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control and observe atoms with single-site resolution  [7–
12] which makes dynamical phenomena experimentally 
accessible in these systems. One promising perspective 
is to use this set-up for investigating the rich physics of 
quantum magnetism  [13–15] and strongly correlated spin 
systems that are extremely challenging to simulate on a 
classical computer. However, the simulation of magnetic 
phenomena with cold atoms faces two key challenges. 
First, neutral atoms do not experience a Lorentz force in 
an external magnetic field. In order to circumvent this 
problem, tremendous effort has been made to create arti-
ficial gauge fields for neutral atoms [16–32]. For example, 
artificial magnetic fields allow one to investigate the inte-
ger  [33] and fractional quantum Hall effects  [27–29] with 
cold atoms, and the experimental realization of the topolog-
ical Haldane model was achieved in Ref. [30]. Second, cold 
atoms typically interact via weak contact interactions. Spin 
systems with strong and long-range interactions can be 
achieved by admixing van der Waals interactions between 
Rydberg states [34, 35] or by replacing atoms with dipole–
dipole interacting polar molecules [36–38]. In particular, it 
has been shown that the dipole–dipole interaction can give 
rise to topological flat bands [39, 40] and fractional Chern 
insulators  [41]. The creation of bands with Chern number 
C = 2 via resonant exchange interactions between polar 
molecules has been explored in Ref. [40].

Recently, an alternative and very promising platform 
for the simulation of strongly correlated spin systems has 
emerged  [42]. Here resonant dipole–dipole interactions 
between Rydberg atoms  [43] enable quantum simulations 
of spin systems at completely different length scales com-
pared with polar molecules. For example, the experiment 
in Ref.  [42] demonstrated the realization of the XY Ham-
iltonian for a chain of atoms and with a lattice spacing of 
the order of 20µm. At these length scales, light modulators 

Abstract  We show that resonant dipole–dipole interactions 
between Rydberg atoms in a triangular lattice can give rise 
to artificial magnetic fields for spin excitations. We con-
sider the coherent dipole–dipole coupling between np and 
ns Rydberg states and derive an effective spin-1/2 Hamilto-
nian for the np excitations. By breaking time-reversal sym-
metry via external fields, we engineer complex hopping 
amplitudes for transitions between two rectangular sub-
lattices. The phase of these hopping amplitudes depends on 
the direction of the hop. This gives rise to a staggered, arti-
ficial magnetic field which induces non-trivial topological 
effects. We calculate the single-particle band structure and 
investigate its Chern numbers as a function of the lattice 
parameters and the detuning between the two sub-lattices. 
We identify extended parameter regimes where the Chern 
number of the lowest band is C = 1 or C = 2.

1  Introduction

Regular arrays of ultracold neutral atoms [1, 2] are a ver-
satile tool for the quantum simulation [3–5] of many-body 
physics  [6]. Recent experimental progress allows one to 
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allow one to trap atoms in arbitrary, two-dimensional 
geometries and to apply custom-tailored light shifts at indi-
vidual sites  [44–46]. The resonant dipole–dipole interac-
tion is also ideally suited for the investigation of transport 
phenomena  [47–49] and can give rise to artificial mag-
netic fields acting on the relative motion of two Rydberg 
atoms [50–52].

Here we show how to engineer artificial magnetic fields 
for spin excitations in two-dimensional arrays of dipole–
dipole interacting Rydberg atoms. More specifically, we 
consider a triangular lattice of Rydberg atoms as shown in 
Fig. 1 where the resonant dipole–dipole interaction enables 
the coherent exchange of excitations between atoms in np 
and ns states. We derive an effective spin-1/2 Hamiltonian 
for the np excitations with complex hopping amplitudes 
giving rise to artificial, staggered magnetic fields. This 
results in nonzero Chern numbers of the single-particle 
band structure, and the value of the Chern number in the 
lowest band can be adjusted to C = 1 or C = 2 by changing 
the lattice parameters.

Note that in our system all atoms comprising the lat-
tice are excited to a Rydberg state. This is in contrast to 
the work in Refs. [34, 35], where the atoms mostly reside 
in their ground states and the population in the Rydberg 
manifold is small. Consequently, our approach is in gen-
eral more vulnerable towards losses through spontaneous 

emission. On the other hand, the magnitude of the resonant 
dipole–dipole interaction is much stronger compared with 
a small admixing of van der Waals interactions, and hence, 
the coherent dynamics takes place on much shorter time-
scales. In addition, the distance between the atoms can be 
much larger in our approach which facilitates the prepara-
tion and observation of the excitations.

This paper is organized as follows. We give a detailed 
description of our system in Sect. 2 where we engineer an 
effective Hamiltonian for the np excitations. We then inves-
tigate the single-particle band structure and provide a sys-
tematic investigation of the topological features of these 
bands as a function of the system parameters in Sect. 3. A 
brief summary of our work is presented in Sect. 4.

2 � Model

We consider a two-dimensional triangular lattice of 
Rydberg atoms in the x − y plane as shown in Fig.  1. 
Each lattice site contains a single Rydberg atom which we 
assume to be pinned to the site. The triangular lattice is 
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Fig. 1   (Color online) Triangular lattice of Rydberg atoms in the 
x − y plane. The lattice is comprised of two rectangular sub-lat-
tices R and B that are shifted by a/2+ b/2 with respect to each 
other, where a = aex and b = bey are the primitive basis vectors of 
each sub-lattice. The sites of the B (R) lattice are indicated by blue 
squares (red dots). The unit cell of the whole lattice is shown by the 
shaded area and contains two lattice sites. Φu is the flux through the 
upward pointing triangle 1 → 2 → 3 → 1, and Φd is the flux through 
the downward pointing triangle 2 → 4 → 3 → 2

(a)

(b)

Fig. 2   (Color online) The level scheme of each atom consists of the 
ns1/2 and np3/2 manifolds. Dashed lines denote allowed dipole transi-
tions. a The effective spin-1/2 system at sites B is formed by states 
|p3/2 − 1/2� and |s1/21/2�. The corresponding dipole transition with 
transition frequency ω� is indicated in blue. b The effective spin-1/2 
system at sites R is formed by states |p3/23/2� and |s1/21/2�. The 
associated dipole transition with transition frequency ω◦ is indicated 
in red
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comprised of two rectangular sub-lattices B and R that are 
labelled by blue squares and red dots in Fig. 1, respectively. 
Each sub-lattice is described by two orthogonal primitive 
basis vectors a = aex and b = bey, and the two sub-lat-
tices are shifted by a/2+ b/2 with respect to each other. 
In the following, we derive an effective spin-1/2 model for 
Rydberg excitations in the np manifold over a background 
of ns states with principal quantum number n ≫ 1. After 
introducing the general Hamiltonian of the system, we first 
engineer an effective Hamiltonian for np excitations on the 
B sub-lattice. We then apply the same procedure to the R 
sub-lattice but choose a different np state compared to the 
B atoms. Finally, we show that the dipole–dipole interac-
tion couples the two sub-lattices and the corresponding 
Hamiltonian contains complex hopping amplitudes giving 
rise to artificial magnetic fields.

The atomic level scheme of each atom is comprised of 
two angular momentum manifolds ns1/2 and np3/2 with 
principal quantum number n ≫ 1 as shown in Fig. 2. The 
Zeeman sub-levels of each multiplet are denoted by |ljm�, 
where l labels the orbital angular momentum, j is the total 
angular momentum and the projection of the electron’s 
angular momentum onto the z-axis is denoted by m. The 
Hamiltonian of a single atom at site α is given by

where the first line is the Hamiltonian for the degenerate 
np3/2 manifold in the absence of external fields, �ωp is the 
energy of the np3/2 multiplet and we set the frequency of 
the ns1/2 multiplet ωs = 0. In the second line of Eq.  (1), 
L̂α[lj] are level shift operators removing the Zeeman degen-
eracy of the multiplet lj at site α. An example for the opera-
tors L̂α[lj] is given in Eq. (17) at the end of Sect. 2. In the 
following, we assume that all atoms in rows labelled by 
B and indicated by a blue square in Fig. 1 experience the 
same level shifts. Similarly, all atoms in rows labelled by 
R and indicated by a red dot in Fig. 1 have equivalent level 
schemes. However, atoms in sites α ∈ R have a different 
internal level structure compared with atoms in sites α ∈ B. 
The full Hamiltonian for the system shown in Fig. 1 is then 
given by

where Vαβ is the dipole–dipole interaction  [53] between 
atoms at sites α and β,

(1)
H(0)
α = �ωp

3/2
∑

m=−3/2

|p3/2m�α�p3/2m|α

+ L̂α[p3/2] + L̂α[s1/2] ,

(2)
H =

∑

α

H(0)
α + 1

2

∑

α,β

α �=β

Vαβ ,

(3)Vαβ = 1

4πε0R3
[d̂(α) · d̂(β) − 3(d̂(α) · R̃)(d̂(β) · R̃)] .

Here ε0 is the dielectric constant, d̂(α) is the electric-dipole-
moment operator of atom α, R = Rα − Rβ is the relative 
position of the two atoms located at Rα and Rβ, respec-
tively, and R̃ = R/R is the corresponding unit vector. In 
the following, we consider only near-resonantly coupled 
states and neglect all matrix elements between two-atom 
states differing in energy by �EFS = �ωp or more. This is 
justified if the dipole–dipole coupling strength V0 is much 
smaller than the fine structure interval �EFS, which is the 
case for the typical parameters based on rubidium atoms 
(see Sect. 3).

Next we focus on the B lattice and reduce the level 
scheme at each site to a two-level system by a suitable 
choice of the shift operators in Eq.  (1). To this end, we 
assume that the level shifts break the degeneracy of the 
Zeeman sub-levels as shown in Fig. 2a such that all dipole 
transitions can be addressed individually. In particular, 
we require that the strength of the dipole–dipole coupling 
between nearest neighbours is much smaller than the 
splitting between Zeeman sub-levels. For all B atoms, we 
choose the states |p3/2 − 1/2� and |s1/21/2� as the effec-
tive spin-1/2 system. The dipole matrix element of the 
|p3/2 − 1/2� ↔ |s1/21/2� transition with transition fre-
quency ω� is (see “Appendix 1”)

where D is the reduced dipole matrix element of the 
s1/2 ↔ p3/2 transition. In an interaction picture with 
respect to the bare atomic energies, the Hamiltonian H in 
Eq. (2) restricted to all B atoms can thus be written as

where

describes the coupling strength between two B atoms 
located at Rα and Rβ, respectively. In the following, it will 
be useful to characterize the strength of the dipole–dipole 
interaction between two atoms separated by a, and hence, 
we introduce the parameter

The raising operator for a spin excitation in Eq.  (5) is 
defined as

(4)dB = �p3/2 − 1/2|d̂|s1/21/2� = D
1√
6

(

ex + iey
)

,

(5)
HB = −1

6

∑

α∈B
β∈B

Cαβ

(

S+α S
−
β + S+β S

−
α

)

,

(6)Cαβ = |D|2
4πε0|Rα − Rβ |3

(7)V0 =
|D|2

4πε0a3
.

(8)S+α = |p3/2 − 1/2��s1/21/2| , α ∈ B ,
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and its adjoint is the corresponding lowering operator, 
S−α = [S+α ]†.

Next we follow a similar procedure within the R lat-
tice. In contrast to B atoms, we choose the states |p3/23/2� 
and |s1/21/2� as an effective spin-1/2 system as shown 
in Fig.  2b. We assume that all other transitions within R 
atoms are so far-detuned that the dipole–dipole interac-
tion remains restricted to this sub-system. We find that 
the dipole matrix element of the corresponding transition 
|p3/23/2� ↔ |s1/21/2� is (see “Appendix 1”)

The raising operator of this transition with resonance fre-
quency ω◦ is defined as

and S−α = [S+α ]† is the lowering operator. In a rotating 
frame where S+α  oscillates with the frequency ω� of excita-
tions in the B lattice, the Hamiltonian for excitations in the 
R lattice can be written as

where � = ω◦ − ω� is the detuning between excitations in 
the R and B lattices and Cαβ is defined in Eq. (6).

For our given geometry and chosen transitions, we find 
that the dipole–dipole coupling between the two sub-lat-
tices is different from zero. If the detuning � between B 
and R excitations is smaller than the strength of the dipole–
dipole coupling between the two sub-lattices, the np excita-
tions can hop between the B and R sites. With the expres-
sions for the dipole matrix elements in Eqs. (4) and (9), the 
Hamiltonian governing the coupling between the two sub-
lattices is given by

where

Note that the phase φαβ of excitation hopping between sites 
α ∈ R and β ∈ B is determined by the azimuthal angle of 
the relative position vector R̃α − R̃β between the two sites.

In summary, by restricting the effective level scheme on 
each site to a two-level system we obtain

(9)dR = �p3/23/2|d̂|s1/21/2� = −D
1√
2

(

ex − iey
)

.

(10)S+α = |p3/23/2��s1/21/2| , α ∈ R ,

(11)
HR = ��

∑

α∈R
S+α S

−
α − 1

2

∑

α∈R
β∈R

Cαβ

(

S+α S
−
β + S+β S

−
α

)

,

(12)
HBR =

√
3

2

∑

α∈R
β∈B

Cαβ

(

e−2iφαβS+α S
−
β + e2iφαβS+β S

−
α

)

,

(13)eiφαβ =
(

R̃α − R̃β

)

·
(

ex + iey
)

.

where the definition of the spin operators S±α  depends on 
the lattice site as described by Eqs. (8) and (10). The opera-
tors S±α  obey Fermi anticommutation relations on the same 
site,

and Bose commutation relations between different sites,

It follows that the raising and lowering operators S+α  and S−α  
are equivalent to hard-core bosonic creation and annihila-
tion operators a†α and aα, respectively. The Hamiltonian in 
Eq. (14) describes the hopping dynamics of these hard-core 
bosons on the two coupled sub-lattices A and B.

An example for the dipole–dipole coupling strengths 
in rubidium atoms and the magnitude of the level shifts 
required for realizing the effective Hamiltonian in Eq. (14) 
is provided in “Appendix 2”. Here we outline two physical 
implementations of the level shifts L̂α[lj] in Eq.  (1). First, 
we consider linear Zeeman shifts induced by an external 
magnetic field Bα in z direction,

where µB is the Bohr magneton, Ĵz[lj] is the z component of 
the angular momentum operator restricted to the multiplet 
lj , and g[lj] is the Landé g-factor,

Since g[s1/2] = 2 and g[p3/2] = 4/3, the magnitude of the 
Zeeman shifts is different for the s1/2 and p3/2 manifolds, 
respectively. We assume that atoms in lattices B and R 
experience different magnetic field strengths,

(14)

Heff = HB + HR + HBR

= ��
∑

α∈R
S+α S

−
α − 1

6

∑

α∈B
β∈B

Cαβ

(

S+α S
−
β + S+β S

−
α

)

− 1

2

∑

α∈R
β∈R

Cαβ

(

S+α S
−
β + S+β S

−
α

)

+
√
3

2

∑

α∈R
β∈B

Cαβ

(

e−2iφαβS+α S
−
β + e2iφαβS+β S

−
α

)

,

(15)S+α S
−
α + S−α S

+
α = 11 , S+α S

+
α = S−α S

−
α = 0 ,

(16)
[

S−α , S
+
β

]

=
[

S+α , S
+
β

]

=
[

S−α , S
−
β

]

= 0 , α �= β .

(17)L̂α[lj] =
g[lj]
�

µBBα Ĵz[lj] ,

(18)g[lj] =
3

2
+ 3/4− l(l + 1)

2j(j + 1)
.

(19)Bα =
{

BB, α ∈ B ,

BR, α ∈ R ,
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where BB �= BR. Exact resonance ∆ = 0 between the two 
sub-lattices can be achieved for BB = −5BR/3, and peri-
odic magnetic fields could be engineered by a regular array 
of micromagnets [54, 55].

Second, the effective Hamiltonian in Eq.  (14) can be 
realized with a uniform magnetic field across all lattice sites 
and static or AC Stark shifts that are different for the B and 
R lattices. For example, one could employ AC Stark shifts 
using a standing wave with periodicity b such that all B and 
R atoms are located at the nodes and antinodes, respec-
tively. Since the magnitude of the AC Stark shifts depends 
on |mj|, a relative shift between the |p3/23/2� ↔ |s1/21/2� 
and |p3/2 − 1/2� ↔ |s1/21/2� transitions can be induced 
such that the resonance condition � ≈ 0 holds.

3 � Results

The effective Hamiltonian in Eq.  (14) exhibits complex 
hopping amplitudes for exciton transitions between the 
B and R lattices which correspond to an artificial vector 
potential A according to the Peierls substitution [56]. This 
result can be understood as follows. Excitations in the B 
and R lattices couple to different dipole transitions with 
complex dipole moments dB and dR, respectively. The 
two different transitions on sites B and R are tuned into 
resonance through external fields that break time-reversal 
symmetry. Since dB and dR have a well-defined relative 
phase, hopping between the two sub-lattices gives rise to a 
complex hopping amplitude that depends on the azimuthal 
angle of the relative position vector Rα − Rβ between sites 
α and β (see Eq. (13)). The total magnetic flux Φu through 
the upward pointing triangle 1 → 2 → 3 → 1 is shown in 
Fig.  1. For nearest-neighbour interactions only, the total 
flux is determined by the sum of the phases along the edges 
of the triangle,

We find that the total flux is in general different from 
zero and can be adjusted by varying the lattice parame-
ters. This is shown by the red solid line in Fig. (3), where 
Φu is depicted as a function of ratio b  / a. Φu is different 
from zero except for b/a = 1 and attains all possible val-
ues between −π and π, which is the maximal range for the 
flux defined mod 2π. Similarly, the total magnetic flux Φd 
through the downward pointing triangle 2 → 4 → 3 → 2 
in Fig. 1 is given by

and Φd is shown by the blue dot-dashed line in Fig. 3. Since 
Φd +Φu = 0 for all values b  / a, the flux in neighbouring 
triangles has the same magnitude but the opposite sign, and 
hence, the complex transition amplitudes in our system 

(20)Φu = 2(φ32 − φ13)+ π .

(21)Φd = 2(φ34 − φ23)+ π ,

correspond to a staggered artificial magnetic field. This 
result is consistent with the assumed translational symme-
try of the lattice, which requires that all magnetic fluxes 
within the unit cell must add up to zero.

Next we investigate the single-particle band structure of 
Heff using a rectangular unit cell containing two lattice sites 
as shown by the shaded area in Fig. 1. It follows that the 
k-space Hamiltonian H(k) is represented by a 2× 2 matrix, 
where k describes a point in the first Brillouin zone of the 
reciprocal lattice (see “Appendix 3”). We include all hop-
ping terms between sites separated by R ≤ rD. Through a 
numerical study we find that H(k) describes the bulk prop-
erties of our system well for rD ≥ 6a and a ≥ b/2. The 
band structure for the special case of equilateral triangles as 
in Fig. 1 (i.e. b/a =

√
3) is shown in Fig. 4. There are two 

separate bands, and the band gap varies in size across the 
Brillouin zone. The gap is the smallest near the following 
points at the zone boundary, 

(22a)k1 = (0,π/b) k2 = (0,−π/b)

b/a

Φ/π

Φu

Φd

Fig. 3   (Color online) Magnetic flux Φ enclosed in an elementary tri-
angle of the lattice in Fig. 1 as a function of b / a, where b and a are 
the lattice constants of the rectangular sub-lattices. Φu (Φd) is the flux 
through the upward (downward) pointing triangle 1 → 2 → 3 → 1 
(2 → 4 → 3 → 2) in Fig.  1 and for the effective Hamiltonian in 
Eq. (14) with only nearest-neighbour interactions taken into account

kx/(2π/a)

ky/(2π/b)

E
/
V
0

Fig. 4   (Color online) Single-excitation band structure for ∆ = 0 
and b/a =

√
3. All hopping terms between sites within a radius of 

rD = 6a are taken into account. The two bands are separated by a gap 
and the lower (upper) band has Chern number C = 1 (C = −1)
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 The magnitude of the band gap near these points is of the 
order of V0/2, where V0 is defined in Eq.  (7). The broken 
time-reversal symmetry in our system endows the band 
structure with non-trivial topological properties. We numer-
ically calculate the Chern number as described in Ref. [57] 
and find that the lower and upper bands have Chern num-
bers C = 1 and C = −1, respectively.

Various topological regimes can be realized in our sys-
tem by adjusting the lattice parameters and the detuning 
between the excitations on the sub-lattices B and A. This 
is illustrated in Fig. 5, where we show the Chern number of 
the lower band as a function of the ratio b / a and �. First, 
we note that the phase diagram in Fig. 5 exhibits extended 
regions with nonzero Chern numbers that are robust with 
respect to small variations in � and b  / a. The solid lines 
in Fig.  5 indicate topological phase transitions where the 
lower and upper bands touch in at least two of the k points 
in Eq. (22) which then represent a Dirac point.

The qualitative features of the C = 1 region marked in 
orange in Fig. 5 can be understood by noting that nonzero 
Chern numbers require an efficient coupling between the 
sub-lattices B and R. In particular, the dipole–dipole cou-
pling needs to be larger or comparable to the detuning � . 
For fixed lattice constant a, reducing b  / a corresponds to 
an increased dipole–dipole coupling between the sub-
lattices and hence the region with C = 1 broadens along 

(22b)k3 = (π/a, 0) k4 = (−π/a, 0) .

the � axis for b/a < 1. The narrowing of the C = 1 region 
near b/a = 1 can be understood from Fig. 3. For nearest-
neighbour interactions only, the magnetic flux vanishes for 
b/a = 1 and hence the corresponding bands would have 
Chern number C = 0. Taking into account interactions 
beyond nearest neighbours gives rise to modifications as 
shown in Fig. 5. In particular, these interactions are respon-
sible for the blue wedged area with Chern number C = 2 . 
The single-particle band structure for the parameters cor-
responding to the magenta star inside the blue wedged area 
in Fig. 5 is shown in Fig. 6a. The lower and upper bands 
have Chern numbers C = 2 and C = −2, respectively. The 
two bands are gapped, but in contrast to the parameters in 
Fig. 4 the gap is the smallest near the Brillouin zone centre 
k = (0, 0) where it is approximately given by 0.1V0.

The asymmetry of the phase diagram in Fig.  5 with 
respect to the ∆ = 0 axis can be traced back to the fact that 
the dipole–dipole interaction differs in strength for the B 
and R lattices. In order to illustrate this, we focus on the 
blue wedge with C = 2 in Fig. 5 and show the band struc-
tures of the uncoupled, individual sub-lattices in Fig. 6b for 
�� = 2.5V0 and b/a = 1. Both band structures are convex 
surfaces with their minimum at k = 0, but the depth of the 

C = 2C = 1C = 0

b/a

∆
/
V
0

Fig. 5   (Color online) Topological regimes for the lower band for 
rD = 8. The black lines indicate topological phase transitions where 
the Chern number of the lower band changes. The red dot and 
magenta star correspond to the parameters of the band structures in 
Figs. 4 and 6, respectively

(a)

(b)

kx/(2π/a)

kx/(2π/a)

k
y /(2π/b)

k
y /(2π/b)

E
/
V
0

E
/
V
0

Fig. 6   (Color online) Single-excitation band structure for 
�∆ = 2.5V0 and b/a = 1. All hopping terms between sites within 
a radius of rD = 6a are taken into account. a Band structure corre-
sponding to the effective Hamiltonian in Eq.  (14). b Band struc-
ture for the same parameters as in (a) but without the Hamiltonian 
HBR = 0 coupling the two sub-lattices. The upper (lower) surface is 
the band structure for excitations on the R (B) lattice
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potential well is significantly larger for the upper band. The 
reason is that the strength of the dipole–dipole interaction 
is three times stronger for the R lattice compared to the B 
lattice for b/a = 1 (see Eqs. (5) and (11)). A necessary con-
dition for non-trivial topological bands is that the two sub-
lattices are efficiently coupled by the Hamiltonian HBR in 
Eq.  (12), which depends on the magnitude of the dipole–
dipole interaction connecting the B and R lattices and the 
energy spacing between B and R excitations at each k point. 
As shown in Fig.  6b, the two surfaces touch near k ≈ 0, 
and hence, the relatively weak next-nearest-neighbour cou-
pling in HBR can give rise to nonzero Chern numbers for 
�� = 2.5V0 and b/a = 1. On the other hand, the distance 
between the two uncoupled bands increases quickly if � is 
decreased from zero to negative values. This explains why 
HBR cannot induce a C = 2 band for �� � −0.3V0.

Finally, we discuss the physical realization of our system 
and the observation of its topological features. The experi-
mental realization of a one-dimensional chain of resonantly 
coupled Rydberg atoms has been reported in Ref.  [42]. 
Here the excitation of all atoms to a Rydberg state is 
achieved within τ ≈ 0.5µs  [42]. Note that this process 
is not hampered by the dipole blockade since the van der 
Waals shifts are small for the considered lattice constants 
a. For example, for Rubidium ns states with n = 70 and 
a = 20µm, the van der Waals shift is ∆vdW ≈ 13 kHz [58], 
which is small compared with the Rabi frequency of the 
lasers exciting the Rydberg state  [42]. The time interval 
�T  where excitation hopping can take place is limited by 
the lifetime of the Rydberg states and the residual atomic 
motion. For atomic temperatures of the order of 10µK, 
motional effects are negligible for �T ≈ 10µs  [42]. This 
is typically much smaller than the Rydberg state lifetime 
and large compared with the inverse hopping amplitude 
such that many coherent hops can take place (see “Appen-
dix 2”). Note that these considerations also show that auto-
ionization processes due to Rydberg atom collisions can be 
neglected [59, 60] since the initial positions of the atoms in 
the lattice change only very slightly during �T . Recently, 
tremendous experimental progress towards the extension of 
the experiment in Ref. [42] to two dimensions and arbitrary 
lattice geometries has been made [44, 45]. In particular, it 
is now possible to create arbitrary lattice structures where 
each site is filled with exactly one atom [46]. It follows that 
our system can be realized with a combination of state-of-
the-art experimental techniques.

A direct signature of the artificial magnetic fields associ-
ated with the complex hopping amplitudes in Eq. (14) can 
be obtained by investigating the quantum dynamics of a sin-
gle excitation as shown in Fig. 7. We consider a lattice with 
53 sites where only the site in the middle of the lower edge 
is excited at time t = 0. The excitation probability of the lat-
tice sites at a later time is shown in Fig. 7a, b, where Fig. 7a 

the dynamics according to the effective Hamiltonian in 
Eq. (14). We find that the largest excitation probabilities can 
be found along the lower edge and to the right of the initially 
excited site. Figure 7b is generated by setting all phases φαβ 
in Eq. (14) to zero. In this case, the distribution of excitation 
probabilities is symmetric with respect to the dashed line. 
The latter result is expected since the magnitude of the hop-
ping amplitudes does only depend on the distance between 
two sites. It follows that the marked asymmetry in Fig. 7a 
is a direct consequence of the complex hopping amplitudes 
and the associated artificial magnetic field. More specifi-
cally, the magnetic flux through the upward pointing trian-
gles shown in Fig.  7 and for the considered parameters is 
negative (see Fig. 3). The force associated with the artificial 
magnetic field thus favours an anticlockwise motion around 
each triangular plaquette. This explains why the propagation 
moves along the edge in an anticlockwise direction. Note 
that this asymmetry develops within a few hopping events 
such that the residual motion of the atoms hosting these 
excitations can be neglected. Our results are also consistent 
with the fact that a semi-infinite version of our lattice exhib-
its chiral edge states for nonzero Chern numbers according 
to the bulk-edge correspondence [61, 62].

(a)

(b)

x

x

y

y

Excitation probability

Fig. 7   (Color online) Quantum dynamics of a single excitation on 
a lattice with 53 atoms, b/a = 2, ∆ = 0 and rD = 6a. At time t = 0,  
only the atom in the bottom row indicated by a magenta triangle is 
excited. The population of each lattice site at time t = 4�/V0 is indi-
cated by the colour of the halo around each site. The dashed line is 
used as a guide to the eye (see text). a Quantum dynamics accord-
ing to the Hamiltonian Heff in Eq.  (14). The magnetic flux through 
the indicated triangular plaquettes is negative and thus favours coun-
terclockwise motion of the excitation. b Same as in (a), but with all 
phases φαβ in Eq. (14) set to zero
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The Chern number of the individual bands can be deter-
mined by observing the motional drifts due to the nonzero 
Berry curvature in each band. To this end, the excitations 
need to be selectively prepared in either the upper or lower 
band. This can be achieved in different ways. First, one 
could prepare an excitation in one of the sub-lattices with a 
large detuning � such that the R and B lattices are uncou-
pled. This is followed by an adiabatic reduction of |�| in 
order to adjust the required parameter regime. Second, one 
could prepare all atoms in the |ns1/21/2� state and apply a 
weak microwave field such that only a single k mode is res-
onantly excited. Efficient methods to extract the local Berry 
curvature from motional drifts are described in Ref.  [63] 
and require an external force acting on the particle. In our 
set-up, this could be realized by making the detuning � 
position-dependent through magnetic field gradients along 
a certain direction.

4 � Summary

We have shown that the resonant dipole–dipole interac-
tion between Rydberg atoms allows one to engineer effec-
tive spin-1/2 models where the spin excitations experience 
a staggered magnetic field in a triangular lattice. A neces-
sary condition for engineering artificial magnetic fields is 
that time-reversal symmetry of the system is broken. In 
our system, this is achieved by external fields shifting the 
Zeeman sub-levels of the considered ns1/2 and np3/2 mani-
folds. In this way, we ensure that the spin excitation cou-
ples to different dipole transitions on the B and R lattices 
with dipole moments dB and dR, respectively. These dipole 
moments have a well-defined relative phase which is differ-
ent from zero. Since dB and dR are orthogonal, we find that 
the phase of the hopping amplitude is determined by the 
azimuthal angle associated with the relative position of the 
two sites connected by the hop.

We find that the magnitude of the magnetic flux through 
an elementary triangular plaquette can be controlled by 
changing the ratio b  / a of the rectangular sub-lattices. In 
addition, the staggered magnetic field endows the single-
particle band structure with non-trivial Chern numbers. The 
Chern number of the lower band can be adjusted between 
C = 0, 1 and 2 and its value depends on the lattice param-
eters and the detuning � between the B and R lattices.

The quantum simulation of the dynamics of a single 
excitation shows that an excitation placed at an edge of the 
lattice will propagate along the edge in a specific direction. 
This effect is a direct consequence of the artificial magnetic 
field. The topological features of the bands can be explored 
by monitoring the deflection of the exciton motion due to 
the nonzero Berry curvature in either the lower or upper 

band. An intriguing prospect for future studies is the inves-
tigation of quantum many-body states. Here the hard-core 
interaction between the particles is expected to modify the 
single-particle picture considerably, and the interplay of 
strong interactions and complex hopping amplitudes may 
give rise to exotic quantum phases like fractional Chern 
insulators.
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Appendix 1: Dipole matrix elements

We evaluate the matrix elements of the electric-dipole-
moment operator d̂ of an individual atom via the Wigner–
Eckert theorem [64, 65] and find

where Cj′m′

jm1q are Clebsch–Gordan coefficients and the 
spherical unit vectors ǫq in Eq. (23) are defined as

The reduced dipole matrix element is [64, 65]

where the 3× 2 matrix in curly braces is the Wigner 6− j 
symbol, e is the elementary charge, and �n′l′|r|nl� is a radial 
matrix element.

Appendix B: Rubidium parameters

Here we calculate the strength of the dipole–dipole inter-
action for rubidium atoms and estimate the magnitude 
of the level shifts required for realizing our model. For 
ns1/2 ↔ np3/2 transitions in rubidium with principal 

(23)�nl′j′m′|d̂|nljm� = D

1
∑

q=−1

C
j′m′

jm1qǫq ,

(24)ǫ1 = −ex − iey√
2

, ǫ0 = ez, ǫ−1 =
ex + iey√

2
.

(25)

D =(−1)j+l′−1/2
√

2j + 1
√
2l + 1

{

l′ l 1

j j′ 1/2

}

Cl′0
10l0e�n′l′|r|nl� ,

http://dx.doi.org/10.5281/zenodo.22558)
http://dx.doi.org/10.5281/zenodo.22558)
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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quantum number n = 70, the reduced dipole moment D in 
Eq. (25) is given by

where e is the elementary charge and a0 is the Bohr radius. 
It follows that the strength of the dipole–dipole coupling V0 
in Eq. (7) for a = 20µm is

The lifetime of the ns1/2 and np3/2 states at tempera-
ture T = 300K and for n = 70 is Ts ≈ 151.6µs and 
Tp ≈ 191.3µs, respectively  [66]. Note that these values 
take into account the lifetime reduction due to blackbody 
radiation. The hopping rates vary with the lattice param-
eters but are typically of the order of V0. It follows that in 
principle many coherent hopping events can be observed 
before losses due to spontaneous emission set in. This 
finding is consistent with the experimental observations in 
Ref.  [42]. Note that the magnitude of V0 can be increased 
by reducing the size of the lattice constant a or by increas-
ing n.

Next we discuss the requirements for reducing the gen-
eral Hamiltonian in Eq. (2) to our model in Eq. (14). First, 
we note that the level shifts induced between Zeeman sub-
states must be large compared to V0 and hence of the order 
of 10MHz. Shifts of this magnitude can be realized with 
weak magnetic fields [67] or AC stark shifts [42]. Further-
more, the fine structure splitting between the ns1/2 and 
np3/2 manifolds is �EFS ≈ 2π × 10.8GHz  [68], which is 
much larger than V0, and hence, it is justified to neglect off-
resonant terms in Eq. (3). Finally, we note that the energy 
difference between the np3/2 manifold and the nearby np1/2 
manifold is approximately 285MHz  [68], which is also 
much larger than V0. It follows that the np1/2 states can be 
safely neglected.

Appendix C: k‑space Hamiltonian

The k-space Hamiltonian can be obtained by considering 
the single-excitation sub-space E1 spanned by the basis 
states

where |α� denotes one p excitation at site α and |0� is the 
“vacuum” state with zero excitations, i.e. the atoms at 
all lattice sites are in state |s1/21/2�. In order to solve the 
eigenvalue equation

with |ψ� ∈ E1, we describe the lattice in Fig. 1 by a rectan-
gular Bravais lattice with a two-atomic basis. More specifi-
cally, the direct lattice points are given by the R atoms such 

(26)D ≈ 2909ea0 ,

(27)V0/� ≈ 2π × 1.03MHz .

(28)|α� = S+α |0� ,

(29)Heff|ψ� = E|ψ�

that the basis is comprised of one R atom at 0 and one B 
atom at (a + b)/2. According to Bloch’s theorem [69], we 
can solve Eq. (29) with the Ansatz

where the coefficients uα can be written as

and k is a point in the first Brillouin zone of the direct lat-
tice. The vector U(α) in Eq. (31) is the Bravais lattice point 
associated with site α,

With Eqs. (30) and (31), Eq. (29) can be reduced to the fol-
lowing matrix equation for the amplitudes ψR and ψB,

where the 2× 2 matrix H(k) is the k-space Hamiltonian. 
We find H(k) using the software package MATHEMAT-
ICA  [70] for each set of lattice parameters a and b. In 
general, the resulting expressions are too complicated to 
display here. In the special case of nearest-neighbour inter-
actions only, we find 

where cos(α) = 1/[1+ (b/a)2]1/2 and [H(k)]21 
= [H(k)]∗

12
.
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