the ill-posedness of the problem and the least-
square method may fail to find a proper solution.

Using Bayes inference presents several advantages. First, 
it is possible to add prior information about certain param-
eters like the nuisance parameters with appropriate weights. 
This is very useful, as usually some knowledge about a cer-
tain parameter is available, although the exact value might 
be not known. Furthermore, one obtains information about 
the uncertainty of each QoI and nuisance parameters [45]. 
Bayesian inference is built on Bayes’ theorem [56]:

where p(�|�) is the likelihood of observing the data b con-
ditional a given x, ppr(�) is the prior probability for the 
parameters x and p(�) is the marginal likelihood serving 
as a normalization to fulfill the Law of Total Probabil-
ity. The posterior p(�|�) is the probability density for the 
(unknown and stochastic) parameters � given the measured 
data � . It increases when the deviation between measured 
and modeled signals as well as all prior information are 

(14)� =
[
Sλ(t1), Sλ(t2),… , Sλ(tn)

]T
.

(15)p(�|�) = p(�|�) ⋅ ppr(�)
p(�)

,
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minimized. In the case of no prior information, mathemati-
cally expressed by uniform priors, p(�|�) ∝ p(�|�) follows 
from Eq. (15).

In general, the (simulated) measurement signal � can be 
obtained by corrupting the unperturbed modeled data �mod 
with measurement noise �noise and model error �mod , so that

As stated above, in this work, model errors are neglected 
for further evaluation; thus, the obtained results represent a 
best case scenario.

In the case of normally distributed measurement noise

the simulated signal is obtained from � = �mod + �noise . 
Then, the probability p(�|�) for observing the data � given 
� can be calculated by [56]

Assuming independent measurement noise with a diagonal 
covariance matrices �� = diag(�2

1
, �2

2
,… , �2

n
) maximizing 

the likelihood p(�|�) leads to a weighted least-square mini-
mization of the residual function, with the weighing factors 
�−1
b,j

 . Including normally distributed prior knowledge with 
mean �pr and standard deviation �pr the maximum a poste-
riori (MAP) estimate for all quantities of interest �MAP is 
calculated by a weighted least-square minimization of the 
residual function [43]:

In addition to the �MAP , Bayesian inference can also be used 
to derive a probability density for each QoI through margin-
alization. From the posterior probability density p(�|�) , one 
can calculate the probability density for a specific quantity of 
interest xi contained within � by integration [56]:

The marginalized probability density for one QoI, containing 
information about the uncertainty, is derived from multi-
ple integration over all other variables of the vector � [57]. 

(16)� = �mod + �noise + �mod.

(17)�noise ∝  (0,��)
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(20)p(xi|�) = � ⋯� p(xj|�)
∏
j≠i

dxj.

The marginalized probability density can be further sum-
marized in terms of credibility intervals for each QoI, e.g., 
with 90% credibility the variable xi lies within 

[
x−
i
, x+

i

]
 . For 

high-dimensional problems with many QoI, the integration 
needed for marginalization is often complex and time-con-
suming. For this reason, p(�|�) is often approximated by a 
normal distribution around the �MAP [57], corresponding to 
a locally approximated linear measurement model. From the 
Jacobian � evaluated at �MAP , one can estimate the covari-
ance matrix of � by [58]:

The variances of the normally distributed posterior densities 
for each quantity of interest, therefore, correspond to the 
diagonal elements of �� . For verification of the uncertain-
ties derived from the approximated normal shape of p(�|�) , 
a Markov Chain Monte Carlo (MCMC) algorithm can be 
applied on the probability p(�|�) [56]. Starting from an ini-
tial point �0 , each further step with random direction in � 
leads, via the Metropolis–Hastings criterion, to a series of 
samples in � that become ergodic to the posterior probabil-
ity density function [43, 57]. From the density of sampled 
points in � , the probability density and credibility intervals 
can be estimated.

For a better visualization of dependencies of certain QoI 
on each other, the dimensionless correlation matrix based on 
the correlation coefficients can be computed as [58]

These coefficients are bounded by −1 ≤ �cor,ij ≤ 1 , where 
all the diagonal entries �cor,ii are exactly 1. A negative value 
for the coefficient of correlation shows that an increase of 
one parameter xi leads to a decrease of the other xj , whereas 
a positive sign indicates that the correlation between both 
quantities is unidirectional. A value of �cor(xi, xj) close 
to zero indicates no significant correlation between the 
parameters.

3.2  Noise model

One of the key aspects of the evaluation process is to 
determine the measurement uncertainty of the LII sig-
nal �b for use in Eq. (19). To obtain an appropriate noise 
model LII-measurement data are analyzed. To that end, 
50 averaged LII-data from 100 single shots (5000 single 
shots in total) were recorded during measurements on soot 
particles from a soot generator as used by Huber et al. 
[17] based on a premixed ethene/air flame at an equiva-
lence ratio � = 2.2 . Each of those 50 averaged data sets 

(21)�� =
[
�(�MAP)

T
⋅ �

−1
�

⋅ �(�MAP) + �
−1
pr

]−1
.

(22)�cor,ij =
��,ij

�xi ⋅ �xj

.
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was background-corrected and normalized to the overall 
maximum value of the 50 averaged signals. From these 50 
averaged signal curves at each time step t after the signal 
peak a mean value �b and a standard deviation �b were 
determined, assuming independent and normally distrib-
uted noise. The results are depicted in Fig. 1.

As one can see, the standard deviation increases nearly 
linearly with an offset. Sipkens et al. [59] presented a general 
error model for laser-induced incandescence focusing on the 
different types of noise. For single-shot signals, the noise 
follows a Poisson–Gaussian probability density function. 
Pure shot noise would result in a square root behavior (blue 
line in Fig. 1) arising from the discrete nature of photon 
counting, which does not describe the measurement trend 
well. Thermal and electrical noise contribute to the Gaussian 
distribution of the single-shot noise model and lead to the 
offset. At the same time LII signals are typically averaged 
over multiple single shots. Sipkens et al. note that shot-to-
shot variations result in a linear trend between �b and �b 
depicted in the red line of Fig. 1. Therefore, the linear behav-
ior indicates that the present system is limited by fluctuations 
of the laser intensity or variations in the soot concentration 
caused by the combustion process in the soot generator. The 
coefficient of determination R2 underlines these findings. For 
a linear fit, R2 is 0.89, while for an exponent of 0.5, corre-
sponding to pure shot noise, R2 is only 0.84. Therefore, with 
the reasonable assumption of a linear noise model, a simu-
lated signal curve can be corrupted with noise to recreate a 
theoretical measurement signal, as depicted in the inset of 
Fig. 1. Signals from a flat flame ethene/air burner at � = 2.3 
showed similar trends. Accordingly, the same noise model is 
used for both the flame and the aerosol case.

4  Results and discussion

In the upcoming section, three different scenarios are 
presented. The level of uncertainty associated with cer-
tain parameters is increased from a simple 2D example to 
higher dimensional scenarios representing real measurement 
situations.

4.1  2D scenario

First, a 2D example with two unknown parameters is con-
sidered to demonstrate the principle of the evaluation tech-
nique. For this case, the distribution parameters �dp

 and �dp 
shall be recovered from a simulated LII signal, corrupted 
with artificial noise, but known and presumed deterministic 
parameters for �Rg

 , �Rg
 , C, Tg , � , E(m̃) , Df , kf and � for a hot 

surrounding gas scenario with Tg = 1600 K. In this 2D case, 
the vector � only contains the quantities of interest �dp

 and 
�dp . The aggregates’ structural parameters in Table 1 are 
based on TEM data (laminar premixed ethyne/air flame, 
equivalence ratio � = 2.3 , sampled at 17 mm above the 
burner surface, Mc-Kenna type burner). The other parame-
ters represent typical mean values from the literature and 
measurement situations (as well as standard deviations for 
the discussion in upcoming sections). While these parame-
ters correspond to one special case, a somewhat different 
choice of these parameters, e.g., for Df , will not alter the 
overall conclusion regarding the effects of shielding on the 
uncertainties obtained when determining the PPSD. The 
decision to build up to a 11D scenario in the upcoming sec-
tions is based on some of the most important parameters. Of 
course, the addition of further quantities to the vector � 
would lead to increasing uncertainties in the QoI. The evalu-
ation time is ≈ 500 ns starting 10 ns after the signal peak 
using 1 ns steps. The integration limits in Eq. (3) are 25 nm 
and 1025 nm in Rg and 5 nm and 80 nm in dp with enough 

Fig. 1  Standard deviation of the signal over the mean signal mag-
nitude for 50 normalized and background-corrected signal decay 
curves, each averaged over 100 single shots (circles), a linear (red, 
coefficient of determination R2 = 0.89 ) and a square root fitting curve 
(blue, R2 = 0.84 ). The inset shows an averaged signal in comparison 
to a modeled one corrupted with the linear noise model

Table 1  Input values for modeling a theoretical measurement signal � 
based on TEM analysis

scenario mean value σ

11
D

4D

2D

µdp 20 nm – (no prior)
σdp 1.2 – (no prior)
µRg 80 nm 11 nm [57]
σRg 1.7 0.06 [57]
Rg,eff 238 nm 10 nm [17]
C 1 - (no prior)
Tg(hot) 1600K 50K [60]
Tg(cold) 300K 5K
α 0.37 [61] 0.04
E(m̃) 0.3 [43] 0.04 [43]
Df 1.56 [17] 0.06
kf 2.5 [2] 0.5
ρ 1850 kgm−3 200 kgm−3
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refinement, so the integration error is negligible in compari-
son to the measurement noise. After its generation, the mod-
eled signal for �dp

= 20 nm and �dp = 1.2 is superimposed 
with measurement noise from the linear noise model result-
ing in a theoretical measurement signal � . Then, for the 
2D case without prior knowledge, Eq. (19) simplifies to a 
weighted least-square minimization with

 
Figure 2 summarizes the results of the least-square mini-

mization. The resulting �MLE with �dp
= 19.8 nm and 

�dp = 1.22 (black diamond and black-dashed lines) is close 
to the input values (red diamond and red dashed lines) for 
the simulation. To visualize the probability density a 
straightforward evaluation of p(�|�) ∝ p(�|�) at several grid 
points around the �MLE value is applied and plotted in Fig. 2 
(contours in log scale). As one can see, the problem is 
slightly ill-posed as there is a valley of possible solutions 
with the probability density decreasing towards the edges of 
the valley. For example, a primary particle size distribution 
with an underestimated �dp

 but overestimated �dp can explain 
the measured LII-data equally well within the measurement 
noise. In this case, the integration for the marginalization of 

(23)�MLE=̂ argmin

‖‖‖‖‖‖

([
� − �mod(�)

]2
𝜎2
b

)‖‖‖‖‖‖
.

the probability density for �dp
 and �dp from Eq. (20) can be 

approximated by a summation over all grid points in both 
directions. The marginalized probability densities are plotted 
as green lines in the upper and right graph of Fig. 2. As one 
can see each of the two probability densities can be approxi-
mated by the normal shape around the �MLE depicted as 
black curves, corresponding to a local linear approximation 
of the measurement model around the MLE. The resulting 
95% credibility interval from this approximation is also 
depicted as ellipse in the contour plot of Fig. 2. As the com-
putational effort for the multi-dimensional integration 
increases with increasing number of unknown variables, the 
probability density for each QoI based on Eq. (21) is approx-
imated as normally distributed for the following considera-
tions. To verify the uncertainties in �dp

 and �dp , an MCMC 
simulation with 4500 steps is carried out. The results are 
plotted onto the contour (filled gray circles) confirming the 
shape of the valley of possible solutions. All steps are mar-
ginalized and binned and the resulting histograms for both 
QoI are plotted above and beside of the contour plot (gray 
bars). The histograms are in good agreement with the nor-
mally distributed probability density function as well as with 
those derived from marginalization of p(�|�) . The 95% cred-
ibility intervals are comparably narrow for the 2D case with 
�dp

∈ [19.14 nm;20.54 nm] and �dp ∈ [1.16;1.28] . In Fig. 3, 
the resulting recovered log-normal primary particle size dis-
tributions of 50 random samples from the MCMC (blue cir-
cles in Fig. 2) are plotted together with the distributions 
deriving from �exact and �MLE in red and black, respectively. 
Although the credibility intervals seem narrow, the influence 
on the recovered PPSD is clearly visible in Fig. 3. However, 
for this 2D scenario, all other parameters are considered to 
be deterministic and known exactly, which is unrealistic.

Fig. 2  Likelihood p(�|�) (contours in logarithmic scale) for different 
geometric mean and geometric standard deviation values of the pri-
mary particle size distribution for a 2D scenario. The red dashed lines 
mark the exact input values for signal generation, while the black-
dashed lines depict the �MLE values. The black ellipse depicts the 95% 
credibility interval for the normal approximation of the probability 
around the �MLE deriving from the Jacobian. The filled gray circles 
are results of 4500 accepted steps of a MCMC simulation resulting 
in the marginalized histograms on top and aside for both QoI. The 
marginalized probability densities for each QoI, obtained by integra-
tion and from the normal approximation of the probability density are 
depicted as green and black curves, respectively

Fig. 3  Log-normal distributions of the primary particle diameter 
derived from 50 random samples of the 4500 MCMC steps in Fig. 2 
together with the �exact in red and �MLE in black
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4.2  4D scenarios

For practical applications �Rg
 and �Rg

 cannot be determined 
exactly but are limited by the accuracy of their correspond-
ing measurement technique, e.g., TEM analysis or ELS. 
Here, it is important to assess how uncertainties in the aggre-
gate size distribution propagate into uncertainties in �dp

 and 
Np . The desired vector � now consists of the four variables 
under investigation ( �dp

, �dp ,�Rg
, �Rg

 ) and an additional nui-
sance parameter C, not actually under investigation, but nec-
essary as a constant for scaling the normalized signal. All 
other parameters, e.g., Tg , � , E(m̃) , Df , kf , � are still assumed 
to be perfectly known.

First, a case without any prior information about �Rg
 and 

�Rg
 (4D no priors) reveals the impact of the aggregate size 

distribution on heat conduction through shielding. The 
shielding effect should be more pronounced for large aggre-
gates due to the higher number of primary particles deriving 
from the fractal approach in Eq. (3) [33]. Knowledge about 
the aggregate size distribution is then incorporated into the 
inference via Eq. (19).

One way to measure the aggregate size is using elastic 
light-scattering techniques as for example WALS [57] or 
multi-angle light scattering (MALS) [62]. As the probe vol-
ume always contains a polydisperse distribution of aggre-
gates following p(Rg) , the resulting effective structure factor:

is based on the structure factor S(q,Rg,Df) for each aggre-
gate size Rg . For scattering in the Guinier regime, it can be 
approximated by Seff(q,Rg,Df) ≈ 1 − 1∕3 ⋅ q2 ⋅ R2

g,eff
 , from 

which an effective radius of gyration Rg,eff of the ensemble 
can be determined [11]. However, its value is shifted towards 
larger aggregate sizes, as their scattering intensity is scaled 
by an exponent of 2 ⋅ Df , deriving from substituting N2

p
 in 

Eq. (24) with the fractal approach from Eq. (1). Figure 4 
shows the link between the aggregate size distribution 
parameters �Rg

 , �Rg
 and Rg,eff for an assumed log-normal 

aggregate size distribution in a contour plot. For example, 
an aggregate distribution of �Rg

= 80 nm and �Rg
= 1.7 leads 

to an effective radius of gyration of Rg,eff = 238 nm.
Therefore, the second case uses prior knowledge about 

the effective radius of gyration (4D Rg,eff ), usually obtained 
from light-scattering experiments, to evaluate the posterior 
probability density of �dp

 and �dp . The Gaussian distributed 
prior probability density of Rg,eff = (238 ± 10) nm is based 
on typical results from light-scattering measurements with 
an angular resolution of 1 ◦ [17]. The orange band in Fig. 4 
marks all (�Rg

, �Rg
) within the 1 − �Rg,eff

 credibility interval 

(24)Seff(q,Rg,Df) =
∫ p(Rg) ⋅ N

2
p
⋅ S(q,Rg,Df) dRg

∫ p(Rg) ⋅ N
2
p
dRg

,

of the prior probability density. Obviously, a variety of 
different aggregate size distributions lead to the same 
effective radius of gyration, which makes the problem ill-
posed in itself. This was discussed in detail by Huber et al. 
[57], where Bayesian inference was used to deconvolve the 
actual aggregate size distribution parameters from scatter-
ing measurements.

Therefore, in a third case, Gaussian distributed priors 
for �Rg

 and �Rg
 are added (4D �Rg

, �Rg
 ). Table 1 lists the 

assumed values for both parameters, with their mean val-
ues based on TEM measurements from a premixed ethyne/
air flat flame at � = 2.3 . The width of the probability den-
sities of both priors is expected to be (80 ± 11) nm and 
1.7 ± 0.06 based on the width of the credibility intervals 
around the MLE obtained from light-scattering measure-
ments as reported by Huber et al. [57] for this range of 
aggregate sizes. This is a rather conservative assumption 
of the prior knowledge, as the Bayesian analysis of WALS 
data also provide the covariance of �Rg

 and �Rg
 . In Fig. 4, 

the white ellipse marks the 68% region for both �Rg
 and �Rg

 
highlighting the difference between the prior knowledge 
about the aggregate distribution parameters and the effec-
tive radius off gyration.

In a fourth case (4D Rg WALS), the correlation between 
�Rg

 and �Rg
 from the covariance matrix of the WALS analy-

sis is taken into account, resulting in the red ellipsoid that 
obviously provides the most detailed information about the 
aggregate size distribution. A Cholesky decomposition 
[63] of the inverse covariance matrix from WALS meas-
urements �−1

WALS
 is used to get the weighing matrix 

Fig. 4  Correlation between the aggregate size distribution param-
eters �Rg

 , �Rg
 and the effective radius of gyration Rg,eff . The orange 

band marks the 68% credibility interval of the Rg,eff prior probabil-
ity density (238 ± 10) nm, while the white ellipse tags the 68% cred-
ibility interval for prior knowledge about �Rg

= (80 ± 11)  nm and 
�Rg

= 1.7 ± 0.06 . The red ellipse refers to prior knowledge of the 
covariance matrix from the WALS analysis
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according to � = chol
(
�
−1
WALS

)
 with �−1

WALS
= �T� . It can 

be used to find the �MAP by replacing the second term of 
Eq. (19) with

For all four 4D scenarios, a flame case surrounding with 
Tg = 1600K as well as an aerosol case with Tg = 300K are 
analyzed. The resulting uncertainties of �dp

 and �dp and the 
corresponding width of the 68% credibility interval are listed 
in Table 2 together with the related normal distributions in 
Fig. 5 for both the hot (left) and the cold gas case (right). In 
Fig. 5, the 4D scenarios are presented as red curves with 
solid lines for the “4D no priors”, dot–dashed lines for the 
“4D Rg,eff ”, dashed lines for the “4D �Rg

, �Rg
 ” and dotted 

lines for the “4D Rg WALS” case. The 2D case presented in 
Sect. 4.1 is depicted in blue lines to refer to a “best case” 
scenario, where all aggregate parameters are deterministic.

For both ambient gas temperature cases, the uncertainties 
of �dp

 and �dp are large when no prior information is assumed 
about the aggregate size distribution. It should be mentioned 
that the uncertainties presented in Table 2 may exceed the 
expectation values and thus do not present the real state of 
knowledge (e.g., negative values for �dp

 within the uncer-
tainty). This is a result of the normal approximation of the 
probability density. In those cases, the uncertainties rather 
highlight that the outcome is uninformative, indicating a flat 

( npr∑
k=1

(
� ⋅

(
�pr,k − xk,mod

))2
)
.

shaped probability density. Adding information about the 
effective radius of gyration (dotted–dashed lines) does not 
significantly improve the uncertainties in �dp

 , although the 
uncertainties of �dp narrow with the Rg,eff prior, especially 
for the 1600 K case. With knowledge about the aggregate 
size distribution the uncertainties narrow. Especially, for the 
cases “4D �Rg

, �Rg
 ” (dashed lines) and “4D Rg WALS” (dot-

ted lines), the uncertainties of the distribution width 
approach the probability densities obtained from the 2D 
case. A general trend can be seen in Fig. 5, which is most 
pronounced for the cold aerosol case: as soon as some infor-
mation about the aggregate distribution is provided, the 
width �dp of the PPSD can be determined with a relatively 
low uncertainty. This can be explained by the effects of large 
primary particles that would still incandesce even at late 
times of the LII signal. As the signal has almost decayed 
completely at those late times, however, the presence of 
large primary particles can be excluded. For the cold aerosol 
case, beside the high-temperature gradient between the par-
ticle and the surrounding gas also the prior uncertainty asso-
ciated to Tg must be taken into account. Here, we assume that 
temperature measurements in the cold gas are more precise 
than those at elevated flame temperatures. The effect is dis-
cussed in more detail in the following 11D case. As the 
simulations show, the effect of aggregate shielding is much 
more pronounced in the cold ambient surrounding scenario. 
Without any prior on �Rg

 and �Rg
 as well as for the case “4D 

Rg,eff ”, almost no relevant information about the PPSD can 
be retrieved. This result is in agreement with the findings of 
Liu et al. [38], who stated that the primary particle diameter 
as well as the distribution of the aggregate size impact the 
particle temperature for low ambient gas temperatures. By 
adding more prior knowledge about both aggregate distribu-
tion parameters, however, the uncertainties narrow to an 
acceptable level.

In essence, the 4D simulations show that, although ther-
mal shielding of aggregates influences the LII process sig-
nificantly, it is possible to determine the PPSD with reasona-
ble uncertainties. To that end, however, specific information 
about the aggregation state of the system must be available, 
particularly when performing LII measurements on cold soot 
aerosols.

4.3  11D scenario

In reality, many of the LII model parameters are subject to 
considerable uncertainty. For example, the measurements of 
the ambient gas temperature Tg within a flame are always 
affected by certain error [64]. The thermal accommodation 
coefficient � and absorption function E(m̃) are also subject 
to considerable uncertainty due to the techniques used to 
measure these parameters as well as variations in the 

Table 2  Results for �
d
p

 and �
d
p

 for different scenarios presented for a 
hot and cold surrounding gas case

Scenario Hot case T
g
= 1600K Cold case T

g
= 300K

2D no priors
   �

dp
 / nm 19.84 ± 0.35 19.97 ± 0.14

   �
dp

1.22 ± 0.03 1.20 ± 0.01

4D no priors
   �

dp
 / nm 20.18 ± 2.21 22.04 ± 190.3

   �
dp

1.19 ± 0.10 1.17 ± 1.10

4D Rg,eff

   �
dp

 / nm 19.64 ± 2.40 20.58 ± 30.2

   �
dp

1.20 ± 0.04 1.20 ± 0.52

4D �
Rg
, �

Rg

   �
dp

 / nm 20.10 ± 0.46 20.00 ± 0.56

   �
dp

1.20 ± 0.04 1.20 ± 0.02

4D Rg WALS
   �

dp
 / nm 20.11 ± 0.45 20.00 ± 0.35

   �
dp

1.20 ± 0.04 1.20 ± 0.01

11D all priors
   �

dp
 / nm 20.13 ± 3.54 20.05 ± 3.27

   �
dp

1.19 ± 0.06 1.20 ± 0.02
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composition and structure of soot. It is, therefore, unreason-
able to model these parameters as “perfectly known”, which 
is reflected in the increasing trend to include these, and other 
model parameters, as nuisance parameters in Bayesian infer-
ence studies [56]. Therefore, additional nuisance parameters 
are added to the vector � = (�dp

, �dp ,�Rg
, �Rg

,C, Tg, 
𝛼,E(m̃),Df, kf, 𝜌) leading to a 11D inference problem. Once 
again, the underlying prior probability densities are assumed 
to be Gaussian and are listed in Table 1. For the aggregate 
parameters, the same priors are used as presented for the 
“4D �Rg

, �Rg
 ” case. The resulting uncertainties of �dp

 and �dp 
are plotted as green lines in Fig. 5 with the underlying values 
listed in Table 2. It is not surprising that due to the additional 
uncertainties of all the nuisance parameters, the uncertain-
ties in �dp

 increase to a significant level with a relative uncer-
tainty of ≈ 17% . No noticeable difference between the hot 
and cold gas case is observable, as the uncertainties of the 
QoI are dominated by the uncertainties of the nuisance 
parameters exceeding the influence of the aggregate size 
distribution. The posterior probability density of �dp is still 

narrow, especially for the cold ambient surrounding gas case 
and compared to the probability density of �dp

 . As the 
median value �dp

 is mainly dependent on the decay rate of 
the LII signal, it is strongly influenced by parameters affect-
ing the decay rate of each specific primary particle size, such 
as the thermal accommodation coefficient. High uncertain-
ties in those parameters thus lead to a very high uncertainty 
of �dp

 . However, the distribution width �dp describes the rela-
tive weight of each particle size in the distribution (and the 
corresponding decay rate) and is thus less affected by those 
parameters and uncertainties, as they mainly enter �dp

 . In our 
case, wide size distributions with a high number of large 
primary particles (relative to the median �dp

 ) are very 
unlikely due to the behavior of their LII signal. Those large 
particles cool significantly slower than small ones. Assum-
ing a broad PPSD, the high number of small- and medium-
sized particles would be responsible for the strong signal 
within the first few hundred nanoseconds. For later times, 
their signal has almost completely decayed, and only the 
large particles would generate visible signal with a slow 

Fig. 5  Uncertainties of both QoI ( �dp
 and �dp ) deriving from the val-

ues in Table 2, both quantities assumed as normally distributed. Left: 
hot case with a surrounding gas temperature of 1600  K, right: cold 

case with 300 K. The different colors refer to different scenarios: blue 
for 2D, red for 4D and green for 11D
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decay curve. As the simulated narrow PPSD contains no 
large primary particles, no signal at late times is present, 
excluding the possibility of large particles. Thus the meas-
urement time has a great effect on the possibility for PPSD 
determination, especially for cold bath gas cases, as shown 
in Fig. 6. By shortening the evaluation time by a factor of 
three the uncertainties in �dp almost double from ± 0.018 to 
± 0.028, while the uncertainties in �dp

 are almost unaffected. 
As an interim conclusion we want to emphasize that espe-
cially for the determination of the width of the PPSD it is 
essential to measure the LII signal until its decay to the noise 
level. At the same time, the probability of monodispersely 
distributed primary particles ( �dp = 1 ) for all hot gas cases 
is very unlikely, even without prior knowledge. For cold 
aerosol cases, profound knowledge of the shielding effects 
is required. Probability densities p(𝜎dp) > 0 for 𝜎dp < 1 arise 
from the approximation of normally distributed probability 
densities around the �MAP and, of course, do not represent a 
physical case.

Summarizing the results for the 11D scenario, the pos-
sibility of determining the PPSD with LII by itself for soot 
samples seems doubtful as many uncertainties from physical 
and optical properties as well as from the consideration of 
the aggregate structure in the shielding approach lead to a 

variety of possible solutions. On the other hand, determin-
ing the PPSD with LII appears feasible provided that some 
information is available about the aggregate structure and 
size distribution.

For the 11D scenario only the most important parameters 
of LII are included as stochastic variables. However, further 
models and their parameters could be included, e.g., to 
assess the validity of the assumptions made in the theory 
section. As an example, adopting the approach presented by 
Johnsson et al. [35] to account for the bridging effect showed 
only minor influence on the resulting uncertainties of the 
size distribution parameters. Assuming an overlap factor 
Cov = 0.25 ± 0.05 as an additional nuisance parameter lead 
to an estimate of �dp

= 18.6 nm , while �dp is almost unaf-
fected. This is in agreement with the findings of Johnsson 
et al. [35] reporting an overestimation of the particle size by 
9% if bridging is neglected. However, as bridging does not 
show significant influence on the uncertainties (below 2.5%) 
and cannot be included into all models comprehensively, the 
upcoming discussion is further based on the 11D scenario.

It is important to ascertain which of the nuisance param-
eters are most responsible for the uncertainty in the QoI. To 
this end, a MCMC with 15,000 steps was carried out for the 
11D case with hot surrounding. Figure 7 shows the margin-
alized histograms of the eleven quantities along the graphs 
on the diagonal, which reasonably match the normal distri-
butions expected from the locally linear model approxima-
tion. For some variables, e.g., the density � , the MCMC 
histograms do not match the prior probability densities, 
which are in each case wider compared to the sampled his-
tograms. This indicates too few steps of the MCMC. Apply-
ing more MCMC steps, the accordance with the least-square 
minimization should further be improved. However, due to 
the double integral in Eq. (3) the computation time is quite 
high, typically about 200 s for each accepted step, limiting 
the size of the Markov chain. Moreover, from Fig. 7 the cor-
relations between the different quantities can be seen in the 
corresponding off-diagonal graphs, where each green circle 
depicts an accepted MCMC step. As an example, there is a 
high correlation between the density � (column 11) and E(m̃) 
(row 8) or between �dp

 (row 1) and � (column 7). A more 
detailed discussion on the correlation between the different 
parameters is given in the next section.

4.4  Discussion of the correlation matrices

To analyze the impact of each nuisance parameter on the 
quantities of interest the correlation matrices for the dif-
ferent scenarios for the hot gas case are presented in 
Fig. 8. As introduced in Sect. 3, the correlation matrix, as 
the standardized covariance matrix, visualizes the link 
between the different parameters. According to Eq. (22), 

Fig. 6  Normally distributed uncertainties of both QoI ( �dp
 on top and 

�dp below) for different lengths of measurement time for a bath gas 
temperature of 300 K. The results for the 11D case are presented as 
green lines, while the red lines depict the 4D �Rg

, �Rg
 case
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all the diagonal entries are 1 and the matrix is symmetric. 
The correlation coefficient of two parameters is defined 
in the entry of the corresponding row and column of the 
matrix. For the 2D case, the �dp

 and �dp are highly corre-
lated, as a change in one quantity can only be counter-
vailed by a change in the other. The negative value 
�cor,12 = �cor,21 = −0.99 indicates that a larger median pri-
mary particle size leads to a smaller �dp (and the other way 
around), which is also obvious from Fig. 2. The 4D case 
with prior knowledge of the aggregate size distribution 
parameters shows that the correlation between �dp

 and �dp 
is reduced as the aggregate size distribution parameters 
exert a competing influence. Furthermore, �dp is less cor-
related with the aggregate distribution parameters than 
�dp

 . This is a confirmation that the uncertainties in �dp are 
not as sensitive to the introduction of different aggregate 
size distribution parameters as the uncertainties in the 
median of dp . By introducing further nuisance parameters, 
the correlation coefficient between both QoI is close to 

zero. In addition, the aggregate distribution parameters 
do not show a strong influence on either �dp

 or �dp , 
whereas parameters like � , � , or E(m̃) are highly corre-
lated with the median of the primary particle diameter. 
To give an example, a certain signal decay curve may be 
explained by a certain �dp

 at a certain surrounding gas 
temperature. By assuming a higher value for Tg , the cool-
ing rate would theoretically be decreased. On the basis of 
the initial signal decay curve, only a reduction of the 
median primary particle size can countervail the overes-
timation of Tg . This leads to the negative value of the 
correlation coefficient �cor(�dp

, Tg) . On the other hand, an 
increase in the thermal accommodation coefficient � 
would theoretically increase the cooling rate. This effect 
can only be compensated by assuming bigger particles 
and, therefore, results in a positive correlation coefficient 
�cor(�dp

, �) . Furthermore, the link between certain nui-
sance parameters itself can be analyzed. As already men-
tioned in the discussion of Fig. 7, the density � and E(m̃) 

Fig. 7  Results of a MCMC with 15,000 steps for the 11D case with 
hot surrounding gas temperature. The diagonal axes represent the 
marginalized histograms for each QoI with the �MAP (red), the �exact 
(black-dashed) and the Gaussian shaped probabilities (black). The 

green filled circles represent each accepted step, where each combi-
nation of two quantities is presented in the according row and col-
umn combination. This allows to identify the degree of correlation 
between the parameters
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are highly correlated. In Eqs. (4)–(6), it becomes obvious 
that an increase in the density once again is positively 
correlated with the E(m̃) value. The fractal prefactor kf 
has a high correlation coefficient with �dp

 , as it acts as a 
kind of scaling factor in the fractal approach and in Eq. 
(3). As the probability density of the prior knowledge 
about this factor is very wide (Table 1), it has a strong 
influence on the determined PPSD. Comparing the cor-
relation matrix of the 11D case with the MCMC of Fig. 7 
similarities in certain parameters are observable. The high 
correlation between E(m̃) and � is especially prominent in 
the MCMC. Furthermore, the slope of the MCMC is in 
agreement with the sign of the correlation coefficient, 
e.g., the positive value for �cor(�dp

, �) or the negative one 
for �cor(�dp

, kf) . Some other correlations, highlighted by 
the correlation matrix, are not present in the MCMC 
graphs. For example, the dependence between �dp

 and � 
is not obvious in the MCMC, which might be due to the 
limited amount of MCMC steps. Here, the computation-
ally efficient least-square minimization shows a great 
advantage over the time-consuming MCMC simulation in 
detecting correlations.

5  Conclusions

While TiRe-LII has evolved as a routine technique for the 
determination of primary particle sizes, the question under 
which circumstances their distribution can be obtained, has 
been mostly neglected so far. Although there have been 
many approaches for the determination of this distribution, 
the distribution of aggregate sizes, which influence heat con-
duction via shielding and transition-regime effects, has been 
widely neglected. The aim of this paper was to analyze this 
effect for two typical situations encountered in LII, namely, 
a flame and a cold soot aerosol case.

Regarding the main question addressed in the title of this 
work: can soot primary particle size distributions be deter-
mined using laser-induced incandescence? The answer is 
yes—for specific conditions. It highly depends on the prior 
knowledge of certain parameters as well as information 
about the aggregation state of the system. The measurement 
noise is amplified into uncertainties in the inferred primary 
particle size distribution parameters �dp

 and �dp by the ill-
posedness of the problem. If one had exact knowledge of all 
other parameters of the system, robust estimates for �dp

 and 
�dp could be found with little uncertainty. However, the ill-
posedness and the uncertainties increase under the influence 
of aggregation through thermal shielding and uncertainties 
in model parameters. As various parameters influence the 
LII signal and signal decay, our major conclusion is: espe-
cially when including uncertainties in model parameters in 
the evaluation, the determination of the PPSD from LII-data 
is highly uncertain without profound knowledge of the 
aggregate size distribution, of which the measurement is 
thus indispensable.

The second conclusion implies that the median and the 
width of the PPSD are affected differently: the uncertainty 
of the median strongly depends on prior knowledge on the 
aggregate size distribution and other parameters. Yet, in 
many cases, the uncertainty of the width of the PPSD is less 
dependent on prior knowledge. In most measurement situa-
tions, it is, therefore, more difficult to determine the size of 
the primary particles, compared to the polydispersity.

Finally, we want to emphasize the importance of perform-
ing sophisticated uncertainty analysis for the determination 
of the PPSD and the correct interpretation of the outcome.
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