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Abstract
Transmission of digital contents over public channel with access restricted to intended beneficiary even the contents are 
intercepted by others. In technological ages, cryptography plays a vital role in broadcasting, network communication, cell 
phones, etc. for transmitting sensitive information. The era of quantum information processing has many applications in 
daily life and one of its implications in data security. The data security and quantum information are two different modules of 
information processing that uses the notion of qubit model instead of classical information theory. It uses quantum mechan-
ics instead of classical mechanics for information processing (covert communication). Elements of quantum theory have 
energy and angular momentum called spin, which carries the polarization. The purpose of writing this article is to introduce 
the concept spinning from quantum dynamics in data security, which leads to the development of quantum cryptography. 
The scope of this article is to protect contents’ privacy by polarized spin matrices passed by finite-state machine at secret 
phase information.

1 Introduction

Propagation of communication over public channels 
becomes very much popular and ensures that authorized 
access is essential [1]. The rapid growth in multimedia tech-
nology, and digital contents such as images, video, audio, 
etc. play imperative role in communication [2]. To fulfill 
the privacy prerequisite of such contents, worthy security 
tools have to be developed [3]. The traditional number 
theory-based algorithms, such as AES and DES, projected 
for encryption, but these algorithms rely on higher compu-
tational power and time complexity, so these found to be 
not suitable for digital images. Images possess resistance 
and redundancy among neighboring pixels, which mark dif-
ficulties for number theory-based procedures to tackle the 
real-time protection performance due to necessity of high 

computational complexity. In literature review, AES is vul-
nerable to square, side-channel, and differential attacks [4].

Different algorithms have been developed in the literature 
to provide the security to digital contents based on confusion 
and diffusion with multiple rounds and chaos theory [5–17]. 
The idea of quantum computers evolves nowadays and it is a 
serious threat for classical number theory-based algorithms. 
The conventional communication is a fine submission of 0 or 
1 through public channels and several algorithms [18–22, 23] 
have been proposed that prevent the leakage of information 
as well as provide defense against information attacks. These 
algorithms were considered to be secure as long as quantum 
computers not available publically. In the age of quantum 
information, the idea of fast computation with several com-
plication levels gets more legalistic due to quantum parallel-
ism. The performance of a single-quantum computing machine 
is much better than hundreds of classical computers perform 
operation parallel. Quantum parallelism is performed by spin 
operations of quantum mechanics and this leads to a new para-
digm of computing. The cryptography of prime factorization 
will fall as the computational complexity resolved by quantum 
machines in m-seconds [24]. Thirty classical machines hav-
ing CPU 2.2 Ghz perform parallel operations for a year to 
factor 193 digits, while a single-quantum computer with the 
same specification as classical machine to calculate factors 
193 digits in 0.1 s [25]. Quantum calculations allied in several 
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branches of science nowadays and a novelty in image process-
ing, computational complications, and pattern recognition. The 
feasibility of quantum mechanics properties of superposition 
and entanglement applied on the traditional cryptosystem at 
fundamental level has been discovered in scientific ages.

The first key distribution using quantum protocol was pub-
lished in 1984 by Charles Bennet and Gilles Brassard named 
as BB84 [26]. Further advancement took place in 1991, when 
Ekert proposed the Einstein–Podolsky–Rosen (EPR) entangle-
ment theory, whose security was based on Bell’s inequality 
[27, 28]. To transfer a qubit into an elementary particle form 
one side to another, either on free-space or fiber optics utilized 
by quantum channels, whereas both sides cannot be protected 
from illegitimate attempts [29]. Quantum channels are con-
sidered to be useful for traditional system security in the light 
of quantum standards of uncertainty principle by Heisenberg 
and no-cloning theorem that keeps the whole communication 
system unbroken [30–40].

Quantum algorithms processed into two channels; one is 
ERP (entangled state) channel and the second is qubit chan-
nel. In this article, we perform entanglement phenomenon 
on spin matrices to provide security to digital contents. Sec-
tion 2 of this article provides the basic concept of spin matri-
ces and their entanglement, and finite-state machine at which 
the entangled matrices applied. Section 3 demonstrates the 
experimentation of algorithm on standard images. Section 4 
comprises of different analyses’ measures and comparison 
with the existing techniques. The final remarks about the arti-
cle are presented in Sect. 5.

2  Initiations

The brief demonstration of spin matrices specified in this sec-
tion, which have been devised in the light of rotation operators 
in quantum dynamics literature [41–43]. We pass the entan-
gled matrices through finite-state machine [43, 44]. The spin 
matrices for rotation operators x, y, and z are as follows:

The image encryption algorithm design appeared in Fig. 1 
and entanglement of spin matrices in two dimensions are as 
follows:
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Entangle these 2 × 2 spin matr ices to pro-
duce  a  set  F  o f  4 × 4  en t angled  mat r ices , 
F = {Fi ∈ F4×4(I,X,Y ,Z ), i = 1, 2, ..., 24}.

We will get 24 matrices F = {F1,F2,F3, ...,F24}.

The phase and key were kept secret. FSM or FSA (finite-
state automation) used here with a limited number of condi-
tions. The input symbols are digits defined by key. String 
belongs to image can be treated by deterministic finite-state 
or non-deterministic finite-state automaton (NDFA). We 
considered here NDFA whose output depends on the transi-
tions [43].

3  Experimentation

The dimension of plain image P(i, j) is M × N , where P(i, j) 
is the ith row and jth column pixel value.

1. Transform the image layers dimension into 4 × n direction.
2. Specify the criteria for the selection of phase or simply 

phase kept secret between two parties for encryption and 
decryption and resolve the entangled matrices by plac-
ing phase information.

3. Distribute the key secretly to encrypt or decrypt the data. 
Different spin matrices operated by FSM with respect to 
key.

4. Transform the encrypted layers direction into plain 
image dimension.

Fig. 1  Proposed encryption algorithm
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5. All the encrypted layers combine together to form a sin-
gle ciphered image.

We consider here the phase value � = 365.86 and key 
K = 68. FSM converts the key into bits and performs encryp-
tion under 24 spin matrices, as shown in Table 1.

Fig. 2  Layer-wise encryption analyses of pepper image. a Plain 
pepper image, b–d red, green, and blue layers of plain image. e 
Encrypted pepper image, f–h red, green, and blue layers of encrypted 
image

Fig. 3  Layer-wise encryption analyses of airplane image. a Plain 
airplane image, b–d red, green, and blue layers of plain image. 
e Encrypted airplane image, f–h red, green, and blue layers of 
encrypted image
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where P is the plane image and the final cipher image at 
the output of FSM is C7.

The experimentation results of designed technique on 
miscellaneous images of size 512 × 512 of SIPI image data-
base is as follows (Figs. 2, 3).

4  Performance analyses

We have accomplished a few trials on th standard images 
to affirm the performance and security for the proposed 
scheme. These trials involve the susceptibility enquiry, 
factual investigation, and loophole assessment for encoded 
images. Each of these trials deliberated in detail in the asso-
ciated subsections.

4.1  Histogram consistency analyses

To estimate the security of digital contents, histogram con-
sistency of enciphered images is necessary [30]. We com-
pute the histograms of two 256 color-level images of size 
512 × 512 that have varied ingredient. Refer to Figs. 4 and 
5, plain image histograms comprise extensive sharp rises 
after sharp decreases and the enciphered image histograms 
under projected structure are genuinely uniform and pretty 
much change from the plain image histograms, which mark 
assessable attacks difficult (Figs. 6, 7, 8).

4.2  Randomness analyses

Entropy and NIST analyses are the most prominent feature 
of randomness. On the basis of random analysis, events from 
set of probable discrete events {x1, x2 ,…, xi} allied with 
probabilities {p(x1), p(x2),…, p(xi)}, then the average pro-
duction of basis information is called entropy:

Key = Binary(68) = 1000100.

H = −

2N− 1∑
i=0

p(xi)log2p(xi),

where xi is the basis image and 2N is the collective data. The 
estimated Shannon entropy is 8 for perfectly indiscrimina-
tion of data. Several standard images and their ciphers entro-
pies accounted in Table 2 and cipher images entropy esteem 
are very close the theoretical esteem 8. This indicates that 
the information leakage in encryption process is extraneous 
and the mechanism is protected upon entropy attacks [17]. 
We also compare the information entropies of enciphered 
images under the proposed scheme with latest developed 
techniques in Table 2.

The security of cryptosystem has a few possessions, e.g., 
extensive period, identical delivery, extraordinary complexity, 
and efficiency. With a definite aim to accomplish these req-
uisites, we perform NIST analyses’ test. National Institute of 
Standards and Technology (NIST) develops Special Publica-
tion (SP) 1800 series and FIPS (Federal information Process-
ing Standard) for cyber-security community to verify random-
ness introduced in their cryptosystems. We perform NIST SP 
800-22 test to analyze the randomness in digital images. The 
enciphered Pepper image is utilized to analyze the results of 
NIST test and after effects of the test are appeared in Table 3.

4.3  Correlation analyses

It is prominent that adjoining pixels are extremely allied 
in directions either horizontal, vertical, or diagonal. There-
fore, the strategy of encryption must abandon this bond to 
improve barrier contrary to assessable exploration. To affirm 
the affiliation among adjacent plain and ciphered image 
pixels, the associated technique is accomplished. Initially, 
10,000 sets of two adjoining pixels from plain and corre-
sponding ciphered image randomly selected [47]. The coef-
ficients of correlation for each chain pairs determined by 
applying the following expression:

where x and y are the two adjacent pixel values at gray scale, 
�x,y is the covariance, and �x2 and �2

y
 are the variances of 

random variables x and y respectively.

rx,y =
�x,y√
�2
x
�2
y

,

Table 1  Finite-state machine 
operation perform spin matrices 
at given key

Key in binary Rounds FSM input Decimal input 
under mod 24

Entangled spin 
matrix

Cipher image

1,000,100 1 1 1 F1 C1 = F1 × P
1,000,100 2 10 2 F2 C2 = F2 × C1

1,000,100 3 100 4 F4 C3 = F4 × C2

1,000,100 4 1000 8 F8 C4 = F8 × C3

1,000,100 5 10,001 17 F17 C5 = F17 × C4

1,000,100 6 100,010 10 F10 C6 = F10 × C5

1,000,100 7 1,000,100 20 F20 C7 = F20 × C6
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The quantitative analysis of correlation coefficient for 
RGB layers is deliberated in Table 4, and presented the dis-
tribution in horizontal, vertical, and diagonal directions.

The above-calculated coefficients among numerous pairs 
of enciphered images are very close to zero, and hence, the 

plain and ciphered images are significantly diverged from 
each other. The assessment of correlation coefficients calcu-
lated by anticipated scheme at gray scale with the modern 
techniques using the standard images are presented in Table 5.

Fig. 4  Layer-wise histograms 
of pepper image. a Plain 
pepper image histogram, b–d 
Red, Green and Blue layers’ 
histogram of pepper image. e 
Encrypted pepper image histo-
gram, f–h Red, Green and Blue 
layers’ histogram of encrypted 
pepper image
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The outcomes of correlation analysis from anticipated 
scheme have smaller values than the projected techniques in 
the literature, which qualify the security measures for real-
time applications.

4.4  Similarity analyses

Similarity analyses fundamentally expose the resemblance 
among different digital contents and the simplest digital con-
tent is image. The values of normalized cross-correlation 
and structure contents are quite closed to 1 for structurally 

Fig. 5  Layer-wise histograms 
of airplane image. a Plain 
airplane image histogram, 
b–d red, green, and blue layers’ 
histogram of airplane image. e 
Encrypted airplane image histo-
gram, f–h red, green, and blue 
layers’ histogram of encrypted 
airplane image
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similar digital contents. There are different sorts of simi-
larity coefficient are utilized here to quantitatively find the 
structurally dissimilar digital contents. We investigated here 

different similarity measures between plain image Pi,j and 
cipher images Ci,j to approximate the structure dissimilarity 
among different digital contents from reference.

Fig. 6  Correlation of plain and encrypted Pepper image. a–c Correlation of plain image in horizontal, vertical, and diagonal direction. d–f Cor-
relation of encrypted image in horizontal, vertical, and diagonal direction

Fig. 7  Correlation of plain and encrypted Airplane image. a–c Correlation of plain image in horizontal, vertical, and diagonal direction. d–f 
Correlation of encrypted image in horizontal, vertical, and diagonal direction
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Structural similarity index metric (SSIM) compares the 
structure, luminance, and contrast between plain and cipher 
image. Consider the two images Pi,j and Ci,j with their mean 
values �p , �c , and the standard deviation �pc . If there is any 
similarity between images, the value approaches 1, while value 
away from 1 or approaches 0 represent the dissimilarity:

Normalized cross-correlation (NCC) measures the similar-
ity of pixels between two images. It is determined by the fol-
lowing expression:

SSIM =
(2�p �c + C1) (2�pc + C2)

(�2

p
+ �2

c
+ C1) (�

2

p
+ �2

c
+ C2)

.

Structural content (SC) determines the amount of structural 
details as well as the quality of images in terms of sharpness 
and noise level. Higher value of SC shows the poor quality of 
image and it is calculated as follows (Table 6):

NCC =

M−1�
i=0

N−1�
j=0

Pi,j × Ci,j

M−1∑
i=0

N−1∑
j=0

P2
i,j

.

SC =

M−1�
i=0

N−1�
j=0

P2
i,j

M−1∑
i=0

N−1∑
j=0

C
2

i,j

.

Fig. 8  Normalized cross-correlation surface plots of Pepper and Airplane image. a–c Surface plot of plain, encrypted, and cross-correlation of 
plain and encrypted Pepper image. d–f Surface plot of plain, encrypted, and cross-correlation of plain and encrypted Airplane image

Table 2  Entropy analyses of standard plain and ciphered images of size 512 × 512

Image Plain Encrypted Ref. [45] Ref. [46]

Gray Red Green Blue Gray Red Green Blue Gray Red Green Blue

Pepper 7.5835 7.3587 7.6157 7.1495 7.9995 7.9994 7.9993 7.9994 7.9974 7.9992 7.9992 7.9993
Airplane 6.6879 6.7489 6.8106 6.2682 7.9993 7.9994 7.9991 7.9992 7.9972 7.9993 7.9993 7.9993
Lena 7.4455 7.2703 7.5881 7.0026 7.9989 7.9968 7.9986 7.9984 7.9979 – – –
Baboon 7.7666 7.7444 7.4493 7.7513 7.9991 7.9992 7.9993 7.9990 7.9974 7.9993 7.9993 7.9992
House 7.5112 7.4493 7.2632 7.4891 7.9993 7.9991 7.9993 7.9991 7.9973 7.9993 7.9993 7.9993
Jelly beans 6.6098 5.3111 5.7424 6.5942 7.9984 7.9975 7.9968 7.9972 – 7.9971 7.9962 7.9973
Sail boat 7.7675 7.3166 7.6443 7.3030 7.9994 7.9991 7.9993 7.9993 – 7.9992 7.9993 7.9992
Splash 7.3232 7.0807 6.9771 6.2126 7.9982 7.9979 7.9973 7.9983 – – – –
Tree 7.5634 7.2798 7.4610 6.9923 7.9988 7.9975 7.9974 7.9982 – 7.9971 7.9973 7.9971
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4.5  Difference analyses

The image quality evaluation based on pixel difference pro-
cedure executed here by calculating the mean absolute error, 
mean square error, and peak signal-to-noise ratio.

Mean absolute error (MAE) is the most common technique 
used to measure the accuracy for continues variables. It defines 
the average of absolute difference between plain and ciphered 
image. Higher the MAE esteem to enhance the security and it 
is defined as follows:

MSE and PSNR compare the image encryption quality. 
MSE indicates the collective squared error among the plain 
and ciphered images, while PSNR indicates the measure of 
peak error:

MAE =
1

M × N

M−1∑
i=0

N−1∑
j=0

|||Pi,j − Ci,j
|||.

MSE =
1

M × N

M−1∑
i=0

N−1∑
j=0

(Pi,j − Ci,j)
2.

The encryption quality is acceptable by higher the MSE 
esteem and lower the PSNR or vice versa. The quality of 
ciphered images can be evaluated by utilizing the PSNR as 
follows:

where IMAX is the greatest pixel approximation of image 
contents and the feasibility of anticipated scheme evaluated 
for MSE and PSNR presented in Table 7.

4.6  Differential assault analyses

To affirm the image encryption scheme against differential 
assault, we require the impact of changing a single pixel in 
plain image and overall encrypted image and execute the num-
ber of pixels change rate (NPCR) and unified average inten-
sity (UACI). We assumed two encoded images, whose source 
image just differs by a single pixel. The NPCR and UACI for 

PSNR = 20log10

�
IMAX√
MSE

�
,

Table 3  NIST analyses for 
encrypted Pepper image

Test Layer-wise p values of encrypted images Remarks

Gray Red Green Blue

Frequency 0.25103 0.13139 0.36543 0.24916 Pass
Block frequency 0.21153 0.46886 0.43132 0.12108 Pass
Rank 0.28198 0.28171 0.28194 0.29051 Pass
Runs (M = 10,000) 0.42635 0.33721 0.67959 0.44218 Pass
Long runs of ones 0.76542 0.76541 0.61721 0.74728 Pass
Overlapping templates 0.82849 0.83898 0.84998 0.79979 Pass
No overlapping templates 0.99921 0.96826 0.88245 0.98799 Pass
Spectral DFT 0.88663 0.74465 0.53889 0.25756 Pass
Approximate entropy 0.61372 0.36176 0.21183 0.59989 Pass
Universal 0.99986 0.99565 0.99529 0.99442 Pass
Serial p values 1 055143 0.21024 0.13028 0.42132 Pass
Serial p values 2 0.88783 0.84662 0.66936 0.91392 Pass
Cumulative sum forward 0.64267 0.43476 0.33676 0.53526 Pass
Cumulative sum reverse 0.77512 0.53121 0.82928 0.87679 Pass
Random excursions X = − 3 0.98132 0.87795 0.86443 0.76251 Pass

X = − 2 0.97228 0.76016 0.14445 0.33270 Pass
X = − 1 0.96653 0.77265 0.66710 0.86291 Pass
X = 1 0.96116 0.96687 0.83132 0.90225 Pass
X = 2 0.21156 0.55121 0.42162 0.12781 Pass
X = 3 0.61 × 10−5 0.05366 0.13356 0.02112 Pass

Random excursion variants X =  − 3 0.46427 0.22749 0.32996 0.42354 Pass
X = − 2 0.41563 0.56673 0.61655 0.28373 Pass
X = − 1 0.41078 0.55002 0.41596 0.22186 Pass
X = 1 0.55617 0.65238 0.42909 0.64261 Pass
X = 2 0.66138 0.75692 0.35671 0.90213 Pass
X = 3 0.78322 0.56894 0.70716 0.09502 Pass
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two encoded images C1(i, j) and C2(i, j) can be assessed by the 
following expressions:

NPCR =
1

W × H

∑
i,j
x(i, j),

where

x(i, j) =
{

0, C1(i,j)=C2(i,j)

1, C1(i,j)≠C2(i,j)
.

Table 4  Correlation coefficients of plain and encrypted images at RGB scale

Image Plain Encrypted Ref [48].

Horizontal Vertical Diagonal Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Pepper R 0.9662 0.9639 0.9368 − 0.0046 − 0.0019 0.0012 - - -
G 0.9479 0.957 0.9132 − 0.0021 0.0017 − 0.0034 – – –
B 0.9787 0.982 0.9646 0.0007 − 0.0022 − 0.0023 – – –

Airplane R 0.9759 0.9729 0.9516 − 0.0011 0.0003 − 0.0062 – – –
G 0.9757 0.9753 0.9546 0.0006 0.0005 − 0.0014 – – –
B 0.9699 0.9603 0.9396 0.0004 − 0.0026 0.0015 – – –

Lena R 0.9759 0.9878 0.9637 − 0.0035 0.0002 − 0.0021 0.0023 0.0005 0.0009
G 0.9814 0.9833 0.9665 0.0004 0.0002 − 0.0016 0.0003 0.0012 0.0007
B 0.8534 0.7598 0.7300 0.0001 − 0.0041 − 0.0008 0.0006 0.0003 0.0007

Baboon R 0.9625 0.9313 0.9166 0.0010 − 0.0013 − 0.0014 – – –
G 0.9121 0.8530 0.8232 − 0.0012 0.0002 0.0016 – – –
B 0.9696 0.9558 0.9380 0.0008 − 0.0013 − 0.0035 – – –

House R 0.9713 0.9756 0.9506 0.0011 0.0007 0.0008 – – –
G 0.9581 0.9659 0.9282 0.0021 0.0012 0.0013 – – –
B 0.9817 0.9827 0.9674 0.0009 − 0.0015 − 0.0055 – – –

Jelly bean R 0.9772 0.9791 0.9592 − 0.0013 − 0.0018 − 0.0031 – – –
G 0.9815 0.9852 0.9694 − 0.0017 0.0018 0.0009 – – –
B 0.9916 0.9906 0.9843 0.0004 − 0.0036 − 0.0061 – – –

Sail boat R 0.9791 0.9759 0.9610 0.0013 − 0.0017 0.0007 – – –
G 0.9850 0.9831 0.9711 0.0034 − 0.0012 − 0.0061 – – –
B 0.9874 0.9880 0.9782 − 0.0024 0.0023 0.0017 – – –

Splash R 0.9943 0.9978 0.9926 0.0004 0.0022 0.0007 – – –
G 0.9894 0.9937 0.9837 − 0.0036 − 0.0061 0.0014 – – –
B 0.9891 0.9904 0.9809 − 0.0021 0.0036 0.0022 – – –

Tree R 0.9770 0.9596 0.9460 − 0.0079 − 0.0091 0.0047 – – –
G 0.9800 0.9639 0.9522 − 0.0072 − 0.0041 − 0.0018 – – –
B 0.9830 0.9678 0.9583 − 0.0088 0.0002 0.0005 – – –

Table 5  Correlation coefficients of plain and encrypted images at gray scale and comparison with the existing approaches

Image Plain Encrypted Refs. [45, 46]

Horizontal Vertical Diagonal Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Pepper 0.9814 0.9833 0.9665 − 0.0055 0.0025 0.0011 0.0007 − 0.0012 0.0001
Airplane 0.9662 0.9639 0.9368 − 0.0046 − 0.0019 0.0012 − 0.0016 0.0008 0.0033
Lena 0.9737 0.9869 0.9610 − 0.0045 − 0.0070 0.0013 0.0009 0.0021 − 0.0007
Baboon 0.8534 0.7598 0.7300 0.0015 − 0.0021 − 0.0018 0.0039 − 0.0045 0.0039
House 0.9479 0.957 0.9132 − 0.0028 0.0087 − 0.0034 − 0.0028 − 0.0041 0.0045
Jelly beans 0.9787 0.982 0.9646 0.0017 − 0.0023 − 0.0023 − 0.0033 0.0018 − 0.0045
Sail boat 0.9737 0.9700 0.9569 0.0010 − 0.0033 − 0.0014 − 0.0040 − 0.0051 0.0001
Splash 0.9840 0.9915 0.9773 − 0.0042 0.0012 0.0016 0.0017 − 0.0041 0.0015
Tree 0.9669 0.9441 0.9294 0.0028 − 0.0013 − 0.0035 0.0019 − 0.0021 0.0036
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Table 6  Pixels’ similarity 
analyses between original and 
encrypted standard images

Standard image Proposed scheme Ref [49]. Ref [6].

SSIM NCC SC SSIM NCC

Pepper 0.0047 0.9959 0.9980 0.0067 0.9933
Airplane 0.0030 0.9956 0.9971 – –
Lena 0.0010 0.9930 0.9981 0.0053 0.9920
Baboon 0.0016 0.9989 0.9983 0.0074 0.9927
House 0.0112 0.9938 0.9982 0.0115 –
Jelly beans 0.0154 0.9956 0.9919 – –
Sail boat 0.0030 0.9974 0.9980 0.0010 0.9938
Splash 0.0114 0.9912 0.9911 – –
Tree 0.0019 0.9968 0.9928 – –

Table 7  Pixels’ difference 
analyses between plain and 
ciphered images and assessment 
with the existing approaches

Image Proposed scheme Ref. [50] Ref. [51]

MAE MSE PSNR MAE MSE PSNR

Pepper 85.48 8992.82 8.8917 75.64 8261 8.9603
Airplane 87.97 8853.77 8.8954 83.19 – –
Lena 79.88 8765.76 8.9570 78.24 – –
Baboon 81.53 8619.66 8.9865 71.38 7385 9.4474
House 89.23 8924.86 8.8919 – 7699 9.2667
Jelly beans 66.83 8566.12 8.8954 – – –
Sail boat 88.34 8142.86 9.1162 – 7701 9.2653
Splash 78.17 9106.73 8.1152 76.74 8731 8.7200
Tree 78.99 7436.10 9.4345 – – –

Table 8  NPCR analyses 
between plain and ciphered 
images

Image NPCR Ref. [52] Ref. [46]

Gray R G B Gray R G B

Pepper 99.92 99.72 99.82 99.61 99.15 99.60 99.63 99.58
Airplane 99.84 99.81 99.86 99.77 99.18 99.61 99.61 99.60
Lena 99.86 99.86 99.81 99.89 99.22 – – –
Baboon 99.88 99.85 99.72 99.87 99.12 99.63 99.59 99.62
House 99.79 99.65 99.68 99.86 98.87 99.63 99.59 99.60
Jelly beans 99.81 99.82 99.83 99.77 – 99.60 99.58 99.61
Sail boat 99.89 99.86 99.78 99.81 – 99.61 99.61 99.59
Splash 99.74 99.62 99.72 99.58 – 99.61 99.59 99.59
Tree 99.82 99.76 99.67 99.87 – 99.58 99.54 99.56

Table 9  UACI analyses between 
plain and ciphered images

Image UACI Ref. [52] Ref. [46]

Gray R G B Gray R G B

Pepper 33.58 36.39 33.14 35.26 33.14 33.42 33.49 33.41
Airplane 33.44 38.33 34.26 34.21 33.11 33.47 33.40 33.37
Lena 33.68 34.97 33.06 33.81 33.12 – – –
Baboon 33.64 35.48 33.06 34.81 33.11 33.48 33.54 33.53
House 33.25 32.37 33.21 32.41 32.16 33.52 33.53 33.48
Jelly beans 33.21 32.94 31.85 33.18 – 33.52 33.61 33.46
Sail boat 33.47 32.56 34.11 32.25 – 33.49 33.56 33.43
Splash 33.04 34.42 30.14 32.29 – 33.49 33.54 33.46
Tree 33.31 33.64 31.55 33.23 – 33.48 33.36 33.32
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To examine the sensitivity of plain image, we have to 
encrypt it first and then change one pixel randomly in the 
plain image. The experimental results of these assessments 
are provided in Tables 8 and 9.

NPCR esteems using proposed technique are persistently 
correspondent to the perfect estimation of 1 and the assess-
ment of differential assault analyses of anticipated process 
with modern approaches is also discussed in Tables 8 and 9.

This judgement illustrate that projected technique has 
extreme degree impatient to a trivial alteration in plain 
image, irrespective of two enciphered plain images which 
have 1− bit alteration, the two images are fairly dissimi-
lar from each other. Hence, the anticipated strategy has 
greater ability to hostile the differential assaults.

4.7  Gray‑level co− occurrence matrix analyses

To analyze the visual strength of proposed algorithm, gray-
level co− occurrence matrix (GLCM) analyses exemplify 
homogeneity, contrast, and energy [53]. The homogeneity 

UACI =
1

W × H

M−1∑
i=0

N−1∑
j=0

||||
C1(i, j) − C2(i, j)

255

||||

analysis for an image can be calculated using the following 
expression:

Homogeneity investigation accomplishes the closeness 
of distribution in GLCM to GLCM diagonally. Its range lies 
between 0 and 1, where 0 validates no variation and 1 vali-
date large number of variation in image pixels.

The contrast analysis allows the observer to identify the 
object in the texture of an image and defined as follows:

The rage of contrast lies between 0 and (size(image) − 1)2 . 
The constant image has 0 contrast and greater the contrast value 
illustrates the large number of variations in the image’s pixels.

The energy exploration proceeds the sum of squared ele-
ments in GLCM and it is expressed as follows:

Its range lies between 0 and 1 and the constant image has 
1 energy. Table 10 exhibits the GLCM analyses for enci-
phered images.

The corresponding homogeneity values for enciphered 
images are very close to 1 and contrast values are sufficiently 
large, which demonstrates the large number of variations 
in image pixels. The energy values for enciphered images 
approach 0, which proves that the image is not constant.

4.8  Time sensitivity analyses

The anticipated scheme in this article is very much effective 
than already existing techniques, because it uses minimum 
resources and least computation cost. To analyze the com-
putational complication, we compare time complexity with 

Homogeneity =
∑
i,j

� (i, j)

1 + |i − j| .

Contrast =
∑
i,j

|i − j|2� (i, j).

Contrast =
∑
i,j

� (i, j)2.

Table 10  Gray-level 
co- occurrence matrix analyses

Image Proposed scheme Ref [54] Ref. [55] Ref. [54]

Homogeneity Contrast Energy Homogeneity Contrast Energy

Pepper 0.9856 10.6103 0.0156 – 10.5432 –
Airplane 0.9893 10.6231 0.0156 0.464131 – 0.0282
Lena 0.9891 10.4963 0.0157 – 10.4511 –
Baboon 0.9890 10.5001 0.0155 – 10.4784 –
House 0.9791 10.4421 0.0158 – – –
Jelly beans 0.9796 10.5101 0.0157 – – –
Sail boat 0.9894 10.5136 0.0157 – 10.4423 –
Splash 0.9795 10.5006 0.0159 – – –
Tree 0.9895 10.5001 0.0156 – – –

Table 11  Encryption execution time in seconds

Image Proposed scheme Ref. [55] Ref. [23]

Pepper 1.41 2.76 3.68
Airplane 1.29 – –
Lena 1.32 2.25 3.23
Baboon 1.36 2.55 3.53
House 1.22 – –
Jelly beans 1.19 – –
Sail boat 1.39 2.66 3.55
Splash 1.10 – –
Tree 1.26 – –



A new approach to digital content privacy using quantum spin and finite-state machine  

1 3

Page 13 of 14 27

the existing techniques in Table 11. The table demonstrates 
the time taken during encryption of plain images. Decryp-
tion time is almost equal to encryption time. The projected 
technique in Table 11 has less computational complexity 
than already existing approaches.

5  Conclusion

We have designed a new scheme based on quantum spinning 
to provide the security to digital contents. We consumed the 
half-spin phenomenon to add the confusion and diffusion 
abilities in our proposed structure. Cracking of keys and 
messages is not possible without knowledge of phase and 
entangled matrices. Due to half spinning, there are infinite 
points which lie between −720◦ and 720◦ , while possible 
combinations of spin matrices are 4!. By utilizing the statis-
tical analyses, our proposed technique is appropriate for real-
time applications due to small processing time and superior 
performance than the existing schemes.
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