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Abstract
In this paper, we outline new implementations for entanglement swapping and quantum teleportation using the Mach–Zehnder 
interferometer, where an external mode is coupled to an internal mode of the interferometer through a nonlinear cross-Kerr 
cell in the absence of losses and noises. The initial state of the total system contains two distinctly atom–field entangled states 
((AF)1,2) , each previously generated via the Jaynes–Cummings model, besides an ancillary a-mode as the external mode 
of the Mach–Zehnder interferometer. Injecting the two-field states and a-mode into the Mach–Zehnder interferometer and 
then detecting both fields, the subset including the a-mode and the two atoms forms a tripartite entangled state. Therefore, 
entanglement swapping from (AF)1,2 to the subsystem of two atoms and a-mode is appropriately performed. Next, we cal-
culate success probability and fidelity. It is demonstrated that the maximum values of fidelity is achieved for the intensities 
of coherent field larger than 2. Finally, we show that the Mach–Zehnder interferometer may be used to teleport an entangled 
state with complete fidelity, by applying a quantum channel with an unknown state. The complete fidelity can be obtained 
by assuming that the dissipative factors are ignorable in the applied setups.

1  Introduction

Quantum entanglement versus separability of quantum 
systems, as a nonclassical exhibition of quantum states, 
is one of the most remarkable features of quantum theory 
which possesses numerous applications in recent decade 
[1–3]. Recently, study on this subject has become one of 
the main goals of quantum information science researches 
[4], since it is regarded as a resource for information pro-
cessing in novel ways. For instance, entanglement is useful 

for quantum cryptography [5], quantum computation [6], 
quantum repeaters [7, 8], quantum teleportation [9, 10] and 
entanglement swapping [10, 11].

One of the most common approaches to realize the entan-
glement is making use of the projection measurement. Bell-
state measurement as a projection measurement, entangles 
two particles without any direct interaction between them. 
When the particles A and C are entangled with particles B 
and D, respectively, a Bell-state measurement on the par-
ticles B and D will automatically collapse the state of the 
remaining two particles (A and C) into an entangled state. 
This striking application of the projection measurement is 
referred to as entanglement swapping [12–15]. It is notice-
able that, this measurement entangles two particles B and 
D, too. Another method to create entanglement between 
particles B and D, if one of them is atom and the other is 
field, and occurring the entanglement swapping is interact-
ing them in an optical cavity (cavity QED method). This 
method has been frequently reported in the literature [15, 
16]. In particular, the entanglement swapping by cavity 
QED method has been used for the generation of tripar-
tite entangled states [17, 18]. Entanglement swapping via 
the cavity QED method through the nonlinear atom–field 
interaction [19] and in the presence of dissipation [20, 21] 
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have been recently done by us. In the framework of cavity 
QED, schemes already have been proposed which may open 
a route toward efficient quantum repeaters for long-distance 
quantum communication [22–24].

The two mentioned methods for entanglement swapping 
(cavity QED and Bell-state measurement), have also been 
employed similarly for quantum teleportation protocols. For 
example, Refs.  [25–28] have teleported the quantum states 
using Bell-state measurement and cavity QED methods, 
respectively. In quantum teleportation protocols, first sug-
gested by Bennett et al. [9], an entangled state �Ψ⟩AB of sys-
tems A and B can be used as a quantum channel to teleport or 
send quantum information. In the other words, in such proto-
cols, an unknown quantum state is transferred from one point 
to another, these points possibly being widely separated. We 
would like to emphasize that it is the unknown quantum state 
that is to be teleported, not the particle or particles in such 
states [29]. To realize the entanglement swapping in this 
paper, we utilize a system including two atom–field subsys-
tems (AF)1,2 and an ancillary mode a (a-mode) in the coher-
ent state ��⟩a = exp(−���2∕2) ×∑∞

n=0
(�n∕

√
n!) �n⟩ , with the 

intensity |𝛼|2 = n̄ . The states of the atom–field subsystems 
have been generated via the atom–field interaction in the 
standard Jaynes–Cummings model. Our goal is to generate 
the entanglement between two atoms A1 , A2 and a-mode in 
the presence of two fields F1 , F2 and a-mode. When just two 
fields and a-mode exist and there is no atom to interact with 
these fields, the employment of the cavity QED method is 
not helpful. On the other hand, the Bell-state measurement 
method is not a usefully ideal method due to the difficulty 
of the realization of the Bell-state measurement in experi-
ment [30] and the totally discrimination of the four known 
Bell-states is a hard task. Therefore, making use of the two 
customary methods which are mentioned above (cavity QED 
and Bell-state measurement), do not lead us to our purpose 
of entanglement swapping in the outlined model.

So, in this regard, a new method based on the 
Mach–Zehnder interferometer assisted with a nonlinear 
cross-Kerr medium [29, 31, 32] is presented. Utilizing the 
Kerr medium and cross-Kerr nonlinearities are particularly 
effective for purposes of the optical quantum information 
processing [33]. Our model is established on two single-
mode quantized fields which are distinctly entangled with two 
2-level atoms, and form the entangled states (AF)1,2 . These 
two-field states along with the a-mode (in the coherent state) 
are injected into the Mach–Zehnder interferometer and as a 
result, the even and odd coherent states (Schrödinger’s cat 
states) of the a-mode are generated. After detecting the fields, 
the subsystem including a-mode and both atoms becomes 
entangled together and a tripartite entangled state is prepared. 
In this step, we can calculate the success probability of the 
detecting process and the fidelity of the obtained entangled 
state relative to a maximally entangled state. Finally, with 

the help of the above-introduced Mach–Zehnder interferom-
eter, we perform the teleportation of two-particle entangled 
state using a non-maximally entangled state (for quantum 
channel). It is worth noticing that the applied optical setups 
in both of the entanglement swapping and teleportation pro-
cesses are assumed to be idealized. In other words, we ignore 
all dissipation sources like the cavity loss, qubit decay, high-
efficiency detectors and so on, i.e., we suppose that the cavity 
is chosen so that it possesses high-quality factor, the qubits’ 
decay can be ignored and the detectors are of high efficien-
cies. This model may be prepared by utilizing high-quality 
factor cavities, appropriate Rydberg atoms and detectors with 
high efficiencies. The rest of this paper organizes as follows: 
in the next section, we briefly review the Mach–Zehnder 
interferometer where an external mode (which is initially in 
the coherent state) is coupled to an internal mode of inter-
ferometer through a cross-Kerr medium. In Sect. 3, we first 
pay attention to the generation of the atom–field entangled 
states ((AF)1,2) via the standard Jaynes–Cummings model. 
These two entangled states along with an ancillary mode a 
as the external mode of Mach–Zehnder interferometer, form 
the total state of the system. In Sect. 4, we try to perform the 
entanglement swapping based on the Mach–Zehnder interfer-
ometer assisted with a nonlinear cross-Kerr medium as well 
as detecting method and show that how the a-mode is entan-
gled with two atoms in a tripartite entangled state. Then, 
we investigate the corresponding quantities such as success 
probability of the detecting process, fidelity of the obtained 
entangled state relative to a suitable maximal entangled state 
and the degree of entanglement. In Sect. 5, we perform the 
entangled state teleportation with the help of the mentioned 
Mach–Zehnder interferometer. At last, we present a summary 
and concluding remarks in Sect. 6.

2 � Mach–Zehnder interferometer: a brief 
review

In this section, we review the performance of a 
Mach–Zehnder interferometer, where its modes labeled as 
1 and 2 are coupled to an external mode through a nonlin-
ear cross-Kerr medium (Fig. 1). In this figure, BS1 and BS2 
refer to the 50:50 beam splitters,1 Di and Mi ( i = 1, 2 ) are 
detectors and mirrors, respectively, and the box labeled by 
� represents a phase shifter (PS) which is described by the 
operator [29, 31, 32, 34]

1  For a 50:50 beam splitter, with input modes 1,2 and output modes 
3,4 we assume that the reflected beam suffers a �

2
 phase shift, then the 

input and output modes are related according to relations 
â3 =

1√
2

(â1 + iâ2) and â4 =
1√
2

(iâ1 + â2).
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As is clear from Fig. 1, the phase shifter � leads to the phase 
change of the upper beam (i.e., mode 2 after passing the 
BS1 ). Mode 1 after passing the BS1 together with the external 
mode a enter the cross-Kerr medium, so that the govern-
ing Hamiltonian is given by ĤCK = �Kâ†âb̂†b̂ , where K is 
proportional to the third-order nonlinear susceptibility � (3) . 
Accordingly, the unitary operator which determines the evo-
lution of cross-Kerr medium is defined as

where the operators â†â and b̂†b̂ are, respectively, applied 
on the external mode a and mode 1 after passing the BS1 . 
Also, t is the interaction time and can be written in terms of 
the length of the Kerr medium (l) and the velocity of light 
in this medium (v), so that t = l∕v.

The above-described apparatus which is usually employed 
to generate Schrödinger’s cat states [29, 31, 32], will be used 
here for our entanglement swapping and quantum teleporta-
tion purposes.

3 � Model and basic equations

In the entanglement swapping process, some initially entan-
gled systems are required, such that this entanglement is 
suitably switched to other new subsystems with the help 
of the entanglement swapping techniques. To achieve this 
purpose, we use two entangled states which have been previ-
ously prepared in an optical cavity via the atom–field inter-
action through the Jaynes–Cummings configuration. The 
Hamiltonian of this model (with ℏ = 1 ) for each atom–field 
system is given by [35]:

(1)ÛPS = ei𝜃ĉ
† ĉ.

(2)ÛCK = e−iKâ
†âb̂†b̂t,

where â†
i
 and âi are the creation and annihilation operators 

of the ith field mode with frequency �Fi
 which satisfies the 

relation [âi, â
†

i
] = 1 . The operators 𝜎̂zi and 𝜎̂±i

 are the Pauli 
spin operators of the ith atom, �Ai

 are the atomic transition 
frequencies and gi are the atom–field coupling constants (in 
the continuation, we assume g1 = g2 = g ). The subscript 
i = 1, 2 numbers each of the subsystems. Now, we suppose 
that the subsystem 1 contains atom A1 which initially is in 
the exited state ��e1⟩ and the field F1 in the vacuum state ��01⟩. 
After applying the Hamiltonian (3) for the interval of time 
t1 , the atom–field entangled state results in

Choosing the interaction time as t1 = �∕4g , we have

Similarly, we assume that the subsystem 2 consists of atom 
A2 and field F2 which are initially in the ground state �g⟩2 and 
single-photon state �1⟩2 , respectively. After the interval time 
t2 , the atom–field entangled state reads as

By tuning the interaction time as t2 = �∕4g , we have

Considering the above two entangled states corresponding 
to subsystems 1, 2 in (5) and (7), it is readily found that the 
separable state vector of the whole system is of the form

It is clearly known that by separable, we mean that the total 
subsystems are separable, however in each subsystem i 
( i = 1, 2 ), the ith atom is entangled with the ith field. Then, 
making use of an ancillary mode a (which is in the coherent 
state ��⟩a ), the state of the total system, becomes the tensor 
product of the state in (8) and ��⟩a , i.e.,

To perform the entanglement swapping process, this state 
is entered into the Mach–Zehnder interferometer which 

(3)
Ĥ(AF)i

=
1

2
𝜔Ai

𝜎̂zi + 𝜔Fi

(
â
†

i
âi +

1

2

)
+ gi(âi𝜎̂+i

+ â
†

i
𝜎̂−i

),

(4)���(t1)⟩(AF)1 = cos(gt1) �e⟩1 �0⟩1 − isin(gt1) �g⟩1 �1⟩1.

(5)��(�∕4g)⟩(AF)1 =
1√
2

�
�e⟩1 �0⟩1 − i �g⟩1 �1⟩1

�
.

(6)���(t2)⟩(AF)2 = cos(gt2) �g⟩2 �1⟩2 − i sin(gt2) �e⟩2 �0⟩2.

(7)��(�∕4g)⟩(AF)2 =
1√
2

�
�g⟩2 �1⟩2 − i �e⟩2 �0⟩2

�
.

(8)�𝜓⟩(AF)1,2 = �𝜓(𝜋∕4g)⟩(AF)1 ⊗ �𝜓(𝜋∕4g)⟩(AF)2 .

(9)

�𝜓⟩total = �𝜓(𝜋∕4g)⟩(AF)1 ⊗ �𝜓(𝜋∕4g)⟩(AF)2 ⊗ �𝛼⟩a

=
1

2

�
�e⟩1 �g⟩2 �0⟩1 �1⟩2 �𝛼⟩a − i �e⟩1 �e⟩2 �0⟩1 �0⟩2 �𝛼⟩a

�

−
1

2

�
i �g⟩1 �g⟩2 �1⟩1 �1⟩2 �𝛼⟩a + �g⟩1 �e⟩2 �1⟩1 �0⟩2 �𝛼⟩a

�
.

Fig. 1   Schematic representation of a Mach–Zehnder interferom-
eter coupled to an external mode a through a nonlinear cross-Kerr 
medium
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is indicated in Fig. 1. Two-field states F1 and F2 (which 
are indicated as �m⟩1 �n⟩2 with m, n = 0, 1 in 9) are two 
entering modes 1,2 to the beam splitter 1 ( BS1 ) into the 
Mach–Zehnder interferometer. In addition, the coherent state 
��⟩a of the a-mode (in 9) enters into the cross-Kerr medium 
in this interferometer.

4 � Entanglement swapping based 
on the Mach–Zehnder interferometer

To fulfill the entanglement swapping purpose, we must 
obtain the output state of the interferometer for each 
state entering it. As is seen in Fig. 2, the total state which 
is injected into the Mach–Zehnder interferometer, is a 
combination of the field states F1 , F2 and Fa indicated as 
�m⟩1 �n⟩2 ��⟩a ( m, n = 0, 1 ) in (9). For example, if the state 
�0⟩1 �1⟩2 ��⟩a is injected in the interferometer, the output state 
of it is obtained as (see Appendix A)

where |||�̃o(e)

⟩
a
= [No(e)]

−1 |||�o(e)

⟩
a
 with ���o

⟩
a
= N

o

�
��⟩

a
−

− �−�⟩
a

�
 and ���e⟩a = Ne

�
��⟩a + �−�⟩a

�
 are odd and even 

Schrödinger cat states, respectively, which have been intro-
duced by Yurke and Stoler  [36,  37] .  Here, 
No = [2(1 − e−2|�|

2

)]−1∕2 and Ne = [2(1 + e−2|�|
2

)]−1∕2 are 
normalization factors. We should notice that the discrimina-
tion between even and odd coherent state superposition is an 

(10)�out⟩MZI1
= −

1

2

�
i ���̃o

�
a
�1⟩1 �0⟩2 + ���̃e

�
a
�0⟩1 �1⟩2

�
,

important issue in this content [38].2 In a similar way (to 
“Appendix A”), considering the initial state �0⟩1 �0⟩2 ��⟩a as 
the input state of the Mach–Zehnder interferometer, the out-
put state is obtained as below

which may be expressed in terms of the even and odd 
Schrödinger’s cat states as below:

Also, if the state �1⟩1 �0⟩2 ��⟩a enters into the Mach–Zehnder 
interferometer, the output state reads as

where we have supposed that Kt = � and � = � . Finally, 
for the state �1⟩1 �1⟩2 ��⟩a , the resulted output state of 
Mach–Zehnder interferometer reads as

where we have set 2Kt = � and 2� = � . Summing up, replac-
ing the relations (10) and (12)–(14) in (9), the whole state of 
the system after crossing the MZI becomes as

Now, detecting the state of field F1 in the single-photon state 
�1⟩1 , the total state of the system collapses to

(11)�0⟩1 �0⟩2 ��⟩a
MZI
���������������→ �out⟩MZI2

= �0⟩1 �0⟩2 ��⟩a,

(12)�out⟩MZI2
=

1

2
�0⟩1 �0⟩2

� ���̃o

�
a
+ ���̃e

�
a

�
.

(13)
�1⟩1 �0⟩2 ��⟩a

MZI
���������������→ �out⟩MZI3

=
1

2

�
− i ���̃o

�
a
�0⟩1 �1⟩2

+ ���̃e

�
a
�1⟩1 �0⟩2

�
,

(14)
�1⟩1 �1⟩2 ��⟩a

MZI
���������������→ �out⟩MZI4

=
1

2
√
2

���̃e

�
a

�
i �2⟩1 �0⟩2

− i �0⟩1 �2⟩2 −
√
2 �1⟩1 �1⟩2

�
,

(15)

�Ψ⟩
total

= −
1

4
�e⟩

1
�g⟩

2

�
i ���̃o

�
a
�1⟩

1
�0⟩

2
+ ���̃e

�
a
�0⟩

1
�1⟩

2

�

−
i

4
�e⟩

1
�e⟩

2

� ���̃o

�
a
+ ���̃e

�
a

�
�0⟩

1
�0⟩

2

+
1

4

√
2

�g⟩
1
�g⟩

2
���̃e

�
a

�
�2⟩

1
�0⟩

2
− �0⟩

1
�2⟩

2

+ i

√
2 �1⟩

1
�1⟩

2

�

+
1

4
�g⟩

1
�e⟩

2

�
i ���̃o

�
a
�0⟩

1
�1⟩

2
− ���̃e

�
a
�1⟩

1
�0⟩

2

�
.

(16)

�Ψ⟩A1A2F2a
= −

1

4

�
i �e⟩1 �g⟩2 ���̃o

�
a
+ �g⟩1 �e⟩2 ���̃e

�
a

�
�0⟩2

+
i

4
�g⟩1 �g⟩2 ���̃e

�
a
�1⟩2.

Fig. 2   Sketch of the designed setup to perform the entanglement 
swapping process

2  We should thank the referee which reminded us about the Ref. [38].
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Henceforth, if we detect the state of field F2 in the vacuum 
state, the following state for the atom A1 , atom A2 and 
a-mode is accessible

where we have set N as a normalization factor. The gener-
ated entangled state in (17) is a tripartite entanglement of 
atom A1 , atom A2 and a-mode. This state by assuming that 
the coherent amplitude � is large enough, is transformed to 
a fully entangled state. Then, the entanglement is swapped 
from two subsystems (AF)1 and (AF)2 [expressed in (5) and 
(7), respectively], to a new system including A1 , A2 and 
a-mode. In the following, to establish the reliability of the 
performed entanglement swapping process, we investigate 
the interesting criteria in the entanglement swapping pro-
cess, including success probability as well as the fidelity.

4.1 � Success probability

Success probabilities, respectively, for detecting the field F1 
in the single-photon state �1⟩1 , and F2 in the vacuum state 
�0⟩2 have been described by the following relations,

These quantities along with the total success probability 
(which is the product of SP1 and SP2 ) are plotted in Fig. 3 
versus the intensity of field (in the rest of this paper we refer 
to the intensity of the field briefly as the intensity of field).

(17)�Ψ⟩A1A2a
= −

N

4

�
i �e⟩1 �g⟩2 ���̃o

�
a
+ �g⟩1 �e⟩2 ���̃e

�
a

�
,

(18)SP1 =
4N2

e
+ 1

2(1 + 6N2
e
)
,

(19)SP2 =
4N2

e

1 + 4N2
e

.

As is clear the success probability of detecting the 
state �1⟩1 begins from its maximum value (i.e., 0.4) and by 
increasing the intensity of field, gently reaches the value 
0.37 and remains constant for |𝛼|2 ≳ 2 . Also, the success 
probability of detecting the state �0⟩2 begins from 0.5 and 
with increasing the intensity of field, ascends to its maxi-
mum value (i.e., 0.66) and remains constant for |𝛼|2 ≳ 2 . 
Finally, the total success probability begins from 0.2 and 
tends to 0.25 for |𝛼|2 ≳ 2.

4.2 � Fidelity

To demonstrate the similarity of the state (17) to the fully 
entangled state

the fidelity may be used. The fidelity of two quantum states 
�Φ⟩ and �Ψ⟩A1A2a

 which is defined as F = ��⟨Φ�Ψ⟩A1A2a
��
2 [4] 

is plotted in Fig. 4.
As is clear, the fidelity is initiated from 0.5 for small 

values of the field intensity and slopes steeply up to 1 for 
|𝛼|2 ≳ 2 . The complete fidelity (i.e., 1) in the intensities 
|𝛼|2 ≳ 2 means that the state �Ψ⟩A1A2a

 is entirely similar to 
the fully entangled state �Φ⟩ . This result is compatible with 
what is achieved from the state (17). This means that the 
state (17) for |𝛼|2 ≳ 2 becomes a fully entangled state.

5 � Quantum teleportation based 
on the Mach–Zehnder interferometer

As is stated, in teleportation protocol, Alice intends to trans-
mit an unknown state to Bob using a quantum channel. 
In our proposal, teleportation of a two-particle entangled 

(20)�Φ⟩ = 1√
2

�
i �e⟩1 �g⟩2 ���o⟩a + �g⟩1 �e⟩2 ���e⟩a

�
,
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s
P
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y

Fig. 3   Success probability of detecting the field F1 in the single-pho-
ton state �1⟩1 (red dotted line), the field F2 in the vacuum state �0⟩2 
(blue dashed line) and the total success probability (black solid line) 
versus the intensity of field
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Fig. 4   Fidelity of the state (17) relative to (20) versus the intensity of 
field
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state is performed using a non-maximally entangled state 
(for quantum channel) with the help of the Mach–Zehnder 
interferometer.

Let us suppose the pair of entangled particles (particles 1 
and 2) that Alice intends to transmit, is as follows:

where � and � are the unknown coefficients satisfactory 
|�|2 + |�|2 = 1 . Also, the quantum channel is a non-maxi-
mally entangled state as below:

where the coherent state �±�⟩a is related to the a-mode which 
was introduced in previous sections. In addition, the pairs of 
unknown coefficients � , � and �′ , � ′ each of which satisfies 
the normalization condition. The initial state of total system 
including particles 1 and 2 together with the quantum chan-
nel reads as

Now, we enter the state �m⟩1 �n⟩2 �±�⟩a with m, n = 0, 1 in the 
interferometer which is shown in Fig. 1. By using the pro-
cedure outlined in the “Appendix A”, the following results 
are obtained:

Then, the whole state of the system after crossing the 
Mach–Zehnder interferometer becomes as

where |||�̃o(e)

⟩
a
 have been defined after (10). Detecting the 

state of particle 1 in the state �1⟩1 [with success probability 

(21)��⟩12 = � �0⟩1 �1⟩2 + � �1⟩1 �0⟩2,

(22)��⟩a34 = �� ��⟩a �0⟩3 �1⟩4 + � � �−�⟩a �1⟩3 �0⟩4,

(23)
�𝜑⟩12a34 = �𝜑⟩12 ⊗ �𝜑⟩a34

= 𝜂𝜂� �0⟩1 �1⟩2 �𝛼⟩a �0⟩3 �1⟩4 + 𝛾𝜂� �1⟩1 �0⟩2 �𝛼⟩a �0⟩3 �1⟩4
+ 𝜂𝛾 � �0⟩1 �1⟩2 �−𝛼⟩a �1⟩3 �0⟩4 + 𝛾𝛾 � �1⟩1 �0⟩2 �−𝛼⟩a �1⟩3 �0⟩4.

(24)

�0⟩1 �1⟩2 �±�⟩a
MZI
���������������→ �out⟩MZI5

=
1

2

�
∓ i ���̃o

�
a
�1⟩1 �0⟩2

− ���̃e

�
a
�0⟩1 �1⟩2

�
,

(25)

�1⟩1 �0⟩2 �±�⟩a
MZI
���������������→ �out⟩MZI6

=
1

2

�
∓ i ���̃o

�
a
�0⟩1 �1⟩2

+ ���̃e

�
a
�1⟩1 �0⟩2

�
.

(26)

��⟩12a34 =
1

2
�1⟩1 �0⟩2

�
− i��� ���̃o

�
a
+ ��� ���̃e

�
a

�
�0⟩3 �1⟩4

−
1

2
�0⟩1 �1⟩2

�
��� ���̃e

�
a
+ i��� ���̃o

�
a

�
�0⟩3 �1⟩4

+
1

2
�1⟩1 �0⟩2

�
i�� � ���̃o

�
a
+ �� � ���̃e

�
a

�
�1⟩3 �0⟩4

+
1

2
�0⟩1 �1⟩2

�
− �� � ���̃e

�
a
+ i�� � ���̃o

�
a

�
�1⟩3 �0⟩4,

1

4
(
�2

N2
o

+
�2

N2
e

) ] and particle 2 in the state �0⟩2 (with success 

probability 1), the total state of system collapses to

Now, we detect the state of the a-mode in two cases:

•	 Detecting the state ||�̃e

⟩
a
 for the a-mode: if the detection 

process results in the state ||�̃e

⟩
a
 , with the assumption 

� = �� and � = � � , the (27) may be written as 

 So, the initial entangled state (21) of particles 1 and 
2, is reconstructed for particles 3 and 4 and the quan-
tum teleportation process is successfully carried out (a 
successful teleportation scheme results in the complete 
fidelity i. e., 1).

•	 Detecting the state ||�̃o

⟩
a
 for the a-mode: if the detection 

process results in the state ||�̃o

⟩
a
 , with setting � = �� and 

� = � � , the relation (27) becomes as

 Here, Bob only needs to make standard rotations on 
particles 3 and 4 (i.e., 𝜎̂z ⊗ Î  on ��′⟩34 ) to construct 
the initial entangled state (21). Then, again it is seen 
that the teleportation of the entangled state is fulfilled 
successfully.

We emphasize that the applied interferometer in the telepor-
tation process has been considered clearly by ignoring of the 
loss, noise and other dissipative effects.

6 � Summary and conclusion

In this paper, the entanglement swapping and quantum 
teleportation processes have been performed using the 
Mach–Zehnder interferometer assisted with a nonlinear 
cross-Kerr cell. As the first step in this study, we started with 
a brief review on the performance of the Mach–Zehnder 

(27)
��⟩a34 =

1

2

�
− i��� ���̃o

�
a
+ ��� ���̃e

�
a

�
�0⟩3 �1⟩4

+
1

2

�
i�� � ���̃o

�
a
+ �� � ���̃e

�
a

�
�1⟩3 �0⟩4.

(28)��⟩34 =
�

2N2
e

�
� �0⟩3 �1⟩4 + � �1⟩3 �0⟩4

�
.

(29)����
�
34

=
i�

2N2
o

�
− � �0⟩3 �1⟩4 + � �1⟩3 �0⟩4

�
.
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interferometer in which mode 1 (after passing the BS1 ) 
becomes coupled to an external mode through a cross-Kerr 
medium. Then, using this interferometer, we have paid 
attention to swap the entanglement and teleportation of an 
unknown quantum state. Since in the considered setup in this 
paper we have used two beam splitters, in a sense the con-
tent of this paper may be considered as an extension of our 
previous work in [39]. The total state in the entanglement 
swapping process is consisted of two entangled atom–field 
states ((AF)1,2) (which have been generated using the inter-
action of atom and field via the Jaynes–Cummings model) 
and an ancillary mode a which is initially prepared in the 
coherent state. Injecting the state of two fields F1 and F2 and 
the a-mode (as the external mode of the interferometer) into 
the Mach–Zehnder interferometer and detecting the states of 
fields F1 and F2 , has resulted in an entangled state between 
the atoms A1 , A2 and the a-mode field. So, the entanglement 
swapping has been successfully performed from (AF)1 and 
(AF)2 to the A1–A2–a-mode. In the continuation, the quan-
tum teleportation of an unknown entangled state has been 
performed using an unknown quantum channel using the 
Mach–Zehnder interferometer, too.

In this regard, we have evaluated a few interesting quanti-
ties in the entanglement swapping, including success prob-
ability of the detecting process, fidelity of the obtained 
entangled state relative to a suitable maximal entangled state 
and the degree of entanglement. In the evaluation of the 
total success probability of the detecting process, it has been 
demonstrated that this parameter after an initial increase, 
reaches its maximum value (i.e., 0.25) and remains con-
stant for the intensity of the field |𝛼|2 ≳ 2 . Also, it has been 
observed that the value of fidelity for |𝛼|2 ≳ 2 achieves its 
maximum possible value, i.e., 1. This fidelity means that the 
state (17) is completely similar to the maximally entangled 
state (20). As a comparison with the prior studies, in spite 
of Refs. [16, 40] and [13, 14] which, respectively, have uti-
lized cavity QED and Bell-state measurement methods for 
the entanglement swapping, we have performed this process 
beyond the mentioned approaches with a new approach. In 
our proposal, the involving two fields F1 , F2 and the a-mode 
(in the Mach–Zehnder interferometer) lead to the tripartite 
entangled state containing two atoms A1 , A2 and a-mode. 
Summing up, in this paper we could generate the entangled 
state for three particles (atom A1 , atom A2 and a-mode) via 
entanglement swapping process and applying a new imple-
mentation in comparison with Refs. [17, 18] through which 
tripartite entangled states have been produced. In addition, 
as a comparison with Refs. [25] and [26–28] which, respec-
tively, have utilized Bell-state measurement and cavity QED 
methods for the quantum teleportation, we have teleported 
the two-particle entangled state using the Mach–Zehnder 
interferometer. We end this paper with mentioning that 
entanglement swapping in our previous works   [15, 19, 20, 

39] has been performed using the well-known cavity QED 
method [16–18, 40] (the atom–field interaction in a cavity) 
or by tools such as a beam splitter by which a bipartite entan-
gled state has been generated. However, our present work 
basically is based on neither of the latter mentioned methods 
nor the Bell-state measurement approach [13, 14]; instead, 
a Mach–Zehnder interferometer assisted with a nonlinear 
cross-Kerr cell is used (this is what has been newly done in 
this paper) by which a tripartite (instead of previously bipar-
tite) entangled state has been generated in the introduced 
entanglement swapping process.

Appendix A: Calculation of the output 
state of the Mach–Zehnder interferometer 
for the input state �0⟩

1
�1⟩

2
��⟩

a

As is stated in Sect. 4, the total state which is injected into 
the Mach–Zehnder interferometer, is a combination of the 
field states F1 , F2 and Fa indicated as �m⟩1 �n⟩2 ��⟩a in (9). 
Here, we obtain the output state of the interferometer, in 
detail, in which the input state is �0⟩1 �1⟩2 ��⟩a . If the state 
�0⟩1 �1⟩2 ��⟩a is injected in the interferometer, the input state 
to BS1 is �0⟩1 �1⟩2 . Then after passing the BS1 , we have

The action of the phase shifter � with unitary operator in (1) 
yields the state3

Now, we import the above state into the cross-Kerr medium 
which is described by the unitary operator in (2). Then, the 
resultant state is as below4

Choosing Kt = � in (32), reduces it to the state

In the next step, by crossing the state in (33) from the BS2 , 
the resultant state reads as

(30)

�0⟩1 �1⟩2 ��⟩a
BS1
��������������→ �out⟩1 =

1√
2

�
i �1⟩1 �0⟩2 + �0⟩1 �1⟩2

�
��⟩a.

(31)

�out⟩1
PS
����������→ �out⟩2 =

1√
2

�
i �1⟩1 �0⟩2 + ei� �0⟩1 �1⟩2

�
��⟩a.

(32)

�out⟩2
CK
������������→ �out⟩3 =

1√
2

�
i �1⟩1 �0⟩2

����e
−iKt

�
a
+ ei� �0⟩1 �1⟩2 ��⟩a

�
.

(33)�out⟩3 =
1√
2

�
i �1⟩1 �0⟩2 �−�⟩a + ei� �0⟩1 �1⟩2 ��⟩a

�
.

3  Here, the operator ĉ†ĉ in (1) is applied on mode 2, as it is apparent 
from Fig. 1, too.
4  Here, the operator â†â in (2) is applied on the a-mode and the oper-
ator b̂†b̂ acts upon mode 1, as is clear from Fig. 1, too.
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Finally, considering � = � , the output state of the 
Mach–Zehnder interferometer is simplified to
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