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Abstract
The nonlinear acoustoelectromagnetic phenomena in the terahertz (THz) range in the crystalline paraelectric SrTiO3 are 
investigated theoretically. The goal is to investigate an appearance of short THz electromagnetic (EM) pulses. The moderate 
cooling to the temperature T ≈ 77 K is considered. The resonant three-wave interaction of two counterpropagating EM THz 
waves with the longitudinal acoustic wave of the difference frequency is under investigation that is called the stimulated 
Brillouin scattering. This resonant interaction is due to the quadratic nonlinearity called electrostriction. The appearance 
of short EM pulses is possible when the input amplitudes of the signal EM wave are comparable with the pump amplitude 
and the duration of the input pulses is quite long. In the temporal scale associated with the EM wave propagation within a 
crystal, the cubic EM nonlinearity and the EM wave dispersion affect this three-wave resonant interaction. Under the devel-
opment of the resonant nonlinear interaction, the modulation instability occurs that results in the complex and even chaotic 
wave modulation.

1  Introduction

Now, the assimilation of the terahertz (THz) range 
0.1–30 THz occurs [1, 2]. An important problem is creat-
ing short electromagnetic (EM) pulses of THz range, both 
baseband and envelope ones. For this purpose, it is possible 
to use the joint action of EM cubic nonlinearity and the 
frequency dispersion of certain signs to realize the modula-
tion instability of long input pulses and the propagation of 
envelope solitons [3–7]. Also, the short envelope EM pulses 
can be formed under three-wave resonant interaction of two 
counterpropagating EM waves with an acoustic wave or a 
space charge wave of the difference frequency, the so-called 
stimulated Brillouin scattering (SBS) [8–10]. In nonlinear 
dielectrics, SBS is due to the quadratic nonlinearity called 
the electrostriction.

The nonlinear dielectrics, semiconductors, and semi-
metals can be used as volume nonlinear materials in tera-
hertz (THz) range [1, 2]. The ferroelectrics in the non-polar 
phase are utilized as the nonlinear dielectrics, the so-called 

paraelectrics like SrTiO3, KTaO3, and ceramics on their 
base [11–31]. The crystalline SrTiO3 possesses high cubic 
EM nonlinearity and relatively low losses in the lower part 
of THz range 0.1–1 THz at moderately low temperatures 
T = 50–90 K. In a distinction from the microwave range, 
there exists the frequency dispersion in THz range when 
the EM frequency is close to the soft mode frequency, i.e., 
the lowest frequency of oscillations of the optical type of the 
crystalline lattice. In the crystalline SrTiO3, the soft mode 
frequency decreases with the decrease of the temperature. 
The modulation instability of long input EM envelope and 
baseband pulses takes place due to the joint action of the 
cubic nonlinearity and the frequency dispersion [6, 7, 32]. 
Also, the resonant three-wave nonlinear interaction between 
counterpropagating EM waves and the acoustic wave occurs 
due to the electrostriction, the so-called stimulated Brillouin 
scattering (SBS) [17–21, 23]. The electrostriction moduli 
are also high in SrTiO3. Generally, the joint action of the 
quadratic electrostriction nonlinearity, the cubic EM non-
linearity, the EM frequency dispersion, and EM dissipation 
takes place under SBS [4, 8, 33].

In this paper, SBS of EM THz waves is under investiga-
tion, see Fig. 1. The three-wave resonant interaction occurs 
between two counterpropagating transverse EM waves of the 
circular frequencies ω1, ω2 and the wave numbers k1, k2 with 
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the longitudinal acoustic wave with the circular frequency 
and the wave number Ω, K.

The resonant matching conditions are

Here ε′(ω) is the real part of the linear dielectric permit-
tivity of SrTiO3, s is the velocity of the longitudinal acoustic 
wave. The pump EM wave at the frequency ω1 and the wave 
number k1 is a continuous wave that propagates from z = 0 
to z = L. Also, a short signal pulse of EM wave at the fre-
quency ω2 < ω1 and the wave number k2 < 0 is input at z = L 
and propagates to z = 0. It is demonstrated that the resonant 
interaction results in the amplification of EM pulses at the 
frequency ω2, and several short envelope signal pulses of 
high peak amplitudes are generated within the crystal. The 
EM cubic nonlinearity, the frequency dispersion, and the 
EM wave dissipation affect essentially the nonlinear wave 
interaction. The input signal amplitudes should be chosen 
quite high compared with the input pump amplitudes to pro-
vide the pulse compression at the output of the crystal.

2 � Basic equations

The nonlinear propagation and interaction of transverse EM 
waves with the electric field component Ex = E is considered 
along OZ axis within the crystalline paraelectric SrTiO3. EM 
waves can interact with the longitudinal acoustic wave of the 
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mechanic displacement u = uz. The cubic EM nonlinearity in 
the crystalline SrTiO3 is due to the nonlinear properties of the 
lattice polarization �0P , where ε0 is the electric constant in SI 
units. In the one-dimensional case, the basic equations that 
describe the nonlinear EM wave propagation and the nonlinear 
interaction with the longitudinal acoustic wave in the paraelec-
tric crystalline SrTiO3 are [7, 14, 15, 23]:

Here D ≡ Dx is the electric induction, σ ≡ σzz is the mechanic 
stress, �T is the soft mode frequency, which is in the lower part 
of THz range for SrTiO3, γ is the lattice EM dissipation; ρ ≈ 
5 g/cm3 is the mass density, s ≈ 8 × 105 cm/s is the velocity of 
the longitudinal acoustic wave, a is the electrostriction module, 
ρν is the acoustic dissipation due to viscosity. At the tempera-
ture T ≈ 77 K, it is �T ≈ 6·1012 s−1, γ = 2 × 1011 s−1, and the 
static linear dielectric permittivity is �(0) ≡ �(� = 0) =1.8 × 
103. In SrTiO3 the permittivity increases with the decrease of 
temperature, whereas the lattice dissipation γ possesses the 
minimum at T ≈ 77 K.

In Eq. (2), the cubic EM nonlinearity, i.e., the term with 
(P/P0)2P, is determined by the parameter P0. This parame-
ter is related to the characteristic magnitude of the electric 
field E0 where the cubic EM nonlinearity is essential, namely 
P0 = �(0)E0 . At the temperature T ≈ 77 K, it is E0 = 60 kV/cm 
[7, 14, 15]. The estimation of the electrostriction module is a ≈ 
− ε(0)2/5 [23], whereas the cubic nonlinearity is proportional 
to ε(0)3. Because of the small EM dissipation in the crystalline 
SrTiO3, the nonlinearity manifests at the amplitudes of EM 
waves at least one order smaller than E0.

Here the dynamics of SBS is considered, where two coun-
terpropagating envelope EM waves interact with the longitu-
dinal acoustic wave of the difference frequency. The electric 
field of EM waves and the longitudinal acoustic displacement 
are represented as:
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Fig. 1   The geometry of the problem. The nonlinear crystal occu-
pies the region 0 < z < L. At the boundaries, the matched loads are 
assumed to prevent the reflection of EM waves. In the transverse 
directions x, y, the system is uniform
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In Eq.  (3) A1,2 are slowly varying amplitudes for the 
pump and signal EM waves, U is the corresponding ampli-
tude of the acoustic wave. The resonant matching conditions 
between the frequencies ω1,2, Ω and the wave numbers k1,2, 
K are given in Eq. (1).

From Eq. (2), the following well-known expression for 
the linear dielectric permittivity can be achieved:

Thus, the linear dispersion equation for EM waves is

It is used to calculate the group velocity and the wave 
dispersion.

The coupled equations for the slowly varying amplitudes 
have been derived [3–9, 32–36]:

The following expressions are used for the coefficients:

Here vg is the EM wave group velocity, g is the EM wave 
dispersion coefficient, Γe, Γa are the EM and acoustic dis-
sipation coefficients, respectively, N is the coefficient of 
the EM cubic nonlinearity. It is assumed that the following 
parameters are small: (ω1tn)−1 << 1, (k1ln)−1 << 1, where ln 
≥ 10 µm is the characteristic spatial scale, tn = ln/vg is the 
temporal one.

The terms with EM cubic nonlinearity and EM wave 
dispersion have been taken from [7], where the method of 
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deriving the equations for slowly varying amplitudes and then 
the modulation instability of EM pulses were investigated in 
detail. The three-wave interaction occurs in the temporal scale 
related to the propagation of EM waves within the crystal with 
the group velocity vg ≈ c/ε(0)1/2 >> s, so the convective term 
for the acoustic waves s(∂U/∂z) is small. But, it is necessary to 
preserve the term with the second derivative with respect to 
time ∂2U/∂t2, because the characteristic temporal scale is tn = 
10–100 ps and thus tnΩ ~ 1. The analogous situation occurs for 
SBS in optical fibers, but only when the extreme compression 
of optical pulses takes place there [37].

The boundary conditions for EM waves are:

The amplitude of the input pump wave A1 is constant after 
a short transition time t01 << t1, whereas the input signal wave 
A2 is pulse-like of a duration t02. The acoustic wave is excited 
during the nonlinear resonant interaction. The reflections of 
EM waves at the boundaries are assumed absent due to the 
perfect matching.

The input amplitudes A10, A20 are chosen below the thresh-
old for the modulation instability. The used frequencies are 
ω1 = 1.5 × 1012–4 × 1012 s−1 ≈ ω2, Ω ≈ 5 × 109–1 × 1010 
s−1. The results of simulations are tolerant to changes of used 
parameters. At higher pump frequencies ω1 the EM wave dis-
sipation coefficient Γe is very high, whereas at smaller frequen-
cies the generation of the third EM harmonic becomes impor-
tant [22]. The generation of higher harmonics is a parasitic 
process there. The length of the crystal is L = 0.005–0.015 cm. 
The acoustic dissipation coefficient is Γa = 5 × 105–2 × 106 s−1.

The approximation of finite differences has been used in 
simulations of Eq. (6). The unconditionally stable implicit dif-
ference schemes have been applied for A1, A2 [38]. The equa-
tion for the acoustic amplitude U has been approximated by 
the explicit scheme:

Here τ is the temporal step, Up ≡ U(p·τ). The temporal step 
should be chosen quite small to provide the numerical stabil-
ity. Using implicit schemes for U yields the same results, but 
occupies more time.
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3 � Results of numerical simulations

The main goal of the simulations is the possibility to 
obtain short EM pulses at the signal frequency under SBS 
at the output z = 0. The amplitudes of EM waves are related 
to E0 = 60 kV/cm. The acoustic displacement is related to 
the elastic deformation K|U0| = 10−4. For all simulations, 
the input amplitude A10 of the pump EM wave has been 
chosen below the threshold of the modulation instability 
due to the cubic nonlinearity [7, 28].

The typical results of simulations are presented in 
Figs. 2, 3, 4, 5 and 6. For all the cases, the pump fre-
quency is ω1 = 3 × 1012 s−1≈ ω2, the acoustic frequency 
is Ω ≈ 8 × 109 s−1. The acoustic dissipation coefficient is 
Γa = 106 × s−1.

In Fig. 2, the pump and signal EM waves at the output 
are presented for different lengths of the crystal. One can see 
that there exists the optimum length where the formation of 
several compressed amplified EM signal pulses at the fre-
quency ω2 occurs at the output z = 0. Under used parameters, 
it is L = 0.007 cm ≡ 70 µm. At bigger or smaller lengths, 
the maximum values of the signal pulses at the output are 
smaller than ones at this optimum length. Thus, in Figs. 4, 
5 and 6 namely this length is used, but the maximum ampli-
tude A20 and the duration t02 of the input signal vary.

Several amplified compressed pulses of the signal EM 
wave are formed at z = 0 when the amplitudes of the input 
signal exceed some value. Also, the durations of the input 
signal pulses should be large enough. This can be explained 
by an essential influence of the cubic EM nonlinearity and 
EM wave dispersion on the resonant three-wave interac-
tion. The joint action of the cubic nonlinearity and the EM 
wave dispersion prevents forming three-wave solitons that 
can propagate in the case of the pure three-wave nonlinear 
interaction [33] and can be realized experimentally in optical 
fibers. In another words, in nonlinear paraelectric crystals, 
there exists a competition between the three-wave resonant 
nonlinear interaction due to the quadratic nonlinearity and 
the formation of envelope solitons due to the cubic nonlin-
earity and the EM wave dispersion.

The durations of the output signal pulses are of about 
10 ps, see Fig. 2e, f, so the EM compression is not lim-
ited by the period of the acoustic wave 2π/Ω ~ 5 × 10−10 s 
≡ 500 ps. This is similar to the behavior of compressed 
pulses in optical fibers in the optical range [37], but the 
spatial and temporal scales are different from the case of 
THz range in SrTiO3 crystals.

From a comparison of Figs. 2, 4, 5 and 6, it is possible 
to conclude that the shortening of the input signal pulses 
down till 50–20 ps can prevent the excitation of the com-
pressed signal pulses at the output, even when the input 
signal amplitudes are quite high.

Fig. 2   The dynamics of SBS. Left panels are the output ampli-
tudes |A1(z = L,t)/E0|2 of the pump wave at the frequency ω1. Right 
panels are the input amplitudes |A2(z = L,t)/E0|2 and output ones 
|A2(z = 0,t)/E0|2 of the signal wave at the frequency ω2. The input 
signal pulse |A2(z = L,t)/E0|2 is given by the dot lines there. The 
parameters are A10 = 25.9  kV/cm, A20 = 12.9  kV/cm (A10/E0 = 0.43, 
A10 /E0 = 0.215), t1 = 1 ns, t02 = 300 ps. a, b are for the length of the 
crystal L = 0.008  cm ≡ 80 µm; c–f are for the length of the crystal 
L = 0.007 cm ≡ 70 µm; e, f are detailed views; g, h are for the length 
of the crystal L = 0.0075  cm ≡ 75 µm; i, j are for the length of the 
crystal L = 0.0065 cm ≡ 65 µm
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Fig. 3   The spatial profiles of 
the interacting waves; a–c are 
for the time moments t = 900, 
1000, 1100 ps. The length of the 
crystal is L = 0.007 cm ≡ 70 µm, 
see Fig. 2c–f. The amplitudes 
|A1|2 are given by solid lines, 
|A2|, |U|2 are given by dash and 
dot lines, correspondingly

Fig. 4   The dynamics of SBS. 
Left panels are the output 
amplitude |A1(z = L,t)/E0|2 of the 
wave at the frequency ω1. Right 
panels are the input amplitudes 
|A2(z = L,t)/E0|2 and output ones 
|A2(z = 0,t)/E0|2 of the wave at 
the frequency ω2. The param-
eters are A10 = 25.9 kV/cm, 
A20 = 18.1 kV/cm (A10/E0 = 0.43, 
A10/E0 = 0.30); L = 0.007 cm, 
t1 = 1 ns, t02 = 300 ps. a, b are 
general views, c, d are detailed 
ones
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Fig. 5   The same as in 
Fig. 4, but the param-
eters are A10 = 25.9 kV/cm, 
A20 = 18.1 kV/cm, t02 = 100 ps, 
L = 0.007 cm. a, b are general 
views, c, d are detailed ones

Fig. 6   The same as in 
Figs. 4, 5, but the param-
eters are A10 = 25.9 kV/cm, 
A20 = 25.9 kV/cm (A10/E0 = 0.43, 
A10/E0 = 0.43). t02 = 20 ps; 
L = 0.007 cm. a, b are general 
views, c, d are detailed ones
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Because the signal EM wave propagates oppositely to the 
pump EM wave and the acoustic wave practically does not 
move within the temporal scale of the interaction and accu-
mulates within the system, the parametric nonlinear reso-
nator forms within the crystal [39]. As a result, after some 
time t ~ 10–20 ns > > tn ≈ 10 ps, this leads to the continuous 
excitation of the signal EM wave ω2, and the modulation 
instability due to the mutual influence of EM waves occurs 
due to the cubic nonlinearity and EM wave dispersion. Note 
that in Eq. (6), the mutual influence of EM waves due to the 
cubic nonlinearity is two times bigger than the self-action. 
The dynamics becomes irregular and even chaotic, as seen 

in Fig. 7 at the times t > 10 ns. The nonlinear wave dynamics 
seems complex there, sometimes the intermittency between 
chaotic and regular regimes of auto oscillations occurs.

4 � Conclusions

The resonant three-wave interaction of two counterpropagat-
ing terahertz electromagnetic waves at the frequencies ω1,2 
with the longitudinal acoustic wave of the different frequen-
cies can be realized in the paraelectric crystals like SrTiO3 in 
the lower frequency part of the terahertz range at frequencies 

Fig. 7   The dynamics of SBS 
in the case of a small input 
signal pulse, A10 = 25.9 kV/cm, 
A20 = 7.44 kV/cm (A10/E0 = 0.43, 
A10/E0 = 0.125). t02 = 500 ps. 
The length of the crystal is 
L = 0.008 cm. a, c are general 
views, b, d, e are detailed ones
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f1 ≈ f2 = 0.3–0.7 THz, or ω = 2πf = 2 × 1012–4 × 1012 s−1, 
below the soft mode frequency fT ≈ 1 THz. The moderate 
cooling T ≈ 77 K should be used. This interaction is due to 
the quadratic nonlinearity called electrostriction and is anal-
ogous to the stimulated Brillouin scattering in optics. The 
resonant nonlinear interaction can be used for the generation 
of several short amplified electromagnetic pulses at the sig-
nal frequency f2. The input amplitudes and durations of the 
amplified signal wave pulses should be bigger than certain 
values; this can be explained by an essential influence of the 
cubic electromagnetic nonlinearity and the electromagnetic 
wave dispersion on this three-wave resonant interaction. It is 
important that the electromagnetic pulse compression is not 
limited by the period of the resonant acoustic wave.

Because the velocity of the acoustic wave is several orders 
smaller than the electromagnetic wave velocity, the acoustic 
energy accumulates within the nonlinear crystal. Thus, the 
bounded crystal behaves as an electromagnetic resonator 
even without the reflection of electromagnetic waves at the 
boundaries. This can lead to complex regimes of this three-
wave resonant interaction like the modulation instability of 
electromagnetic waves of either chaotic or regular character.
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