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Abstract

A model of a radial phase-locked partially coherent elegant Laguerre—Gaussian (PCELG) beam array has first been introduced
in theory. The analytical propagation equation for the cross-spectral density function of a radial phase-locked PCELG beam
array in non-Kolmogorov medium has been derived using the extended Huygens—Fresnel principle. The average intensity
and spectral degree of coherence properties of a radial phase-locked PCELG beam array propagating in non-Kolmogorov
medium have been studied in details using the numerical examples. One can find that the evolution properties of a radial
phase-locked PCELG beam array propagating in non-Kolmogorov medium are affected by the initial beam parameters and
the non-Kolmogorov medium, and the beam array propagating in non-Kolmogorov medium will evolve into a solid beam

with Gaussian-like distribution in the far field.

1 Introduction

Over the past decades, the evolution properties of laser
beams propagating through atmospheric turbulence, oce-
anic turbulence and non-Kolmogorov turbulence media have
been widely studied because of their wide applications in
free-space optical communication and sensing. The propa-
gation properties of single laser beam propagating in turbu-
lent media have been widely studied, such as dark hollow
and flat-topped beams [1], elegant Hermite—Gaussian beam
[2], partially coherent beam [3], electromagnetic concen-
tric rings Schell-model beam [4], multi-Gaussian—Schell-
model vortex beam [5], radially polarized multi-cosine
Gaussian—Schell-model beams [6], square multi-Gauss-
ian—Schell-model beam [7], Laguerre—Gaussian-correlated
Schell-model beam [8], elegant Hermite—Gaussian-corre-
lated Schell-model beam [9], Hankel-Bessel-Schell beam
[10], Bessel-Gaussian beam [11], partially coherent Bes-
sel-Gaussian beams carrying optical vortices [12], stochas-
tic electromagnetic beam [13] and random electromagnetic
multi-Gaussian—Schell-model vortex beam [14] etc.
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On the other hand, the application of single laser beam is
limited because of the lower beam power. In this situation,
the beam array is produced to obtain the higher beam power.
The properties of beam array propagating in turbulent media
have been investigated, such as those of ring Airy Gaussian
beams with optical vortices [15], Gaussian array beams [16,
17], radial phased-locked partially coherent Lorentz—Gauss
array beam [18], radial phased-locked partially coherent flat-
topped vortex beam array [19], radial phased-locked par-
tially coherent anomalous hollow beam array [20], partially
coherent Hermite—Gaussian linear array beams [21], radial
phased-locked partially coherent standard Hermite—Gaussian
beam [22], radial Gaussian—Schell-model array beam [23],
and radial Gaussian beam array [24]. However, to the best
of our knowledge, the propagation properties of the radial
phase-locked partially coherent elegant Laguerre—Gaussian
(PCELG) beam array have not been reported. Thus, in this
paper, the model of the radial phase-locked PCELG beam
array has first been introduced, and the average intensity
properties and the spectral degree of coherence properties
of a radial phase-locked PCELG beam array propagating in
non-Kolmogorov medium have been studied using numeri-
cal examples.
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2 Radial phase-locked PCELG beam array with
The electric field distribution of elegant Laguerre—Gauss- @, =4— e¢=12,3...0, 6)
ian beam in cylindrical coordinate can be expressed as [25]
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where r and 6 are the radial and azimuthal (angle) coordi-
nates, respectively, L denotes the Laguerre polynomial with
mode orders n and m, w, is the beam width of fundamental
Gaussian mode. By use the following relation [25]:
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Figure 1 illustrates the contour graphs of a radial phased-
locked PCELG beam array with wy =1 cm and R =3 cm
at the source plane z=0 for the different Q, n and m. From
Fig. 1, it is found that the radial phased-locked PCELG beam
consists of Q equal elegant Laguerre—Gaussian beamlets,
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In the above equation, H,(x) is the n order Hermite poly-
nomial, which can be expressed as [26]
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Based on the theory of coherence [27], the cross-spectral
density function of partially coherent beam generated by a
Gaussian—Schell-model source as the source plane z=0 can
be written as

W(ry5,150,0) =(E(r)5,0)E*(ry,0))
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which are located symmetrically on a ring with a radius R;
and when the parameters n and m change, the beamlet is
the elegant Laguerre-Gaussian beam with the mode orders
n and m.

3 Propagation theory

The cross-spectral density function of the partially coherent
beam propagating through non-Kolmogorov medium can

“
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where o, and o, are the coherence lengths in x-axis and
y-axis, respectively.

Submitting Egs. (1) into (4) and considering Eq. (2),
the cross-spectral density function of radial phase-locked
PCELG beam array generated by a Gaussian—Schell-model
source can be written as

be expressed by the extended Huygens—Fresnel principle
[5-13]:
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Fig.1 The contour graphs of a radial phase-locked PCELG beam array at the source plane. a Q=4,n=1,m=1,b 0=5,n=1,m=1, ¢ Q=4,

n=3,m=1,dQ0=4,n=1,m=3
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where k = 2z / A is the wave number with A being the wave-
length; r = (x,y) and r, = (x,,,) denotes the position vec-
tor at the receiver plane z and source plane z=0, respec-
tively; I/I(I'O, r) is the complex phase perturbation; in the
above equation, the last term can be written as [5—13]
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where ®@(x, ) is the spatial power spectrum of the refractive
index fluctuations of the turbulent medium, « is the mag-
nitude to two-dimensional spatial frequency, and « is the
power-law exponent. And when the turbulent is governed
by non-Kolmogorov statistics, ®(k, @) can be expressed as

xp (—x*/ )
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(k2 +k

an

where Ci is a generalized index-of-refraction structure con-

stant with units m*~%; x, = 2z / L,, L, being the outer scale

of turbulence; k,, = c(a) / ly, I, being the inner scale of tur-
bulence; and
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In Eq. (12), I'(x) is the Gamma function. In Eq. (10), we
can define
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Submitting Eq. (5) into Eq. (9), the cross-spectral den-
sity function of a radial phase-locked PCELG beam array
propagating in non-Kolmogorov medium can be derived as
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Fig.2 The average intensity and contour graphs of normalized intensity of a radial phase-locked PCELG beam array with Q =4 propagating in
non-Kolmogorov medium. a z =100 m, bz =300 m, ¢z =700 m,d z = 1500 m, e z = 4000 m, f z = 12,000 m
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Fig.3 The average intensity and contour graphs of normalized intensity of a radial phase-locked PCELG beam array with Q=5 propagating in
non-Kolmogorov medium. a z = 100 m, b z = 2000 m, ¢ z = 5000 m, d z = 12,000 m
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The following equation has been applied in the deriva- Kolmogorov medium at the plane z can be obtained as [27]
tions of the above equations [26]:
q [26] I(r,2) = W(r,r,2). (26)
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The spectral degree of spatial coherence of two points
r, = (x;,y;)andr, = (x,,y,) for the partially coherent beam
can be expressed as [27]

W(r;,r,,2)
[W(rl’ rl’Z)W(rz, r, Z)]

u(ry.ry.z) = ik @7)

4 Numerical results and analyses

In this section, the average intensity and spectral degree
of coherence properties of a radial phased-locked PCELG
beam array composed of Q beamlets propagating through
non-Kolmogorov medium are studied using the derived for-
mulae in the above section. The initial parameters are set

@ Springer

asA=800mm,wy=1cm,R=3cm,a=3.8L,=1cm,
lp =1 mmand C2 = 10~"*m*~“ through the paper, unless the
different values are specified.

The 3D average intensity and contour graphs of the nor-
malized intensity of a radial phased-locked PCELG beam
array propagating in non-Kolmogorov medium for Q =4 and
Q=5 are shown in Figs. 2 and 3, respectively. By compar-
ing Figs. 1, 2 and 3, it is found that the radial phased-locked
PCELG beam array can keep the initial beam profile with the
Q beamlets at the short propagation distance (Figs. 2a, 3a),
and each beamlet can almost remain the Laguerre—Gauss-
ian beam profile. As the propagation distance increases,
each beamlet will lose the Laguerre—Gaussian beam pro-
file and coincide with the adjacent beamlet (Fig. 2b); the
radial phased-locked PCELG beam array will evolve into
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Fig.5 The cross section of normalized intensity of a radial phase-locked PCELG beam array with Q=4 propagating in non-Kolmogorov
medium for the different n. az = 100 m, b z = 500 m, ¢ z = 2000 m, d z = 10,000 m

flat-topped beam (Figs. 2e, 3c) and evolve into a solid beam
with Gaussian-like distribution (Figs. 2f, 3d) in the far field.
From the previous work, we known the radial phased-locked
PCELG beam array propagation in non-Kolmogorov media
has the similar evolution properties with the other radial
phased-locked beam propagating in turbulent media [18,
20, 28].

The influences of initial beam parameters of coherence
length o, n and m on the normalized intensity of a radial
phased-locked PCELG beam array with Q =4 propagating
in non-Kolmogorov medium are shown in Figs. 4, 5 and
6, respectively. From Fig. 4, one can find that the radial
phased-locked PCELG beam array with smaller coherence
length will first lose the initial beam profile at the short

propagation, and will evolve into a solid beam with Gauss-
ian-like distribution more rapidly, while the fully coherent
beam (o=infinity) can remain the initial beam profile better
at the short propagation distance, and evolve into a solid
beam with Gaussian-like distribution slower than the par-
tially coherent beam. From Figs. 5 and 6, one can find that
the radial phase-locked PCELG beam array with smaller n
and m can remain the initial beam profile better, while in the
far field, the radial phased-locked PCELG beam array with
larger n and m will have a larger beam spot.

The influences of the parameters of non-Kolmogorov
medium Ci, a, Ly, and [, on the normalized intensity of a
radial phase-locked PCELG beam array with Q =4 propa-
gating in non-Kolmogorov medium are shown in Figs. 7,
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8, 9 and 10, respectively. From Fig. 7, one sees that, the
radial phase-locked PCELG beam array with Q =4 propa-
gating in non-Kolmogorov medium with larger Cﬁ will lose
the initial beam profile faster. And the radial phase-locked
PCELG beam array with Q =4 propagating in non-Kolmog-
orov medium with smaller @ will evolve into a solid beam

@ Springer

with Gaussian-like distribution more rapidly in the far field
(Fig. 8). In the studies of the influences of L, (Fig. 9), and [,
(Fig. 10) on the evolution properties of a radial phase-locked
PCELG beam array, it is found that the a radial phase-
locked PCELG beam array propagating in non-Kolmogorov
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Fig.7 The cross section of normalized intensity of a radial phase-locked PCELG beam array with Q=4 propagating in non-Kolmogorov
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medium with larger L, or smaller /, will evolve into a solid
beam with Gaussian-like distribution more rapidly, while
comparing to the parameter «, the influences of the param-
eters L and [, on the spreading properties of a radial phase-
locked PCELG beam array are not evident in the far filed.

Figure 11 gives the spectral degree of coherence of a
radial phase-locked PCELG beam array with Q =4 propa-
gating in non-Kolmogorov medium for the different propa-
gation distances. One can find that the spectral degree of
coherence for the same two points is not the same at the
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Fig.8 The cross section of normalized intensity of a radial phase-locked PCELG beam array with Q=4 propagating in non-Kolmogorov
medium for the different «. a z = 1200 m, b z = 5000 m
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Fig. 10 The cross section of normalized intensity of a radial phase-locked PCELG beam array with Q=4 propagating in non-Kolmogorov

medium for the different /,. a z = 200 m, b z = 5000 m

different propagation distances, and the spectral degree of
coherence has a function with oscillatory phenomenon at the
different propagation distance, and which is not a function
decreasing with the increase of x. The similar phenomenon
can be found in the previous reports [19].

5 Conclusions

In this paper, the average intensity properties and spectral
degree of coherence properties for a radial phase-locked
PCELG beam array with Q beamlets propagating in non-
Kolmogorov medium have been studied in details. One
can find that the radial phase-locked PCELG beam array
can keep the initial beam profile with the Q beamlets at the
short propagation distance, and the beam array will evolve
into a solid beam with Gaussian-like distribution in the far
field. One can also find that the radial phase-locked PCELG
beam array with smaller n and m can remain the initial beam
profile better, and the beam array with larger n and m will
have a larger beam spot in the far field. In the studies of the
influences of non-Kolmogorov on the properties, it is found
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_ ]
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3 i
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02 i l A ‘
0 10 20 & ° ”
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Fig. 11 The spectral degree of coherence of a radial phase-locked
PCELG beam array with Q=4 propagating in non-Kolmogorov
medium for the different propagation distances

that the beam array propagating in non-Kolmogorov medium
with larger L, or smaller [ or smaller a will evolve into a
solid beam with Gaussian-like distribution more rapidly.
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