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Abstract
An investigation of fast Fourier transformation (FFT) spectrum appears from multiple-beam Fizeau fringes is presented. It is 
proven theoretically and demonstrated experimentally that the number of the appeared peaks is related to the interfered rays’ 
number. In addition, a detailed interpretation of (FFT) yields from multiple-beam Fizeau fringes analyses is illustrated. This 
interpretation proved that every peak of the FFT spectrum represents a set of two-beam interference. Therefore, the higher 
order FFT peaks are not an error. It is found that the frequencies of the appeared peaks are separated by a constant incre-
ment. Therefore, when we apply the inverse fast Fourier transformation (IFFT) on a selected peak we can get a two-beam 
intensity distribution image with a fringe frequency depending on the peak order number. This study removes confusion and 
answers some important questions concerning the multiple-beam interference. The presented analysis leads to disintegrate 
multiple-beam interferogram to its components of two-beam interferograms. This could facilitate recovering the phase map 
and provides more information from one multiple-beam interferogram.

1  Introduction

The multiple-beam Fizeau fringes are being used in most 
accurate optical testing-based techniques [1–7]. In this kind 
of interference, more than two beams are superposed. Many 
researchers developed methods and algorithms to calculate 
the intensity and phase distributions of multiple-beam inter-
ference [8–12]. The accurate theories are considered when 
their predications and calculations meet the experimentally 
recorded interferograms of multiple-beam interference.

In case of two-beam interference, numerous algorithms 
were designed to extract the optical phase differences, with 
suitable accuracy, such as those algorithms based on fast 
Fourier transformation (FFT) and phase-shifting methods 
[5, 11]. On the other hand, in case of multiple-beam inter-
ference, obtaining the optical phase differences due to the 

occurred multiple reflections is a problematic task. One of 
the common methods used, to solve such a problem, was 
based on a phase-shifting method. It was used to extract 
the optical phase differences and its errors in multiple-beam 
Fizeau interferometer [13–17]. The phase stepping led to 
a significant error when a “three frames” algorithm was 
used instead of a “four frames” one [18]. That is besides the 
raised error in higher orders of FFT harmonics due to the 
multiple reflections. To overcome these errors, Hariharan 
recommended the Fourier-filtering method and he dis-
missed the higher orders of harmonics. Afterwards, many 
algorithms were proposed to reduce these errors, consider-
ing large number of frames [19, 20] and defining special 
filtering functions [16]. Xu et al. [14, 15] developed two 
methods to extract the optical phase differences considering 
random phase shifts in the presence of multiple-beam inter-
ference. In ref [14], a method based on FFT as well as using 
least squares iteration was presented. The calculations were 
very fast if the first harmonic of FFT was used. A suggested 
method based on principle component analysis; the first two 
components were used. Seven phase-shifted interferograms 
were required in the two methods. The higher orders of 
harmonics of Fizeau interferometry especially at very high 
reflectivity coefficients are still considered as a source of 
errors in optical phase calculations [14, 15, 18–20].
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Practically, the optical phase differences due to the 
trapped phase objects between the wedge surfaces were 
determined by El-Morsy et al. [21, 22]. In this case the 
first harmonic of FFT was used to extract the optical 
phase differences due to the presence of a fibrous mate-
rial [22]. They neglected the higher order harmonics due 
to the difficulty of modeling calculation of the multiple 
reflected rays and its paths through the phase objects.

Recently, Ramadan presented a theory to calculate 
both phase and intensity distribution of Fizeau multiple-
beam interference fringes [23]. In this work, the number 
of interfered rays was desired where rays were assumed to 
be transmitted through two silvered optical plates making 
an angle (α) in between (a wedge). In addition, the effects 
of wedge interferometer angle, the wedge width and the 
location of the formed pattern on the intensity distribution 
were presented. The most important result of this work 
was that it opened the field to review the analysis and 
the information that could be provided by such interfer-
ometer. Ramadan and Wahba [24] presented a develop-
ment to the theory proposed in ref [23]. They estimated 
the intensity distribution of the interference ring fringes 
when light is transmitted through silvered plane-sphere 
optical system.

Most of the previous research work has neglected the 
higher orders of the resultant frequencies peaks of FFT 
spectra which is considered a source of errors [14, 15, 21, 
22]. This besides, dealing with this kind of interference to 
retrieve the phase is a quite complicated task. It is obvi-
ous from this brief review that FFT spectra formation of 
multiple-beam Fizeau interferogram analyses is not yet 
well understood.

In this paper, the experimentally produced multiple-
beam interference patterns as well as their corresponding 
estimated ones are analyzed using an algorithm based 
on FFT analysis. The FFT spectra of experimental and 
estimated patterns, when the conditions and parameters 
of the estimated fringes were carefully selected, were 
coincident. We had the facility to increase the number 
of the interfered rays (up to 15 rays) and monitor the 
related changes in FFT spectra yielded from the estimated 
patterns. Consequently, we were able to detect the rela-
tion between the number of the interfered rays and the 
FFT peaks’ order. In addition, we presented an explana-
tion of the different exist frequency peaks’ orders. The 
higher orders of harmonics are reasonable and cannot be 
neglected in cases when the tiny optical phase change are 
occurred. Much more understanding and benefits could 
be obtained concerning the following: the numbers of the 
interfered rays, multiple-beam Fizeau fringe constitution 
and phase recovering for such complicated interference.

2 � Construction of estimated interference 
pattern

In this section, we recall the theory presented by our group 
[23, 24]. In this theory, a ray-tracing approach has been pre-
sented to construct Fizeau fringes in transmission. It was pro-
posed that the image plane locates at a distance L above the 
wedge interferometer. The wedge interferometer was consist-
ing of two semi-silvered optical plates making an angle (α) in 
between. According to the geometrical path of the incident 
rays, each point at the image plane can be reached by a definite 
number of rays, see Fig. 1.

Considering different reflections and transmission made 
by each ray, the amplitude Aj of the ray number j reaching 
the point E can be written as follows [23]:

where

T1 and T2 are the transmittance of metallic layers for the 
upper and lower plates, respectively, while R1 and R2 are 
reflectance of the lower and upper inner plate’s surfaces, 
respectively.

The total optical path Pj from the incident point to the 
point E, for the jth ray, can be obtained directly from the 
following relation [23]:

where t1 is the wedge gap thickness traversed by the first 
beam. L is the distance between the upper reflecting surface 
and the image plane in which the interference takes place. 
tj is defined as the wedge gap thickness traversed by the jth 
ray. More information about evaluation of tj is given in refer-
ence [23]. Note that the incident wave is considered to be a 
plane wave and consequently the optical phase �j due to the 
optical distance traveled by the jth ray can be calculated from 
the following relation:

Vector summation method has been used to predict the 
superposition between the interfered rays considering the 
amplitude and phase of each ray [23, 24]. The resultant 
amplitude ηm, due to superposition of m rays, is given as 
follows [23]:

where m = 2 to M , Δ1 = �1 and �1 = A1.

(1)Aj = T ⋅ R(j−1),

T =
√

T1 T2 and R =
√

R1 R2.

(2)
Pj =

L + t1

cos(2(j − 1) ⋅ �)
+ tj cos (�)

2(j−1)
∑

i=1

1

cos[(i − 1)�] ⋅ cos(i�)
,

(3)�j =
2�

�
⋅ Pj.

(4)
�m =

√

[�(m−1) + Am cos(�m − Δ(m−1))]
2
+ [Am. sin(�m − Δ(m−1))]

2
,
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M is the total number of the interfered rays. The phase 
angle Δm of the resultant interference wave of m rays is given 
as follows:

where δm is phase difference between the resultant wave of 
superposition of m waves and (m − 1) waves and is given as 
follows:

This relation was obtained using the vector summation 
method of waves [23, 24].

Let us clarify that the calculations will be based on the 
above equations which are used to estimate the multiple-
beam Fizeau fringes in transmission. These fringes were 

(5)Δm =

m
∑

i=2

�i,

(6)�m = tan−1

[

Am ⋅ sin(�m − Δ(m−1))

�(m−1) + Am cos(�m − Δ(m−1))

]

.

formed as parallel straight lines and oriented parallel to the 
edge of the wedge. Therefore, the phase variation takes place 
as we go far from the edge of the wedge perpendicularly 
to the fringes’ orientation. There is no phase change in the 
direction parallel to the edge of the wedge interferometer. In 
this work, a set of estimated images were constructed using 
a prepared programme using MATLAB environment. The 
parameters used to estimate these images were chosen to be 
quite close to the experimentally measured ones. The used 
parameters are listed in Table 1.

We had the facility to choose the number of the interfered 
rays. The desired number of interfered rays depends on the 
experimental interferograms, which was analyzed by FFT 
as explained below. Figure 2a illustrates different estimated 
interferograms of multiple-beam interference when we have 
3, 4, 6, 8, 10, 12 and 15 interfered rays.

3 � FFT analysis of the estimated pattern

The estimated patterns shown in Fig. 2a were analyzed to 
get their corresponding FFT spectra. We considered only 
the direction of phase variation so, the one-dimensional FFT 
spectra are listed in Fig. 2b. One can notice that the number 
of the peaks in the evolved spectra is proportional to the 
contributed number of interfered rays. It is clear from Fig. 2b 
that the generated peaks order number equals the number of 
the superposed rays. Some questions are arisen in this study; 
why does the number of the interfered rays equal the peak 
order number? Why do the powers of the different frequen-
cies, obtained in FFT spectra, gradually decrease? Also, why 
the intervals between the evolved peaks are equals? That we 
are going to clarify in the next sections.

4 � Experimental multiple‑beam Fizeau 
interferogram in transmission

Here, we are going to generate an experimental multiple-
beam Fizeau interferograms in transmission. Figure 3 shows 
the experimental setup used to obtain these interferograms. 
A solid-state continuous diode laser source of wavelength 
532 nm was used. Microscope objective with a pin hole 
(spatial filter) and a collimating lens were aligned to get 
an expanded parallel beam of laser (quasi-plane wave). The 
wedge interferometer is consisting of two partially coated 
optical flats with a silver metallic layer under vacuum; the 
reflectance and transmittance were nearly 85% and 15%, 
respectively. The wedge angle between the flats was adjusted 
to be in the order of one degree. When the parallel rays were 
transmitted through the interferometer, a superposition of 
multiple beams took place. The generated pattern is known 
as a localized multiple-beam Fizeau fringes. The produced 

Table 1   The selected parameters used to estimate multiple-beam 
interference fringes

Parameter Value

Wavelength λ 532 nm
Transmittance T 15%
Reflectance R 85%
Wedge angle α 0.71°
Distance between the image plane and the interferometer 

upper plate L
23.25 mm

The real actual pixel size 0.146 µm

Fig. 1   A schematic diagram shows the ray tracing of the first, second 
and any jth ray. In addition, the angle between each ray and the first 
one is shown when the interfered rays reach a point E in the image 
plane locates at a height L above the upper reflected surface
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interferograms were magnified, imaged via an optical micro-
scope and were recorded by a CCD camera.

5 � FFT analysis of experimental patterns

According to the previously presented setup, we obtained an 
experimental interference image, shown in Fig. 4a. The FFT 
spectrum of the experimental image has been obtained using 
a prepared MATLAB programme, see Fig. 5. One can notice 
that the FFT spectrum of the experimental pattern provides 
14 peaks around the zero order peak. Therefore, based on 
the previously estimated examples (see Fig. 2b), we expect 
to have 15 interfered rays contributed in this interference. 
On light of this result, we produced an estimated interfer-
ence image, assuming that we have 15 interfered rays and 
considering similar experimental parameters, see Fig. 4b. It 
is quite clear how the experimental image and the estimated 
ones are so identical, regardless some speckle noises pro-
vided by the used laser source. The obtained FFT spectra 

Fig. 2   a Set of the estimated 
interferograms of multiple-
beam interference of 3, 4, 6, 8, 
10, 12 and 15 interfered rays in 
images i, ii, iii, iv, v, vi and vii, 
respectively. b The correspond-
ing FFT one-dimensional spec-
tra illustrating the increase in 
number of peaks with increas-
ing the number of the interfered 
rays

7th order

Zero order

1st order
2ed order

3rd order

5th order

11th order

14th

order

9th order

b-i)a-i)

a-vii)

a-vi)
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a-iv)

a-iii)

a-ii) b-ii)
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b-vii)

a b

Frequency in direction of phase variation 

Fig. 3   A schematic diagram of multiple-beam Fizeau interferometer 
in transmission. 1—a solid-state continuous diode laser source of 
wavelength 532 nm; 2—microscope objective; 3—pin hole; 4—colli-
mated lens; 5—diaphragm; 6—polarizer; 7—optical microscope; 8—
Fizeau interferometer; 9—CCD camera; 10—recorded image
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of both experimental and estimated images are shown in 
Fig. 5a. In this subfigure, we can see the two-dimensional 
frequency images resulted from experimental and estimated 
interference images, respectively. In Fig. 5b, we have only 
the FFT in direction of phase variation showing a 15 fre-
quency peaks including the zero order one. Moreover, the 
heights of the peaks also have similar behavior. A very small 

deviation in peak position of the higher orders between the 
experimental and estimated cases could be detected. In fact, 
we can attribute this deviation to the difference between the 
ideal cases of the wedge surface’s flatness assumed in the 
estimated fringes and the real one. Anyhow, this deviation 
is not in our concern in this stage of the work.

6 � Results and discussion

To interpret FFT spectra of the obtained multiple-beam 
Fizeau fringes, let us assume that we have an interference 
which occurs between six rays, as example, see Fig. 6. The 
phase difference between each two successive rays equals β. 
Examining the different superposition probabilities of these 
rays, one can realize that the interference could be occurred 
due to the superposition of ray no.1 with ray no.2, ray no.2 
with ray no.3, ray no.3 with ray no.4 and so on. This set of 
two-beam interferences provides the first peak of FFT spec-
trum. It is clear that the optical phase difference between 
each pair of interfered rays, constituting this two-beam inter-
ference set, equals β. The second superposition probability 
could be occurring between the interference of ray no.1 with 
ray no. 3, ray no.2 with ray no. 4, ray no.3 with ray no. 5 and 
so on. This set of two-beam interference provides the second 
peak of FFT spectrum. The optical phase difference between 
each of these pairs equals the double of the phase difference 
of the first two-beam interference set. The third superposi-
tion could be occurred between ray no.1 with ray no.4, ray 
no.2 with ray no. 5, ray no.3 with ray no. 6 and so on. This 
set of the two-beam interference provides the third peak of 
FFT spectrum. One can notice that the optical phase differ-
ence of this set for each pair of interfered rays is equal to 3β.

The same interpretation can be applied for the consecu-
tive cases of the expected superpositions. This is to real-
ize that we can get many two-beam interference sets with 
increasing the peak order n. In other words, the peaks will 
appear on the frequency axis at separated positions, pro-
portional to β. In addition, at the end of this treatment, it 

Fig. 4   Interferograms of Fizeau fringes, λ = 532 nm, for a experimen-
tal and b estimated multiple-beam Fizeau interference

Fig. 5   a Two-dimensional FFT frequency spectra of the experimen-
tal and estimated images. b One-dimensional FFT frequency spectra 
(in direction of phase variation) of the experimental and estimated 
images which are fitted regarding the peaks numbers, peaks inter-
spacing and the peaks height

Fig. 6   A schematic diagram 
shows the interfered rays 
contributed for each order of the 
FFT peaks
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will be evident that the total number of peaks appeared 
in an FFT spectrum represents the total number of the 
originally interfered rays. This concept could be used to 
retrieve the number of rays contributed in an experimental 
multiple-beam Fizeau interferogram. But, from a physical 
point of view, every one of these peaks represents a set of 
two-beam interferences.

Mathematically, we can consider that we have a total 
number of interfered rays M each one of them is indicated 
by a subscript j. So, the interfered rays can be represented 
by wave functions y1 up to yM. In addition, suppose that we 
have N total number of peaks each of them indicated by n, 
so n takes values from 1 to N. As it is clear from Fig. 6, 
each peak will represent a group of two-beam interfer-
ences. In Figures 2b and 5b, the peak height decreases 
with increasing the peak order n. Let Wn represent the 
collected superposition between the two wave functions 
set yj and y(j+n) as follows:

where,

Considering that the amplitude of each interfered ray Aj 
is reduced as the number of the interfered rays increases, 
see Eq.  (1). The relative height of the peak number n 
depends on the resultant intensity of the two-beam inter-
fered sets. These resultant intensities IIn can be considered 
as a square of the amplitudes ξn obtained from the super-
position of these two-beam interference set, having FFT 
peak number n, which can be given by

From Eq. (10), we can notice that there are two reasons 
responsible for decreasing the peak height with increas-
ing n; the amplitude reduction of the interfered waves 
due to multiple reflections and decreasing of the number 
of summed terms. Also, regarding the frequency term in 
Eq. (10), it is clear that the phase constant (n�)increases 
linearly with n. This was expected, where the optical phase 
difference depends on the optical path difference which 
was elongated due to multiple reflections inside the wedge 
interferometer. We can presume that each ray exceed in 
optical path length by the double of the wedge gap com-
pared with its previous one. Therefore, we have a quasi-
linear increase in optical path length difference as the peak 
order gets higher. In other words, there is a linear increase 

(7)Wn =
∑M

j=1
yj + y(j+n), (j + n) ≤ M

(8)yj = Aj sin ( �t + j �),

(9)y(j+n) = A(j+n) sin ( �t + (j + n) �).

(10)
IIn ≅ �2

n
=

M
∑

j=1

A2

j
+ A2

(j+n)
+ 2 Aj A(j+n) cos (n�),

(j + n) ≤ M.

in frequency of the two-beam interference fringes as the 
peak order gets higher for the same space domain. This is 
why we got the distance between each two successive FFT 
peaks almost constant.

To confirm our explanation, a single peak was selected 
using a defined mask, and was employed to get the IFFT for 
this peak. The IFFT provided an amplitude and a phase recov-
ered from the selected peak. The obtained amplitude expresses 
the interference image of the two-beam interference set that 
was responsible for generating the selected peak. Proceeding 
on each peak, we got the amplitude of the two-beam interfer-
ence sets responsible for different peaks. Figure 7a–d shows 
the amplitude images of the interference sets according to the 
selected order number 1, 3, 5 and 9, respectively. In Fig. 7, it 
is quite clear that inter-fringe spacing becomes smaller as the 
transformation is applied to the higher peak orders of FFT. For 
example, concerning Fig. 7d which represents the IFFT of the 
peak order number 9. It presents the sum of the following six 
two-beam interference cases as follows:

Here, M (the total number of the interfered rays) equals 
to 15 rays. In these cases of the two-beam interference sets, 

(11)W9 =
∑(j+9)

j=1
yj + y(j+9), (j + 9) ≤ 15.

Fig. 7   Set of images presents the amplitude of the IFFT for some 
selected peaks of orders 1, 3, 5 and 9 from the FFT spectrum
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we can notice that the object ray is reflected forward and 
backward (between the two interferometer surfaces) nine 
times more than the reference ray. Therefore, the phase dif-
ference between the interfered rays of this set equals (9�) . 
Comparing Fig. 7a, which presents the IFFT produced from 
employing the first FFT peak, with Fig. 7d, one can realize 
that we have nine fringes in the same space of one fringe 
shown in Fig. 7a. The same behavior can be noticed in the 
IFFT images regarding the rest of the selected peaks. See 
Fig. 7b, c. At the end of this interpretation, we hope that we 
were able to answer the questions raised in “FFT analysis of 
the estimated pattern”.

7 � Conclusions

This work presents a quite good understanding of multiple-
beam Fizeau interference. The ability to estimate multiple-
beam interference fringe pattern demonstrated that there is 
a relation between the number of the FFT peaks and the 
number of the interfered rays. This enabled us to define, in 
a good perception, the number of rays forming the experi-
mentally multiple-beam Fizeau interferogram. The novelty 
of this work could be summarized in the fact “each peak, 
yields from multiple-beam Fizeau interferogram analysis, 
represents a set of two-beam interferences”. This gave the 
advantage to disintegrate the complicated multiple-beam 
interferograms to its original components of the two-beam 
interferograms. By implying IFFT, we were able to get many 
two-beam interferograms generated from one multiple-beam 
interferogram. We expect that this analysis could facilitate 
the phase retrieving and provide useful information utilizing 
any peak order separately not only the first peak order. This 
means that the higher peak order is not an error as was stated 
in previous works. The disintegration of multiple-beam 
Fizeau interference will open a new prospect for rethinking 
about benefits arising from one interferogram.
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