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Abstract
A numerical study of the ultra-short pulse propagation in the aluminum-doped zinc oxide multi-layered metamaterial at 
the epsilon-near-zero spectral point is presented. The Drude model for dielectric permittivity and comparison with recent 
experimental data predict that damping frequency γD has the highest impact on the material losses and results in enormous 
second-order dispersion. Numerical simulations using both, the finite-difference time domain algorithm and the split-step 
Fourier method, show that variations of group velocity across the pulse at the epsilon-near-zero point results in a unique 
“soliton-like” propagation regime without nonlinearity for the propagation lengths of up to 300 nm.

1  Introduction

The recent progress in nanofabrication techniques has ena-
bled the development [1] of the artificially engineered mate-
rials with extraordinary electromagnetic properties that are 
not found in nature. One striking example of such materials 
is epsilon-near-zero (ENZ) metamaterials with dielectric 
permittivity |ε| ≪ 1 which have been shown to provide new 
approaches to the enhancement of light–matter interactions 
[2]. The remarkable property of ENZ material is that the 
phase velocity of light approaches an infinity. From the cau-
sality principle, it could be shown that ENZ material with 
very low intrinsic loss possesses a very low group velocity vg 
of electromagnetic wave propagation [3]. The effect of this 
low vg bears some analogy to the manipulating speed of light 
using ultracold sodium gas [4], heated Rubidium atoms [5], 
ruby crystal [6], photonic crystals [7], waveguides [8], and 
other systems [9, 10]. The advantages of the ENZ materials, 
such as availability of the high local fields and the fact that 
frequency mixing could be done without phase-matching, 
allow for the enhancement of the weak nonlinear-optical 
effects. As a result, ENZ material allows for control of self-
focusing effects [11] and boosts the efficiency of second [12] 

and third harmonic generation [13]. The ENZ point also pro-
vides optimal conditions to observe self-trapping [14, 15].

Different physical realizations of ENZ structures are 
possible [2] including using multilayered structures [16] 
and transparent conducting oxides (TCO) [17]. The multi-
layered Al:ZnO/ZnO metamaterial studied in this manu-
script possesses the unique optical properties of optical 
transparency and high electrical conductivity. Atomic layer 
deposition for multi-layered Al:ZnO/ZnO samples offers an 
opportunity to tune dielectric constants to epsilon-near-zero 
spectral point in the near infrared (IR) for TM polarized 
wave by adjusting the doping concentration and/or thickness 
of the sample [18–20]. The presence of near-zero-dispersion 
significantly modifies familiar nonlinear optical parameters. 
Strong boundary effects and variation of the refractive index 
lead to the enhancement of the nonlinear effects in ENZ 
films. For example, recent experiments performed on Al-
doped ZnO thin films show a sixfold increase of the Kerr 
nonlinear refractive index at the ENZ wavelength [21]. In 
addition, ENZ materials have a rapid change in permittivity 
for ENZ wavelength which could potentially lead to large 
second- and third-order dispersion parameters. The recent 
discoveries of novel nonlinear optical characteristics of TCO 
[21, 22], high potential for use of TCO for practical devices 
[23] and the recent development of compact IR sources of 
ultrashort pulses [24–26] motivated our numerical study of 
the ultrashort pulse propagation in the Al:ZnO/ZnO meta-
materials at the epsilon-near-zero wavelength.

The ultra-short pulse shaping in the presence of non-
linearity and higher-order chromatic dispersion terms is 
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not only a source of rich and fascinating physics [27, 28] 
but it can also provide novel techniques for practical laser 
devices [29, 30] which will be essential for modern optical 
communications and spectroscopy. Ultra-short pulse shap-
ing could potentially provide a solution for metamaterial-
based super-resolution imaging [31]. A generalized non-
linear Schrödinger equation describing the propagation of 
ultrashort pulses in the media exhibiting strong frequency 
dependent dielectric susceptibility was used to describe 
wave propagation in negative index material [32]. For the 
materials with strongly varying dispersive properties we 
need to take into consideration the limitation of the slow-
varying envelope approximation [27] which was widely dis-
cussed in the literature [32, 33]. In this manuscript, we use 
an approach to ultrashort-pulse propagation which is based 
on the exact dispersion relation for the group velocity for 
the ENZ medium with negligible losses [3]. The results are 
also compared with the full wave analysis based on finite-
difference time-domain (FDTD) numerical simulations.

Here in this paper, we present the results of a numerical 
investigation of ultrashort pulse propagation in the Al:ZnO/
ZnO at the epsilon-near-zero wavelength. The influence of 
the various parameters of the Drude model for the Al:ZnO 
dielectric permittivity on the second-order dispersion of the 
ENZ metamaterial is investigated. The pulse propagation 
in the presence of enormous second-order dispersion and 
nonlinearity is studied. We show that when vg varies signifi-
cantly across a spectral bandwidth of the initial pulse for the 
ENZ spectral point, the unique “soliton-like” propagation 
regime without nonlinearity is possible in multi-layered Al-
doped ZnO metamaterial.

2 � Ultra‑short pulse propagation equation

Ultra-short pulse propagation can be described by the gener-
alized Non-Linear Schrödinger (NLS) equation [27]:

where A is the slowly varying pulse envelope, α is material 
loss, β1 is the first-order and β2 is second-order chromatic 
dispersion term, and γ is the non-linearity parameter. The 
nonlinearity parameter is defined as [27]:

where λc is the crossing wavelength, n2(λc) (m2/W) is the 
nonlinear Kerr index, and Aeff (m2) is the effective mode 
area. It is important to note that in the regular materials, 
Eq. (1) is transformed in a frame of reference moving with 
a pulse at group velocity vg. However, for ENZ materials we 
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need to include the term associated with β1 because vg is not 
constant across the input pulse spectrum.

The NLS equation is not easily solved analytically, aside 
for some specific situations, so the most common method 
of modeling pulse propagation is with the split-step Fourier 
(ssF) method. The ssF method is pseudo-spectral, in that it 
calculates the effects of dispersion and nonlinearity sepa-
rately. This takes the form of two operators: D̂ for dispersion 
and N̂ for non-linearity:

The ssF method approximates the effects of each opera-
tor on the pulse propagation by applying dispersion in the 
Fourier domain and non-linearity in time. Typically, the 
accuracy of the ssF method is limited to the square of the 
step-size, h2 [27]. To minimize the error, the time grid was 
set to 100,000 units across 48,000 fs yielding accuracy on 
the order of 0.48 fs. The space grid spans 6000 units across 
300 nm with a resolution of 0.05 nm.

For the numerical simulations, we choose an initial 
pulse with a Gaussian shape (TFWHM= 100 fs ≈ 1.665τ0). 
The thickness of the Al:ZnO/ZnO material was varied 
100–700  nm which corresponds to the experimentally 
achieved thickness [34]. It is important to note that Al:ZnO/
ZnO metamaterial typically possesses low intrinsic losses, 
e.g., the Im (ε⊥) = 0.0377 at λc = 1865 nm for Al:ZnO/ZnO 
metamaterial [18]. Therefore, the effect of a linear absorp-
tion α is negligible in our simulations.

First of all, we used ssF method to investigate the propa-
gation of the initial pulse in the presence of nonlinearity only 
and neglected the effect of the operator D̂ . The nonlinearity 
parameter for bulk Al:ZnO was calculated γ = 9.84 × 10−3(1/
kmW− 1), assuming the nonlinear refractive index 
n2 = 3.5 × 10−13 cm2/W [21] and a beam radius of 2 mm 
for free-space propagation. The estimated γ = 9.84 × 10−3 
(W km)−1 is small compared to a typical single-mode fiber 
which has γ = 1 (W km)−1. The multilayered material would 
have a lower γ due to the additional presence of un-doped 
ZnO layers. Our numerical simulations show that effect of 
the nonlinearity is indeed negligible for propagation of a 
100 fs pulse over the thickness of Al:ZnO/ZnO up to 1 µm. 
This is expected since LNL ~1 m (1 µJ pulse energy). It is 
important to note that nonlinearity will become important 
for ultrashort pulse propagation in photonic devices fabri-
cated using ENZ materials which are able to confine light 
in the sub-wavelength volume [35]. Since nonlinearity var-
ies significantly over the initial spectral bandwidth, this 
approach based on using the averaged nonlinearity param-
eter γ described above needs to be modified [14, 15, 36]. For 
the higher optical pulse intensities or/and confinement in the 

(3)D̂ = −�1
�

�t
−

i�2
2

�2

�t2
−

�

2
.

(4)N̂ = i�|A|2.



Pulse shaping in the presence of enormous second-order dispersion in Al:ZnO/ZnO…

1 3

Page 3 of 8  60

devices with sub-wavelength volume, the FDTD numerical 
method, described in Sect. 5, needs to be used.

Next, we used the numerical simulations to investigate 
the effect of the first-order and second-order chromatic dis-
persion terms. The propagation constant is defined by [27]:

where n(ω) is the refractive index as a function of frequency. 
The chromatic dispersion terms in Eq. (1) are defined as:

where ω0 is the central frequency. Using these definitions, 
we can estimate β1 and β2 using predicted values for the 
refractive index of Al:ZnO/ZnO.

To illustrate the effect of each individual term for chro-
matic dispersion, β1 and β2, we choose to calculate the value 
of βm at the central frequency first (β1 = 1/vg = − 0.37 1/fs, 
β2 = 348.9 fs2/nm). The results of the numerical simulations 
for the propagation of the initial pulse in 300 nm of the 
Al:ZnO/ZnO metamaterial is shown in Fig. 1. As expected, 
the pulse is significantly broadened due to the enormous 
second-order dispersion β2 (Fig.  1a) (dispersion length 
LD = τ0

2/|β2| ~10.34 nm). If β1 is increased (the second order 
dispersion β2 is held constant), the overall broadening of the 
pulse remains unchanged but it offsets to the right from the 
initial position (top plot of the Fig. 1a). The spectral inten-
sity remains unchanged (Fig. 1b) since the spectral phase 
has a quadratic dependence and the instantaneous frequency 
varies linearly.

3 � Drude model parameters 
and higher‑order dispersion

From our results based on the averaged dispersion parameters 
(Fig. 1), we can expect that the multi-layered Al:ZnO/ZnO 
will be necessarily dispersive. Our goal is to investigate how 
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various parameters for the Al:ZnO/ZnO permittivity affect 
chromatic dispersion. Our previous work [18] shows that 
first-order effective medium approximation [37, 38] provides 
a good model for the Al:ZnO/ZnO optical permittivity. Here, 
we assume 1:4 Al:ZnO/ZnO nano-layers ratio. To analyze the 
Al:ZnO/ZnO metamaterial, we used the Adachi model for 
ZnO [39] and the Drude model [40] for the Al:ZnO layer:

where ω is the incoming light frequency, ωp is the plasma 
frequency, γD is the damping frequency, and ε∞ is the screen-
ing effect of the bound electrons in the material. To investi-
gate the influence of each Drude parameter on the chromatic 
dispersion, we set to fD =0.4 and ε∞ =3, then allow ωp and 
γD to vary, as they are most representative of the material’s 
electronic behavior.

We found γD had the highest impact on the losses for ε⊥ 
(Fig. 2a) and the magnitude of β2 (Fig. 2c). This is consistent 
with our previous results of the ellipsometry analysis which 
also show [34] that ωp determines the spectral position of the 
crossing into hyperbolic dispersion, ωc. For this study, we 
choose to restrict ωp to 2.9 × 1015 Hz as this provides the short-
est spectral crossing position within our fabrication capabilities 
[34]. The maxima of β1(ωc) and β2(ωc) for three values of γD, 
which are calculated by Eq. 6, are shown in Table 1.

One could expect that this method of calculating averaged 
β1 is not accurate in the case of ENZ material since phase 
velocity diverges at the ENZ point and vg will vary signifi-
cantly along a spectral bandwidth of the initial pulse (Fig. 2b). 
For the low loss metamaterial at the ENZ observation fre-
quency, the causality principle leads to the exact dispersion 
relation for vg =1/β1 [3]:
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Fig. 1   Normalized intensity (a) 
and spectrum (b) for a 100 fs 
pulse propagated in 300 nm of 
the Al:ZnO/ZnO metamaterial. 
The corresponding phases in 
time (a) and spectral (b) domain 
are indicated by dashed line. 
The spectrum, intensity and 
phases for the initial pulse are 
presented at the bottom of a and 
b for comparison (dotted line)
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where ε′ + iε″ are the material’s complex dielectric 
permittivity.

Using this definition for vg, (Eq. 8) we have calculated 
β1 over the bandwidth of the initial pulse using complex 
permittivity predicted by Drude model with ωp = 2.9 × 1015 
Hz and γD = 1011 Hz. The only limitation to our calculations 
comes from the known range of the Al:ZnO/ZnO permittiv-
ity. We limited the range of the integral from infinity to 25 1/
fs to save computation time as higher ranges did not provide 
a significant difference. The imaginary part of permittivity 
ε″(ω1) was fixed to ε″(ωc). The largest difference between 
β1 calculated by Eq. (8) and Eq. (6) is the presence of imagi-
nary terms (Fig. 2b).

4 � Numerical simulations using 
the non‑linear Schrödinger equation

Figure 3 shows the results of the numerical simulations for 
initial pulse propagation through different Al:ZnO/ZnO 
lengths (100–700 nm) when the chromatic dispersion values 

β1 are a function of frequency (a–e) or constant (f–j). The 
parameters for the real part of the chromatic dispersion β1 
in Fig. 3a–e were calculated using Eq. (8) (Fig. 2b). The 
parameter for β2 was calculated using Eq. 6 (Fig. 2c). In 
addition, we choose to extend the derivative for β2 in Eq. 6 
over the entire spectrum instead of just at the crossing fre-
quency since β2 is changed significantly across the initial 
spectrum (Fig. 2c).

The propagation of the initial pulse in the media with 
constant β1 and β2 (Figs. 3f–j, 4f–j) is characterized by a 
temporal pulse broadening up to ~ 7 ps as expected [27]. The 
temporal and spectral phases show quadratic dependence 
similar to presented in Fig. 2b, which is a signature of the 
temporal broadening due to second-order dispersion.

As the pulse propagates through the Al:ZnO/ZnO meta-
material (Fig. 2d), it become apparent that the vg plays a 
crucial role in pulse shaping (Fig. 3a–e). The pulse shape is 
almost preserved after propagating in 200 nm of the Al:ZnO/
ZnO (Fig. 3b). The temporal phase (dashed line) is linear 
across the pulse width. Intuitively, it could be understood 
as if different frequencies would travel at different speeds 
within the pulse due to changing vg across the spectrum of 
the initial pulse. This variable change of vg is compensated 
by a temporal broadening due to β2. Therefore, the result-
ing pulse (Fig. 3b) has a constant instantaneous frequency. 
As the pulse propagate beyond 300 nm, this effect become 
weaker and the pulse experiences temporal broadening. The 
temporal phase becomes more quadratic after the sufficient 

Fig. 2   a The calculated dielec-
tric permittivity based on Drude 
model with varying γD values. b 
The chromatic dispersion term 
β1 which are calculated using 
Eq. (6) and Eq. (7) (Re (1/vg)). 
c The chromatic dispersion term 
β2 which are calculated using 
Eq. (6). The initial spectrum of 
a 100 fs pulse is indicated by 
dotted line. d Illustration of the 
ultrashort pulse transformation 
in ENZ Al:ZnO/ZnO metamate-
rial with 300 nm thickness

Table 1   β1 and β2 values at 
crossing based on the Drude 
model with ωp = 2.9 × 1015 Hz

γD β1 (1/fs) β2 (fs2/nm)

1 × 1011 − 0.3683 348.86
1 × 1012 − 0.2992 186.29
5 × 1012 − 0.1466 31.24
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Fig. 3   The normalized intensity 
and temporal phases for a 100 fs 
Gaussian pulse propagated 
through varying lengths. a–e 
The pulse propagated with β1 
as calculated by Eq. 8 and β2 by 
Eq. 6. f–j The pulse propagated 
with β1 and β2 values set as the 
maximum values from Eq. 6

Fig. 4   The normalized spectral 
intensity and spectral phases for 
a 100 fs Gaussian pulse propa-
gated through various lengths. 
a–e The pulse propagated with 
β1 as calculated by Eq. 8 and β2 
by Eq. 6. f–j The pulse propa-
gated with β1 and β2 values set 
as the maximum values from 
Eq. 6. Temporal and spectral 
phases were calculated based on 
the method presented in [41]
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distance (Fig. 3e). The spectrum of the propagating pulse 
remains almost unchanged even after propagation through 
the larger Al:ZnO/ZnO thicknesses (Fig. 4a–e) because the 
dispersion is the dominant effect. Additional numerical 
simulations for shorter pulses (up to 50 fs) show similar 
behavior. This type of ultrashort pulse propagation (Fig. 3a, 
b) resembles the fundamental soliton propagation in fibers 
[27] which results from mutual effects of the Kerr nonlinear-
ity and second-order dispersion.

It is important to note that in spite of the fact that the 
pulse is in quasi-monochromatic regime, the slowly vary-
ing envelope approximation (SVEA) used for NLS equation 
(Eq. 1) might not be fully justified since longitudinal phase 
oscillations due to the diverging phase velocity could be 
comparable with the pulse envelope scale dynamics. While 
introducing group velocity vg using Eq. 8 takes into account 
the strong variation of vg along a spectral bandwidth of the 
initial pulse, the SVEA will break down for longer propaga-
tion distances and/or propagation in the presence of non-
linearity. Therefore, in the next section, we will provide a 
full wave analysis of the ultrashort pulse propagation in the 
presence of enormous dispersion.

5 � Finite‑difference time‑domain method 
for ultrashort‑pulse propagation

A full wave analysis study was performed using a finite-
difference time-domain numerical algorithm which divides 
space and time into equal steps and simulates the time 
domain evolution of the Maxwell equations. Our FDTD 
numerical study for ultrashort pulse propagation in mul-
tilayered Al:ZnO/ZnO metamaterial was done using our 
home-build Python interface program and an open-source 
implementation of the FDTD method for electromagnetic 
applications, which was developed by MIT MEEP (MIT 
Electromagnetic Equation Propagation) [42]. MEEP FDTD 
implementation has been proven to be efficient for many 
applications [42] including the ultrashort pulse propagation 
in nonlinear graphene/silicon ridge waveguide [43] and the 
propagation of self-collimated ultrashort Gaussian pulses in 
a hybrid photonic crystal structure [44].

Propagation of the ultrashort pulse with the spectrum cen-
tered at the ENZ point is described by the Maxwell equa-
tions coupled to the permittivity model. The input pulse 
is assumed to have a Gaussian shape in time-domain with 
width of 100 fs. We assume that the light intensity distrib-
utes homogeneously at this area, and thus can simplify the 
simulation to one dimension. The real and imaginary part of 
the out of plane permittivity ε⊥ for the multilayered Al:ZnO/
ZnO (Fig. 2a) are incorporated into MEEP code via the Lor-
entz permittivity model. We used a five pole Lorentz model 
[45, 46] to fit permittivity ε⊥ values for a spectral range 

between 1600 and 1900 nm using the Python’s nonlinear 
least square minimization and curve-fitting function [47] 
and the differential evolution method [48]. The fitting was 
optimized by finding a strong pole over a limited frequency 
range. If a strong pole was found, the range was kept for 
the next fitting. Otherwise, the range would be moved to an 
untested region. The mean-square-error (MSE) [18] for the 
fitting was MSE ~ 6.

The results of the one-dimensional FDTD simulations 
show that as the pulse propagates through the Al:ZnO/ZnO 
metamaterial (Fig. 5), the pulse gradually becomes asym-
metric. In particular, the central peak of the real part of 
the electric field (Fig. 5h–j) remains relatively unchanged 
for propagating distances up to around 200 nm. For larger 
distances, the resulting pulse shows signs of deterioration 
which is indicated by a strong asymmetric sideband (Fig. 5k, 
l). The temporal intensity dependence has a characteristic 
asymmetric shift, similar to the one predicted using NLSE 
(Fig. 5a–c), which could intuitively be understood in terms 
of changing group velocity vg described in Sect. 4.

It is important to note that the NLS equation (Eq. 1) based 
on SVEA and Eq. 8 allows for a qualitative prediction and an 
intuitive understanding of the physics of the ultrashort pulse 
shaping at the ENZ spectral point. Fast computational speed 
of the split-step Fourier method allows for the obtaining of 
an initial physical insight into ultrashort pulse propagation. 
However, for longer propagation distances, a full FDTD 
numerical study is necessary since errors in calculating 
group velocity vg via Eq. 8 due to limited spectral ranges and 
possible deviation from SVEA will strongly affect ultrashort 
pulse shaping for propagation distances beyond 300 nm. Our 
full FDTD study allows incorporation of ultrafast interband 
and intraband nonlinearities and variation of the dumping 
coefficient γD which will be a subject of our future studies.

6 � Conclusions

In conclusion, we investigated the influence of the per-
mittivity and material parameters predicted by the Drude 
model on chromatic dispersion and ultra-short pulse shap-
ing in Al:ZnO/ZnO ENZ metamaterial. We found that the 
damping frequency, γD, had the highest impact on the 
material losses and the magnitude of second-order dis-
persion. The lower material losses and a high plasma fre-
quency leads to a unique “soliton-like” propagation regime 
which allows for the chromatic terms, β2 and β1, to act 
together to prevent a temporal and spectral broadening for 
thicknesses up to 300 nm. It is important to note that this 
“soliton-like” propagation regime is characterized by the 
presence of only higher-order dispersion but not nonlin-
earity. Our numerical FDTD simulations show that as the 
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pulse propagates through the Al:ZnO/ZnO metamaterial, 
the pulse gradually becomes asymmetric, resulting in the 
appearance of strong asymmetric sideband for propagation 
distances beyond 300 nm. Our approach to ultrashort-pulse 
propagation allows for an observation of the phase of the 
propagating ultrashort pulse which could be measured 
experimentally using well known techniques [41]. The 
resulting pulse has an almost linear temporal phase and 
the majority of the pulse energy is confined in the main 
peak for propagation distances up to 300 nm. This study 
will potentially be useful for applications in modern com-
munications, spectroscopy and super-resolution imaging.
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