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Abstract
A model of a radial phase-locked partially coherent elegant Laguerre–Gaussian (PCELG) beam array has first been introduced 
in theory. The analytical propagation equation for the cross-spectral density function of a radial phase-locked PCELG beam 
array in non-Kolmogorov medium has been derived using the extended Huygens–Fresnel principle. The average intensity 
and spectral degree of coherence properties of a radial phase-locked PCELG beam array propagating in non-Kolmogorov 
medium have been studied in details using the numerical examples. One can find that the evolution properties of a radial 
phase-locked PCELG beam array propagating in non-Kolmogorov medium are affected by the initial beam parameters and 
the non-Kolmogorov medium, and the beam array propagating in non-Kolmogorov medium will evolve into a solid beam 
with Gaussian-like distribution in the far field.

1 Introduction

Over the past decades, the evolution properties of laser 
beams propagating through atmospheric turbulence, oce-
anic turbulence and non-Kolmogorov turbulence media have 
been widely studied because of their wide applications in 
free-space optical communication and sensing. The propa-
gation properties of single laser beam propagating in turbu-
lent media have been widely studied, such as dark hollow 
and flat-topped beams [1], elegant Hermite–Gaussian beam 
[2], partially coherent beam [3], electromagnetic concen-
tric rings Schell-model beam [4], multi-Gaussian–Schell-
model vortex beam [5], radially polarized multi-cosine 
Gaussian–Schell-model beams [6], square multi-Gauss-
ian–Schell-model beam [7], Laguerre–Gaussian-correlated 
Schell-model beam [8], elegant Hermite–Gaussian-corre-
lated Schell-model beam [9], Hankel–Bessel–Schell beam 
[10], Bessel–Gaussian beam [11], partially coherent Bes-
sel–Gaussian beams carrying optical vortices [12], stochas-
tic electromagnetic beam [13] and random electromagnetic 
multi-Gaussian–Schell-model vortex beam [14] etc.

On the other hand, the application of single laser beam is 
limited because of the lower beam power. In this situation, 
the beam array is produced to obtain the higher beam power. 
The properties of beam array propagating in turbulent media 
have been investigated, such as those of ring Airy Gaussian 
beams with optical vortices [15], Gaussian array beams [16, 
17], radial phased-locked partially coherent Lorentz–Gauss 
array beam [18], radial phased-locked partially coherent flat-
topped vortex beam array [19], radial phased-locked par-
tially coherent anomalous hollow beam array [20], partially 
coherent Hermite–Gaussian linear array beams [21], radial 
phased-locked partially coherent standard Hermite–Gaussian 
beam [22], radial Gaussian–Schell-model array beam [23], 
and radial Gaussian beam array [24]. However, to the best 
of our knowledge, the propagation properties of the radial 
phase-locked partially coherent elegant Laguerre–Gaussian 
(PCELG) beam array have not been reported. Thus, in this 
paper, the model of the radial phase-locked PCELG beam 
array has first been introduced, and the average intensity 
properties and the spectral degree of coherence properties 
of a radial phase-locked PCELG beam array propagating in 
non-Kolmogorov medium have been studied using numeri-
cal examples. * Dajun Liu 
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2  Radial phase‑locked PCELG beam array

The electric field distribution of elegant Laguerre–Gauss-
ian beam in cylindrical coordinate can be expressed as [25]

where r and � are the radial and azimuthal (angle) coordi-
nates, respectively, Lm

n
 denotes the Laguerre polynomial with 

mode orders n and m , w0 is the beam width of fundamental 
Gaussian mode. By use the following relation [25]:

In the above equation, Hn(x) is the n order Hermite poly-
nomial, which can be expressed as [26]

Based on the theory of coherence [27], the cross-spectral 
density function of partially coherent beam generated by a 
Gaussian–Schell-model source as the source plane z = 0 can 
be written as

where �x and �y are the coherence lengths in x-axis and 
y-axis, respectively.

Submitting Eqs. (1) into (4) and considering Eq. (2), 
the cross-spectral density function of radial phase-locked 
PCELG beam array generated by a Gaussian–Schell-model 
source can be written as
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with

Figure 1 illustrates the contour graphs of a radial phased-
locked PCELG beam array with w0 = 1 cm and R = 3 cm 
at the source plane z = 0 for the different Q, n and m. From 
Fig. 1, it is found that the radial phased-locked PCELG beam 
consists of Q equal elegant Laguerre–Gaussian beamlets, 

which are located symmetrically on a ring with a radius R ; 
and when the parameters n and m change, the beamlet is 
the elegant Laguerre–Gaussian beam with the mode orders 
n and m.

3  Propagation theory

The cross-spectral density function of the partially coherent 
beam propagating through non-Kolmogorov medium can 

be expressed by the extended Huygens–Fresnel principle 
[5–13]:

(6)�q = q
2�

Q
e = 1, 2, 3…Q,

(7)rqx = R sin�q,

(8)rqy = R cos�q.
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)
 denotes the position vec-
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 is the complex phase perturbation; in the 

above equation, the last term can be written as [5–13]
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Fig. 1  The contour graphs of a radial phase-locked PCELG beam array at the source plane. a Q = 4, n = 1, m = 1, b Q = 5, n = 1, m = 1, c Q = 4, 
n = 3, m = 1, d Q = 4, n = 1, m = 3
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where Φ(�, �) is the spatial power spectrum of the refractive 
index fluctuations of the turbulent medium, � is the mag-
nitude to two-dimensional spatial frequency, and � is the 
power-law exponent. And when the turbulent is governed 
by non-Kolmogorov statistics, Φ(�, �) can be expressed as

where C2
n
 is a generalized index-of-refraction structure con-

stant with units m3−� ; �0 = 2�
/
L0 , L0 being the outer scale 

of turbulence; �m = c(�)
/
l0 , l0 being the inner scale of tur-

bulence; and
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In Eq. (12), Γ(x) is the Gamma function. In Eq. (10), we 
can define

with
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0
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m
 . And Γ(x, y) is the incomplete 

Gamma function.
Submitting Eq. (5) into Eq. (9), the cross-spectral den-

sity function of a radial phase-locked PCELG beam array 
propagating in non-Kolmogorov medium can be derived as

where

(14)1
/
�2
0
=�2k2zT∕3,

(15)

T =

∞

∫
0

d��3Φ(�, �) =
1

2(� − 2)
A(�)C2

n

[
��2−�

m
exp

(
�2
0

�2
m

)

Γ

(
2 −

�

2
,
�2
0

�2
m

)
− 2�4−�

0

]
,

(16)

W
(
�1, �2, z

)
=

k2

4�2z2
exp

[
−
ik

2z

(
x2
1
+ y2

1

)
+

ik

2z

(
x2
2
+ y2

2

)]
exp

[
−

(
x1 − x2

)2
+
(
y1 − y2

)2
�2
0

]

×

Q∑
q1=1

Q∑
q2=1

exp
[
i
(
�q1 − �q2

)] (−1)n

22n+mn!

n∑
t1=0

m∑
s1=0

is1

(
n

t1

)(
m

s1

)
(−1)n

22n+mn!

n∑
t2=0

m∑
s2=0

(−i)s2
(

n

t2

)(
m

s2

)

×W(x, z)W(y, z),

(17)

W(x, z) = exp

⎡
⎢⎢⎣
−

�
rq1x − rq2x

�2
�2
0

⎤
⎥⎥⎦
exp

�
−
ik

2z
r2
q1x

��
ik

2z
r2
q2x

�
exp

�
2
ik

2z
x1rq1x

�
exp

�
−2

ik

2z
x2rq2x

�

× exp

�
−

�
x1 − x2

��
rq1x − rq2x

�

�2
0

� �
2t1+m−s1

2

�
�
l=0

(−1)l
�
2t1 + m − s1

�
!

l!
�
2t1 + m − s1 − 2l

�
!

�
2

w0

�2t1+m−s1−2l

×
�
2t1 + m − s1 − 2l

�
!

�
�

ax

�
1

ax

�2t1+m−s1−2l

exp

⎧⎪⎨⎪⎩
1

ax

�
ik

2z

�
x1 − rq1x

�
−

�
x1 − x2

�
+ 2

�
rq1x − rq2x

�

2�2
0

�2⎫⎪⎬⎪⎭

×

�
2t2+m−s2

2

�
�
u=0

(−1)u
�
2t2 + m − s2

�
!

u!
�
2t2 + m − s2 − 2u

�
!

�
2

w0

�2t2+m−s2−2u

�
2t1+m−s1−2l

2

�
�
k=0

1

k!
�
2n − 2t1 + s1 − 2l − 2k

�
!

�ax
4

�k

×

2t1+m−s1−2l−2k�
h=0

�
2t1 + m − s1 − 2l − 2k

�
!

h!
�
2t1 + m − s1 − 2l − 2k − h

�
!

�
ik

2z

�
x1 − rq1x

�
−

�
x1 − x2

�
+ 2

�
rq1x − rq2x

�

2�2
0

�2t1+m−s1−2l−2k−h

×

�
1

�2
0

+
1

2�2
x

�h�
�

bx
2−(2t2+m−s2−2u+h)i2t2+m−s2−2u+h

× exp

�
c2
x

bx

��
1

bx

�0.5(2t2+m−s2−2u+h)
H2t2+m−s2−2u+h

�
−

icx√
bx

�



Propagation of a radial phase-locked partially coherent elegant Laguerre–Gaussian beam array…

1 3

Page 5 of 14 52

with

(18)ax =
1

w2
0

+
1

2�2
x

+
1

�2
0

+
ik

2z
,

(19)bx =
1

w2
0

+
1

2�2
x

+
1

�2
0

−
ik

2z
−

1

ax

(
1

2�2
x

+
1

�2
0

)2

,

and

(20)

cx =
ik

2z
rq2x −

ik

2z
x2 +

(
x1 − x2

)
+ 2

(
rq1x − rq2x

)

2�2
0

+
1

ax

[
ik

2z

(
x1 − rq1x

)
−

(
x1 − x2

)
+ 2

(
rq1x − rq2x

)

2�2
0

]

(
1

2�2
x

+
1

�2
0

)
,

(21)

W(y, z) = exp

⎡
⎢⎢⎣
−

�
rq1y − rq2y

�2
�2
0

⎤
⎥⎥⎦
exp

�
−
ik

2z
r2
q1y

��
ik

2z
r2
q2y

�
exp

�
2
ik

2z
y1rq1y

�
exp

�
−2

ik

2z
y2rq2y

�

× exp

�
−

�
y1 − y2

��
rq1y − rq2y

�

�2
0

� �
2n−2t1+s1

2

�
�
l=0

(−1)l
�
2n − 2t1 + s1

�
!

l!
�
2n − 2t1 + s1 − 2l

�
!

�
2

w0

�2n−2t1+s1−2l

×
�
2n − 2t1 + s1 − 2l

�
!

�
�

ay

�
1

ay

�2n−2t1+s1−2l

exp

⎧⎪⎨⎪⎩
1

ay

�
ik

2z

�
y1 − rq1y

�
−

�
y1 − y2

�
+ 2

�
rq1y − rq2y

�

2�2
0

�2⎫⎪⎬⎪⎭

×

�
2n−2t2+s2

2

�
�
u=0

(−1)u
�
2n − 2t2 + s2

�
!

u!
�
2n − 2t2 + s2 − 2u

�
!

�
2

w0

�2n−2t2+s2−2u

�
2n−2t1+s1−2l

2

�
�
k=0

1

k!
�
2n − 2t1 + s1 − 2l − 2k

�
!

�
ay

4

�k

×

2n−2t1+s1−2l−2k�
h=0

�
2n − 2t1 + s1 − 2l − 2k

�
!

h!
�
2n − 2t1 + s1 − 2l − 2k − h

�
!

�
ik

2z

�
y1 − rq1y

�
−

�
y1 − y2

�
+ 2

�
rq1y − rq2y

�

2�2
0

�2n−2t1+s1−2l−2k−h

×

�
1

�2
0

+
1

2�2
y

�h�
�

by
2−(2n−2t2+s2−2u+h)i2n−2t2+s2−2u+h

× exp

�
c2
y

by

��
1

by

�0.5(2n−2t2+s2−2u+h)
H2n−2t2+s2−2u+h

�
−

icy√
by

�



 D. Liu et al.

1 3

52 Page 6 of 14

Fig. 2  The average intensity and contour graphs of normalized intensity of a radial phase-locked PCELG beam array with Q = 4 propagating in 
non-Kolmogorov medium. a z = 100 m , b z = 300 m , c z = 700 m , d z = 1500 m , e z = 4000 m , f z = 12, 000 m
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with

The following equation has been applied in the deriva-
tions of the above equations [26]:
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In Eq. (16), let �1 = �2 = � , the average intensity of a 
radial phase-locked PCELG beam array propagating in non-

Kolmogorov medium at the plane z can be obtained as [27]
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Fig. 3  The average intensity and contour graphs of normalized intensity of a radial phase-locked PCELG beam array with Q = 5 propagating in 
non-Kolmogorov medium. a z = 100 m , b z = 2000 m , c z = 5000 m , d z = 12, 000 m
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The spectral degree of spatial coherence of two points 
�1 = (x1, y1) and �2 = (x2, y2) for the partially coherent beam 
can be expressed as [27]

4  Numerical results and analyses

In this section, the average intensity and spectral degree 
of coherence properties of a radial phased-locked PCELG 
beam array composed of Q beamlets propagating through 
non-Kolmogorov medium are studied using the derived for-
mulae in the above section. The initial parameters are set 

(27)�
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)
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W
(
�1, �2, z

)
[
W
(
�1, �1, z

)
W
(
�2, �2, z

)]1∕ 2 .

as � = 800 nm , w0 = 1 cm , R = 3 cm , � = 3.8 , L0 = 1 cm , 
l0 = 1 mm and C2

n
= 10−14m3−� through the paper, unless the 

different values are specified.
The 3D average intensity and contour graphs of the nor-

malized intensity of a radial phased-locked PCELG beam 
array propagating in non-Kolmogorov medium for Q = 4 and 
Q = 5 are shown in Figs. 2 and 3, respectively. By compar-
ing Figs. 1, 2 and 3, it is found that the radial phased-locked 
PCELG beam array can keep the initial beam profile with the 
Q beamlets at the short propagation distance (Figs. 2a, 3a), 
and each beamlet can almost remain the Laguerre–Gauss-
ian beam profile. As the propagation distance increases, 
each beamlet will lose the Laguerre–Gaussian beam pro-
file and coincide with the adjacent beamlet (Fig. 2b); the 
radial phased-locked PCELG beam array will evolve into 

Fig. 4  The cross section of normalized intensity of a radial phase-locked PCELG beam array with Q = 4 propagating in non-Kolmogorov 
medium for the different � . a z = 300 m , b z = 1000 m , c z = 5000 m , d z = 12, 000 m
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flat-topped beam (Figs. 2e, 3c) and evolve into a solid beam 
with Gaussian-like distribution (Figs. 2f, 3d) in the far field. 
From the previous work, we known the radial phased-locked 
PCELG beam array propagation in non-Kolmogorov media 
has the similar evolution properties with the other radial 
phased-locked beam propagating in turbulent media [18, 
20, 28].

The influences of initial beam parameters of coherence 
length � , n and m on the normalized intensity of a radial 
phased-locked PCELG beam array with Q = 4 propagating 
in non-Kolmogorov medium are shown in Figs. 4, 5 and 
6, respectively. From Fig. 4, one can find that the radial 
phased-locked PCELG beam array with smaller coherence 
length will first lose the initial beam profile at the short 

propagation, and will evolve into a solid beam with Gauss-
ian-like distribution more rapidly, while the fully coherent 
beam ( �=infinity ) can remain the initial beam profile better 
at the short propagation distance, and evolve into a solid 
beam with Gaussian-like distribution slower than the par-
tially coherent beam. From Figs. 5 and 6, one can find that 
the radial phase-locked PCELG beam array with smaller n 
and m can remain the initial beam profile better, while in the 
far field, the radial phased-locked PCELG beam array with 
larger n and m will have a larger beam spot.

The influences of the parameters of non-Kolmogorov 
medium C2

n
 , � , L0 , and l0 on the normalized intensity of a 

radial phase-locked PCELG beam array with Q = 4 propa-
gating in non-Kolmogorov medium are shown in Figs. 7, 

Fig. 5  The cross section of normalized intensity of a radial phase-locked PCELG beam array with Q = 4 propagating in non-Kolmogorov 
medium for the different n. a z = 100 m , b z = 500 m , c z = 2000 m , d z = 10, 000 m
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8, 9 and 10, respectively. From Fig. 7, one sees that, the 
radial phase-locked PCELG beam array with Q = 4 propa-
gating in non-Kolmogorov medium with larger C2

n
 will lose 

the initial beam profile faster. And the radial phase-locked 
PCELG beam array with Q = 4 propagating in non-Kolmog-
orov medium with smaller � will evolve into a solid beam 

with Gaussian-like distribution more rapidly in the far field 
(Fig. 8). In the studies of the influences of L0 (Fig. 9), and l0 
(Fig. 10) on the evolution properties of a radial phase-locked 
PCELG beam array, it is found that the a radial phase-
locked PCELG beam array propagating in non-Kolmogorov 

Fig. 6  The cross section of normalized intensity of a radial phase-locked PCELG beam array with Q = 4 propagating in non-Kolmogorov 
medium for the different m. a z = 200 m , b z = 500 m , c z = 1000 m , d z = 5000m



Propagation of a radial phase-locked partially coherent elegant Laguerre–Gaussian beam array…

1 3

Page 11 of 14 52

medium with larger L0 or smaller l0 will evolve into a solid 
beam with Gaussian-like distribution more rapidly, while 
comparing to the parameter � , the influences of the param-
eters L0 and l0 on the spreading properties of a radial phase-
locked PCELG beam array are not evident in the far filed.

Figure 11 gives the spectral degree of coherence of a 
radial phase-locked PCELG beam array with Q = 4 propa-
gating in non-Kolmogorov medium for the different propa-
gation distances. One can find that the spectral degree of 
coherence for the same two points is not the same at the 

Fig. 7  The cross section of normalized intensity of a radial phase-locked PCELG beam array with Q = 4 propagating in non-Kolmogorov 
medium for the different C2

n
 . a z = 1200 m , b z = 1000 m , c z = 5000 m , d z = 10, 000 m
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Fig. 8  The cross section of normalized intensity of a radial phase-locked PCELG beam array with Q = 4 propagating in non-Kolmogorov 
medium for the different � . a z = 1200 m , b z = 5000 m

Fig. 9  The cross section of normalized intensity of a radial phase-locked PCELG beam array with Q = 4 propagating in non-Kolmogorov 
medium for the different L0 . a z = 200 m , b z = 5000 m



Propagation of a radial phase-locked partially coherent elegant Laguerre–Gaussian beam array…

1 3

Page 13 of 14 52

different propagation distances, and the spectral degree of 
coherence has a function with oscillatory phenomenon at the 
different propagation distance, and which is not a function 
decreasing with the increase of x. The similar phenomenon 
can be found in the previous reports [19].

5  Conclusions

In this paper, the average intensity properties and spectral 
degree of coherence properties for a radial phase-locked 
PCELG beam array with Q beamlets propagating in non-
Kolmogorov medium have been studied in details. One 
can find that the radial phase-locked PCELG beam array 
can keep the initial beam profile with the Q beamlets at the 
short propagation distance, and the beam array will evolve 
into a solid beam with Gaussian-like distribution in the far 
field. One can also find that the radial phase-locked PCELG 
beam array with smaller n and m can remain the initial beam 
profile better, and the beam array with larger n and m will 
have a larger beam spot in the far field. In the studies of the 
influences of non-Kolmogorov on the properties, it is found 

Fig. 10  The cross section of normalized intensity of a radial phase-locked PCELG beam array with Q = 4 propagating in non-Kolmogorov 
medium for the different l0 . a z = 200 m , b z = 5000 m

Fig. 11  The spectral degree of coherence of a radial phase-locked 
PCELG beam array with Q = 4 propagating in non-Kolmogorov 
medium for the different propagation distances

that the beam array propagating in non-Kolmogorov medium 
with larger L0 or smaller l0 or smaller � will evolve into a 
solid beam with Gaussian-like distribution more rapidly.
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