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Abstract
In this paper, laser-induced breakdown spectroscopy (LIBS) combined with artificial neural network (ANN) was investigated 
to classify four species of wood samples (Africa rosewood, Brazil bubinga, Myanmar padauk, and Pterocarpus erinaceus). 
The wood samples were ablated by laser pulses to generate plasma emission, which was measured by a spectrometer and 
transmitted into a computer for further data analysis. The feature spectral data were selected out based on loadings of prin-
cipal component analysis (PCA) and normalized using the sum of all feature spectra data. The ANN model was built based 
on the feature spectral data to classify the wood species. The relationship between correct classification rate (CCR) and set-
tings of ANN was discussed. The CCR of ANN model for test set data achieved 100% with multilayer perceptron network 
and Broyden–Fletcher–Goldfarb–Shanno iterative algorithm. This result was also compared with the CCRs of PLS-DA, 
KNN, and SIMCA model for test set (82.5%, 95.83%, and 51.67%, respectively). Using the ratio between feature variables 
to recognize the species of wood was also discussed. The experimental results demonstrated that LIBS integrated with ANN 
could be applied for analyzing and recognizing wood species.

1  Introduction

Regarded as one kind of important material of manufac-
ture and fuel, wood is used by human over a long period of 
time [1–3]. The physical and chemical properties of differ-
ent wood species are variant, since different kinds of wood 
contain distinguished compositions [4, 5]. These properties 
will affect the costs, implementations, and cycle period of 
wooden production in practice [6]. In the field of architecture 
manufacturing, archeology, biodiversity, and environmen-
tal conservation, the wood species is essential information 
[7–10]. Therefore, classification of wood species is a very 
important research.

The traditional classification method is to recognize 
wood species by observing visible anatomy features of 
wood sections with microscope or macroscopic [11]. The 
accuracy of the traditional method depends on the opera-
tor’s experience and attention [12]. To solve this problem, 
researchers proposed some improvements based on the 

traditional methods. The machine vision technology with 
computer digital image algorithm, such as gray-level co-
occurrence matrices (GLCM) and edge detection technique, 
can improve the accuracy and speed of analysis methods 
[7, 13, 14]. Another kind of imaging method is based on 
multispectral imaging technique [15]. The analysis accuracy 
of this method is high due to more information of multi-
spectral image. However, the imaging method is not suit-
able for analysis of in-suit application, because it requires 
sample preparation and microscope image of wood sections. 
Besides the methods based on imaging process, DNA extrac-
tion technique was also used in wood sample classification 
[16, 17]. This method is more accurate; however, DNA 
extraction requires high precision laboratory environment 
and complicated sample preparation. Expect the techniques 
mentioned above, near-infrared spectroscopy (NIRS), one 
kind of non-destructive spectroscopy analysis method, was 
used to analyze wood and paper [18, 19]. However, the NIRS 
method also requires sample preparation, which increases 
the complexity of the measurement [20]. In addition, the 
peaks of different wood chemical composition are overlap 
and weak in the near-infrared range and the NIRS is sus-
ceptible interfered by environmental factors [21]. The lit-
eratures mentioned above show that some techniques have 

 *	 Qianqian Wang 
	 qqwang@bit.edu.cn

1	 School of Optics and Photonics, Beijing Institute 
of Technology, No. 5, South Avenue, Zhongguancun, 
Haidian District, Beijing 100081, People’s Republic of China

http://orcid.org/0000-0001-9014-5817
http://crossmark.crossref.org/dialog/?doi=10.1007/s00340-019-7166-3&domain=pdf


	 X. Cui et al.

1 3

56  Page 2 of 12

been applied in wood species classification, but still have 
some disadvantages.

As well known, compared with the other material anal-
ysis technology, laser-induced breakdown spectroscopy 
(LIBS), an atomic spectroscopy analysis technology, has 
some unique advantages such as rapid analysis, few sam-
ple preparation, in-suit, and remote measurement, etc. [22, 
23]. Therefore, LIBS has been widely applied in the field of 
material classification and identification such as metallurgy, 
exploration and safety, etc. [24–26]. Some researchers have 
analyzed the wood samples using LIBS. For example, wood-
slice substrate was selected as a water absorber for detection 
of trace amounts of heavy metal in aqueous solutions using 
LIBS [27, 28]. Regarded as waste materials, wood samples 
were analyzed by LIBS to detect the elements information 
of contaminant, such as chemical warfare agents (CWA) and 
preservatives [29–31]. However, these studies, in which the 
wood samples were used as substrate materials, are not for 
wood classification. In this paper, the aim of the research is 
to classify the wood species by LIBS.

In the field of recognition analysis, supervised learning, 
one kind of machine learning methods, is combined with 
the LIBS technology to discriminate materials frequently. 
In supervised learning method, the data of samples with 
label are used to build a classification model and the data of 
unknown samples are identified by imported into the clas-
sification model. The generalization performance of model 
is evaluated by the correct classification rate (CCR) for test 
set [32], which is the ratio of the number of samples clas-
sification correctly to the number of all unknown samples. 
The common supervised learning methods include artificial 
neural network (ANN), partial least-squares discriminant 
analysis (PLS-DA), and soft independent modeling of class 
analogy (SIMCA) [33], etc. The previous research works 
demonstrated that these multivariate analysis techniques 
could be applied in LIBS spectra classification [34]. PLS-
DA maximizes the inter-class variance while minimizing the 
intra-class variance, which raises the recognition ability of 
the model [35]. However, PLS-DA is a binary classification 

model and the complexity of PLS-DA model will increase 
for multiclassification task [36]. For the SIMCA, principal 
components analysis (PCA) is developed on each sample 
class, and the unknown samples are classified by evaluating 
the distance between the unknown sample and the center of 
each class. In some applications, the classification results of 
SIMCA for some samples were correct, while other samples 
were recognized incorrectly [37]. ANN, as a prevalent model 
used in pattern recognition, the accuracy, and repetition of 
ANN, has demonstrated improvement in the discrimination 
capability compared to the other models [38]. Considering 
the advantages and disadvantages of these techniques, ulti-
mately, we selected the ANN model to classify the spectra 
data of wood.

In this paper, the spectra of four species of wood were 
measured. The feature spectral data of wood selected by 
PCA were input into ANN model. The relationship between 
the parameters setting and the CCRs of ANN models was 
investigated in detail. In addition, the CCRs of ANN, PLS-
DA, KNN, and SIMCA classification models combined with 
LIBS data in wood classification were compared.

2 � Materials and methods

2.1 � Experimental setup

The experimental setup is same as the LIBS system used in 
the previous work [34]. A schematic of the system is shown 
in Fig. 1 for reference. A Q-switch flash lamp pumped 
Nd:YAG laser operating at 1064 nm with 1 Hz repetition 
rate, pulse duration of 10 ns, beam diameter of ∅6 mm, 
and single pulse energy of 50 mJ was used as the excitation 
source. The laser beam was guided through three reflectors 
(M1, M2, and M3) and focused onto sample surface by a 
convex lens (L1) with focal length 100 mm. The wood sam-
ple was put on a 3D translation stage. The distance between 
the convex lens and sample surface was adjusted by z-axis 
translation device of the 3D translation stage. The diameter 

Fig. 1   LIBS experimental setup 
for wood species analysis
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of spot size was less than ∅ 1 mm. The sample was moved 
by x- and y-axis translation device of the 3D translation stage 
to ensure that each laser pulse ablates a fresh location. The 
laser was preheated for half an hour before measurement to 
stabilize the laser energy.

Plasma emission generated by ablated sample was 
focused by another convex lens (L2) with 30 mm focal 
length and ∅ 25 mm diameter into a fiber optic bundle 
(two-fiber, each of 600 μm aperture). The angle between the 
normal direction of fiber bundle and incidence direction of 
laser was 45° to ensure spectrometer collected plasma emis-
sion stably. The fiber bundle connected with a two-channel 
gated charge-coupled device (CCD) spectrometer (AvaSpec 
2048-2-USB2, Avantes). The spectral interval range of the 
spectrometer covers from 200 to 950 nm with a convert-
ible spectral resolution of 0.20–0.30 nm. The acquisition 
parameters of spectrometer were set by software (AvaSpec 
7.6 provided by AVANTES). In this experiment, the flash 
lamp was triggered by spectrometer. The delay time, which 
is the time interval between the flash lamp trigger and the 
spectrometer acquisition, was 376 μs and the integration 
time of CCD was 2 ms. The experiment was implemented 
under ambient condition.

2.2 � Materials

The wood samples were purchased at local furniture market 
in China. The latin names of wood samples (Africa rose-
wood, Brazil bubinga, Myanmar padauk, and Pterocarpus 
erinaceus, respectively) and the corresponding sample ID 
listed in Table 1.

The samples are shown in Fig. 2. The hardness of four 
species of wood is similar to each other. All wood samples 
were manufactured into 80 mm × 140 mm × 5 mm block and 
cleaned with alcohol. For each type of wood, the sample was 
divided into 100 sub-samples and 3 laser shots ablated on 
different positions in each sub-sample using a 3D translation 
stage (Fig. 1). Then, these three spectra were averaged into 
one spectrum. As the samples were naturally heterogeneous, 
each sub-sample can be regarded as one sample (Fig. 2b). 
Ultimately, the spectra of 100 samples were obtained for 
each type of wood (400 samples in total). From each type 
of sample, 70 spectra were selected randomly as training set 
(totally 280 spectra) and the rest spectra were used as test 

set. The training set was imported into a trainer of ANN to 
build a classification model. The test set was used to assess 
the performance (i.e., recognition ability) of model for 
unknown spectra.

2.3 � Spectral data

In the process of model building, we can use pixel intensity 
(the intensity of each single wavelength) or line intensity 
(the area of the single spectral line) as the input variable. 
Therefore, it is worth to investigate which type of input vari-
able is suitable for wood classification. Figure 3 describes 
the difference between pixel intensity and line intensity 
(using peak of H element as an example here). In this paper, 
the recognition ability of ANN models established on pixel 
intensity and line intensity was compared. In the case using 
pixel intensity as input variable, the intensities of 3466 pix-
els, the all pixels of a whole LIBS spectrum in our case, 
were selected as spectral data. In the case using line intensity 
as input variable, the intensities of 188 spectral lines, which 
were selected from spectral lines of all wood types, were 
used as spectral data for analysis. It is worth mentioning that 
the data analysis procedures for these two different types of 
input variables were the same.

3 � Data analysis

The data analysis procedures used in this work include fea-
ture spectral data selecting, data pre-processing, and clas-
sification modeling. A method based on PCA model was 
used to select the features, normalization (using the sum of 
all intensities to normalize the spectral data) was selected 
as pre-processing method, and ANN was used as classifi-
cation model. Feature spectral data selecting and data pre-
processing were implemented based on MATLAB version 
2016a (MathWorks, Natick, MA). The modeling process and 
parameters optimization of ANN models were investigated 
using Automated Neural Network Toolbox, which was inte-
grated in STATISTICA (version 10.0.1011.0, StatSoft, Inc.).

3.1 � Feature spectral data selection

To improve the performance and interpretability of the 
model, the spectral feature data should be extracted [39]. 
PCA, a statistical method of dimensionality reduction [40], 
was used to extract feature variables of LIBS spectral data 
in this work. PCA is one kind of orthogonal transformation 
method. The high-dimensional data are projected down into 
a lower dimensional subspace, of which the variance of pro-
jection in each direction is maximum value. Therefore, the 
scores of principal components (PCs) contain the informa-
tion of the high-dimensional data in the new subspace as 

Table 1   Latin names and sample ID of wood samples

Sample ID Sample name Latin name

Type 1 Africa rosewood Guibourtia spp.
Type 2 Brazil bubinga Guibouritia
Type 3 Myanmar padauk Pterocarpus macrocarpus Kurz
Type 4 Pterocarpus erinaceus Pterocarpus erinaceus Poir.
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much as possible. An important result of PCA algorithm is 
the eigenvector of the covariance matrix of high-dimensional 
data, namely loadings. The 1/n of the maximum absolute 
value of loadings for PCx (x = 1, 2) was regarded as the 
threshold to select the feature variables. That is, the spectral 
pixel or line whose absolute value of loading was above the 
threshold value was selected as the feature variable data. 
The optimal value of n was searched based on classification 
results. The method can be referenced in the literature [41].

3.2 � Data pre‑processing

Normally, there are some spectral fluctuations between 
the measurement of each pulse due to inhomogeneity 
of sample surface, interference of ambient, and fluctua-
tion of laser energy. Suitable data pre-processing method 
can reduce those data fluctuations [42]. Referenced the 
previous studies about pre-processing methods [43–45], 

Fig. 2   a The surface of experi-
mental samples and b a method 
to improve the number of 
samples. The red dots were laser 
shot in each sub-sample
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normalization method was selected as the pre-processing 
method ultimately:

where xij is the original data in the ith row and jth column 
of spectral matrix, and x*

ij is the data after normalization in 
the ith row and jth column of spectral matrix.

3.3 � Classification modeling

In the present work, we used the artificial neural network 
(ANN) model as the classification model. Feed-forward 
networks were used as ANN networks due to their excel-
lent ability of self-learning and self-adaptive. There are two 
popular and principal network types of feed-forward net-
works, multilayer perceptron (MLP), and radial basis func-
tion (RBF).

The basic structure of MLP is a three-layer network, as 
shown in Fig. 4, which includes input layer, hidden layer, 
and output layer. The number of input layer neurons, n, 
equals to the number of input variables. The number of 
hidden neurons, l, may affect the performance of ANN and 
should be set based on specific application. The number of 
output-layer neurons was one. The different outputs yo of the 
neuron represent different prediction classes.

Every neuron in hidden layer and output layer represents 
an activation function, which is often a nonlinear function. 
The output of jth neuron in hidden layer is calculated by the 
following:

(1)x∗
ij
=

xij
∑n

j=1
xij
,

where fH and bH are activation function and bias of hidden 
layer, respectively. ωij

H (i = 1, 2, …, n; j = 1, 2, …, l) is the 
connection weight between the ith neuron in input layer and 
jth neuron in hidden layer; xi (i = 1, 2, …, n) is the ith input 
variable. The output of the model is determined as follows:

where fO and bO are activation function and bias of out-
put layer, respectively. ωj

O (j = 1, 2, …, l) is the connection 
weight between the jth neuron in hidden layer and the neuron 
in output layer.

Iterative algorithm is one factor related to recognition 
ability of MLP network. Iterative algorithm is used to deter-
mine the connection weights, which decide the input of neu-
ron in next layer. The optimal connection weights searched 
by different iterative algorithms are different, which lead to 
the difference of model recognition ability. The prevalent 
and basic iterative algorithms for training neural networks 
include the Broyden–Fletcher–Goldfarb–Shanno (BFGS), 
conjugate gradient and gradient descent algorithm. It is nec-
essary to determine the suitable iterative algorithm of MLP 
network for a specific application.

Another type of feed-forward networks is RBF whose 
structure is similar to MLP. The difference between RBF and 
MLP is that the activation function of hidden layer in RBF 
network is a radial basis function, which is a non-negative 
nonlinear attenuated function and radial symmetric around 
the prototype vector. The radial basis function is a Gauss 
function often. For the RBF network, the prototype vector 

(2)yH
j
= fH

(

n
∑

i=1

�
H

ij
⋅ xi ± bH

)

, j = 1, 2,… , l,

(3)yO = fO

(

l
∑

j=1

�
O

j
⋅ yH

j
± bO

)

,

Fig. 3   The difference between pixel intensity and line intensity. Using 
H element as an example, the pixel intensity is the intensity of a sin-
gle wavelength, such as 655.90 nm or 655.13 nm. The line intensity is 
the area of the spectral line of H element from 649.96 to 664.14 nm

Fig. 4   Network structure of ANN model
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of each hidden layer neuron is determined by input data 
directly. Therefore, there is no necessary to optimize the 
prototype vector. In this paper, the classification ability of 
the ANN models based on MLP and RBF was compared.

4 � Results and discussion

4.1 � Spectra of wood samples

The LIBS spectra of four species of wood samples are shown 
in Fig. 5.

Emission lines from Ca (392.788  nm, 396.47  nm, 
422.41  nm, 445.11  nm, 611.1  nm, and 615.2  nm), Na 
(588.95 nm and 589.55 nm), O (777.3 nm), H (656.1 nm), 
CN molecular violet bands (386–389  nm), and N 
(742.364 nm, 744.306 nm and 766.523 nm) can be observed 
in the spectra of all four species of wood samples. However, 
the intensities of those spectral peaks are clearly different in 
the spectra of the four wood species. For example, the inten-
sity of O (777.21 nm) in the spectrum of Africa rosewood 
and the intensity of Fe (392.59 nm) in spectrum of Brazil 
bubinga are weaker compared to the other wood species. The 
ratio of O to Fe (O/Fe) in spectrum of Myanmar padauk is 
1.73 and the value of O/Fe in Pterocarpus erinaceus is 0.90, 
approximately. It is worth noting that the intensities of such 
spectral data and the ratio between them are key factors in 
distinguishing the wood specie.

4.2 � Feature data selection

We performed the PCA model with the training set (280 
spectra). The 1/n of the maximum absolute value of loadings 
for PCx (x = 1, 2) was regarded as the threshold to select the 
feature variables as the inputs of the ANN model. The CCRs 
of models established using pixel intensity and line intensity 

as input variables for test set are shown in Fig. 6 when n was 
selected from 1 to 10. The results demonstrated that CCRs 
achieved maximum when n was set to be 4 for the both cases 
of using pixel intensity (99.17%) and line intensity (100%) 
as input variables. For line intensity, the CCRs were all 
100% when n was more than 4. However, more input vari-
ables will increase the complexity of model. Therefore, the 
optimal value of n was set to be 4 for both cases.

In the case of using pixel intensity as input variables, 
the loadings of the first two PCs are shown in Fig. 7. The 
dotted lines in the figure represented the thresholds on each 
principal component (0.07808 and 0.05044 on PC1 and PC2, 
respectively) and the element symbols were attached on the 
side of pixels whose loadings were exceeded the thresholds. 
As a result, we selected 49 pixels that belong to 17 elements 
listed in Table 2 as features.

In the case of using line intensity as input variables, the 
loadings of the first two PCs are shown in Fig. 8. The dot-
ted lines in the figure represented the thresholds on each 
principal component (0.16495 and 0.10265 on PC1 and PC2, 
respectively) and the element symbols were attached on the 
side of lines whose loadings were exceeded the thresholds. 
Consequently, 21 lines were selected from 188 spectral lines 
as features and listed in Table 2.

The ratios between the intensities of features can be 
used to classify the wood species. We use Bayesian sta-
tistics to determine the classification thresholds. The ratio 
corresponding to the maximum CCR in training set was 
selected to classify the test set (as shown in Fig. 9, the red 
lines represent the thresholds). In the case of using pixel 
intensity as input data, Fig. 9a, b, using the ratio between O 
777.21 nm and Na 588.95 nm can obtain the best result. The 
CCRs for training set and test set were 97.86% and 96.67%, 
respectively. In the case of using line intensity as input 

Fig. 5   Spectra of four species of wood samples

Fig. 6   The CCRs of ANN model when n was set to be 1–10
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data, Fig. 9c, d, the maximum CCR can be got when using 
ratio between N 821.63 nm and Na 588.95 nm. The CCRs 
for training set and test set were 95% and 94.17%, respec-
tively. The experimental results indicated that the maximum 
CCR could not achieve 100% when using a ratio between 
the intensities of features to classify the species of wood. 
Therefore, it is necessary to investigate using multivariate 
analysis methods to classify the wood species, such as ANN 
model in our case.

4.3 � Optimization of neural network type 
and structure

We established the ANN models based on MLP and RBF 
network integrated in Automated Neural Network Toolbox, 
STATISTICA. Considering for parameter setting rules of 
ANN model, the number of input neurons and output neu-
rons should be equal to the number of input variables and 
output variables, respectively. The number of hidden layer 
neurons, l, is calculated according to the formula:

(4)l =
√

n + m + �,

Fig. 7   Loadings of PCx (x = 1, 2) in the case of using pixel intensity as input data, the thresholds values of feature spectral data selection were 
0.07808 and 0.05044 on PC1 and PC2, respectively

Table 2   The elements and wavelengths of features selected by PCA

a The “Pixel intensity” consisted of one or more intensities of pixels belonged to the same element (the number of the pixels was attached in the 
brackets beside the “√”)

Element Wavelength 
(nm)

Pixel intensitya Line intensity Element Wavelength 
(nm)

Pixel intensity Line intensity

Fe 392.59 √ (2) √ Ca 616.38 √
Fe 396.31 √ (2) √ Fe 617.33 √
Ca 422.64 √ (2) √ Fe 620.03 √
Ca 445.44 √ (1) Fe 623.84 √
Fe 553.49 √ Fe 622.67 √
Fe 553.85 √ H 656.29 √ (16) √
Fe 558.82 √ (1) N 744.31 √ (1)
Na 588.95 √ (3) √ N 746.92 √ (3) √
Na 589.55 √ (1) √ K 766.52 √ (2) √
Fe 605.60 √ K 769.96 √ (2) √
Fe 611.33 √ O 777.21 √ (6) √
Ca 612.18 √ (1) N 821.63 √ (1) √
Ca 616.22 √ (2) √ N 868.34 √ (3)
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Fig. 8   Loadings of PCx (x = 1, 2) in the case of using line intensity as input variables; the thresholds values of feature spectral data selection 
were 0.16495 and 0.10264 on PC1 and PC2, respectively

Fig. 9   The thresholds for recognizing the types of wood species and classification result in the case of using pixel intensity as input data (a, b), 
and in the case of using line intensity as input data (c, d), respectively
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where n is the number of neurons in input layer; m is the 
number of class; α is a constant, which can be selected from 
1 to 10. For a certain number of input- and output-layer 
neurons, the number of hidden layer neurons will be chosen 
in a closed numerical interval. Hence, we investigated the 
relationship between the number of hidden layer neurons and 
recognition ability of model. In the case using intensity of 
pixel as input variable, the number of input layer neurons of 
ANN models and the number of output classes were 49 and 
4, respectively. In the case using intensity of line as input 
variable, the number of input layer neurons of ANN models 
and the number of output classes were 21 and 4, respectively. 
According to Eq. (4), the number of hidden layer neurons 
was changed from 8 to 18 for pixel intensity and from 6 to 
15 for line intensity, respectively.

For a certain number of hidden layer neurons, the activa-
tion function of the hidden layer and output layer and other 
parameters of ANN model were searched by STATISTICA 
automatically. It is necessary to emphasize that the CCRs 
mentioned in this section were all for test set.

4.3.1 � Optimization of iterative algorithms of MLP network

The CCRs of different models based on MLP network with 
different number of hidden layer neurons optimized by 
BFGS, conjugate gradient, and gradient descent iterative 
algorithms are shown in Fig. 10 and listed in Table 3.

The CCRs of models optimized by BFGS and conjugate 
gradient were all above 97% and the recognition ability of 
model optimized by BFGS was better than the model estab-
lished by conjugate gradient. The CCR of model optimized 
by gradient descent was the lowest, only 60.23%. For BFGS 
and conjugate gradient, the number of hidden layer neurons 

had a little influence on the recognition ability of model and 
the CCRs of model were from 97.50 to 100%. For gradi-
ent descent, the CCRs of model were from 25 to 95% for 
different number of hidden layer neurons. For BFGS and 
conjugate gradient, the averaged CCR of model established 
using line intensity (100%) was higher than that of using 
pixel intensity (99.32%) as input variable with less inputs 
(21 for line intensity while 49 for pixel intensity). For gra-
dient descent, however, the mean value of CCR of model 
established using pixel intensity (64.76%) was higher than 
that of using line intensity (55.25%) as input variable, but 
both CCRs of them were lower than 65%.

The different recognition ability of models optimized by 
three iterative algorithms is owing to the difference of the 
optimal weights calculated by different iterative algorithms. 
The search direction of gradient descent and conjugate 

Fig. 10   CCRs of ANN model generated by different iterative algorithms using a pixel intensity and b line intensity as input variable

Table 3   The CCRs of model optimized by different iterative algo-
rithms

a AVG1 is the average of CCR of model established using the same 
iterative algorithm and input variable type
b AVG2 is the average of CCR of model established using the same 
iterative algorithm

Iterative algo-
rithm

Input variable 
type

Correct classification rate (%)

MAX MIN AVG1a AVG2b

BFGS Pixel intensity 100 99.17 99.32 99.64
Line intensity 100 100 100

Conjugate gradi-
ent

Pixel intensity 99.17 97.50 98.18 98.77
Line intensity 100 98.33 99.42

Gradient descent Pixel intensity 95 25 64.76 60.23
Line intensity 88.13 25 55.25
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gradient algorithm is the present gradient of loss function. 
Conjugate gradient algorithm analyzes the present and previ-
ous iteration gradient information of the loss function in the 
optimization process. As a result, the iteration accuracy of 
conjugate gradient algorithm is higher than gradient descent 
algorithm. BFGS algorithm analyzes the two-order deriva-
tive information of loss function and obtains the optimal 
weights directly. Hence, the performance of BFGS is the 
best in these three algorithms.

4.3.2 � Optimization of network type

The CCRs of ANN models based on two different types of 
network, RBF and MLP (iterated by BFGS algorithm), with 
different number of neurons in hidden layer are shown in 
Fig. 11, and the statistical results of CCRs of model estab-
lished by different network type are listed in Table 4.

The results show that the CCRs of models established 
based on MLP network were higher than that of RBF net-
work. The averages of CCRs were 99.64% and 95.95% for 
MLP and RBF, respectively. In addition, the fluctuation of 
the CCRs of model based on RBF was higher than that of 
MLP. The CCRs were from 99.17 to 100% for MLP and 
from 88.3 to 99.17% for RBF, respectively.

The difference of CCRs for MLP and RBF models may be 
due to the different propagation from input layer to hidden 
layer. For RBF network, spectral data are propagated from 
input layer to hidden layer by calculating the Euclidean dis-
tance between the input variables and the prototype vector 
of each hidden layer neuron. For MLP, however, the spec-
tral data in input layer are propagated into the hidden layer 
by multiplying the weight coefficients, which are optimized 
automatically through iterative algorithm. Compared to the 

propagation of RBF, the propagation of MLP can retain the 
specificity between different types of wood samples better. 
Therefore, the model established based on MLP network 
may be more suitable for the classification of LIBS spectra 
compared to RBF in this work.

In the case using intensity of pixel as input variable, 
the CCRs of models based on MLP fluctuated from 99.17 
to 100% and the average was 99.32%. For RBF, the CCRs 
were from 88.3 to 97.5% and the average was 94.01%. 
In the case using intensity of line as input variable, the 
CCRs were 100% for all number of hidden layer neurons 
for MLP. For RBF, the CCR achieved the maximum value, 
99.17%, when the number of hidden layer neurons was 8 
or 11 and the average was 98.08%. The results showed 
that using line intensity as the input variable may be better 
than using pixel intensity as the input variable for ANN 
classification model.

Moreover, the experimental results show that there was 
no significant correlation between CCR and the number 

Fig. 11   a The CCRs of two models with different network types using pixel intensity as input data and b the CCRs of two different network 
types’ model line intensity as inputs with different number of hidden layer neurons

Table 4   The CCR of model established based on different networks

a AVG1 is the average of CCR of model established using the same 
network type and input variable type
b AVG2 is the average of CCR of model established using the same 
network type

Network type Input variable type Correct classification rate (%)

MAX MIN AVG1a AVG2b

MLP Pixel intensity 100 99.17 99.32 99.64
Line intensity 100 100 100

RBF Pixel intensity 97.50 88.30 94.01 95.95
Line intensity 99.17 96.67 98.08
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of hidden neurons in our case. However, the number of 
hidden layer neuron is directly proportional to the train-
ing time of model. Therefore, the number of hidden layer 
neurons could be set as 6 considering for reducing the 
time complexity.

In addition, the classification ability among ANN model 
with the other well-known chemometric methods (PLS-
DA, KNN, and SIMCA) was also evaluated. The optimized 
CCRs of different models for test set are shown in Fig. 12. 
The optimal CCRs of ANN, KNN, PLS-DA, and SIMCA 
are 100%, 95.83%, 82.5%, and 51.67%, respectively. The 
results demonstrated that the recognition ability of ANN 
model was the best among KNN, PLS-DA, and SIMCA.

5 � Conclusions

A novel method used to classify the species of wood sam-
ples based on ANN model combined with the LIBS spectral 
data was introduced in this paper. The spectral data (pixel 
and line, respectively) whose absolute value of loading was 
above the 1/4 of the maximum absolute value of loadings 
were selected as the feature. The spectral data were normal-
ized by sum of all the feature spectral data.

The CCRs of ANN models established based on different 
network types with different number of hidden layer neurons 
and iterative algorithms were compared. The experimental 
results show that the most suitable network type and iterative 
algorithm of ANN model were MLP and BFGS, respec-
tively, and there is no significant correlation between the 
recognition ability and number of hidden neurons.

We also compared the CCRs of models established using 
pixel intensity and line intensity as input variable for test set, 

respectively. The results showed that the recognition ability 
of model established using line intensity as input variable is 
better than using pixel intensity as input variable.

The optimal CCRs of ANN and other well-known chemo-
metric models (PLS-DA, KNN and SIMCA) for test set were 
also evaluated. Only the CCR of the ANN model achieved 
100%, which demonstrated that the successful application of 
LIBS combined with ANN in recognition of wood species. 
In our future research, LIBS will be applied to analyzing and 
investigating the original region of wood.
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