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point, using UV laser sources illuminating a photosensi-
tive fiber from the side [1]. Applications of LPGs include 
tunable band-rejection filters [2–4], gain equalizers [5] and 
dispersion compensation [6–8] in the field of telecommu-
nications. All of the above-mentioned long-period gratings 
have in common that they are permanently inscribed into 
the fiber.

Parallel to the development and application of fixed 
LPGs, a dynamic control of the modal content was found 
of interest and firstly realized by inducing flexural acous-
tic waves in a fiber [9–11]. While offering some flexibility, 
the rate by which these gratings can be changed is funda-
mentally limited by the speed of acoustic waves in glass, 
and acoustic gratings have not found a wide application 
yet. However, in general a fast and dynamic control of 
the modal content at a position of choice could be of high 
interest, e.g., in the context of ultrafast transverse switch-
ing for upcoming spatial division multiplexing systems 
[12]. In order to further scale data capacities, transverse 
eigenmodes of few-mode fibers are proposed to be used as 
a multiplicator for existing data channels in telecommuni-
cations [13, 14]. In this context, acousto-optical switching 
of transverse modes has very recently gained new inter-
est [15]. However, as these switches are limited in the 
achievable switching speed to the order of tens of micro-
seconds, one challenging aspect of using transverse modes 
for data communications remains the ultrafast routing and 
switching.

An ultrafast, flexible and noninvasive method for chang-
ing the transverse modal content of a fiber seemed not 
feasible using long-period gratings until Park et  al. and 
others demonstrated an optically induced long-period grat-
ing (OLPG) making use of the dependence of the refrac-
tive index on the local intensity (the optical Kerr effect) 
as well as a multi-mode interference beating between two 

Abstract  Transverse mode conversion at an index grat-
ing, all-optically induced by multi-mode interference and 
the optical Kerr effect, is commonly studied by numerical 
simulations relying on either multi-mode implementations 
of the generalized nonlinear Schrödinger equation or beam 
propagation methods. Here, we present and discuss an 
analytical model describing the directed energy exchange 
between two probe modes moderated by two control 
modes. The analytical model can be derived in a four-wave 
mixing representation as well as in a material representa-
tion in analogy to the different numerical approaches dem-
onstrating their equivalence. The analytical nature of the 
model is used to provide general insight into the conver-
sion process in dependence on phase mismatch as well as 
induced coupling strength. While being a continuous-wave 
model, the applicability of the model for mode conversion 
using ultrashort pulses is discussed and guidelines for using 
the model as a first estimate for experiments or for more 
precise but time-consuming numerical simulations are 
given.

1  Introduction

The control over the transverse modal content of optical 
fibers by means of periodic perturbation of light propaga-
tion has found many applications since the first introduction 
of permanent long-period gratings (LPGs) written point by 
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transverse modes of a quasi-cw nanosecond control beam 
[16, 17]. In order to reduce pulse energy while keeping 
the pulse peak power fixed, it was recently proposed and 
numerically modeled to use femtosecond pulses for the 
probe and the control beam in a co-propagating setup [18]. 
This reduction in necessary pulse energy has been success-
fully realized experimentally achieving a reduction in about 
a factor of 150 in step-index fibers [19] as well as even a 
factor of 300 using a two-color approach in graded-index 
fibers [20]. A further decrease in pulse energy was pre-
dicted for using integrated optical waveguides and highly 
nonlinear materials [21].

Although first analytical expressions for OLPGs based 
on coupled mode equations have been derived already 
early in reference [16], so far predicting the efficiency of 
the all-optically induced gratings solely relies on numerical 
simulations either using a beam propagation method [22] 
for quasi-continuous-wave (quasi-cw) radiation or using 
the multi-mode generalized nonlinear Schrödinger equation 
(MM-NLSE) in the case of ultrashort pulses [18, 21, 23].

As a complement to these time-consuming numerical 
tools, an analytical framework for the description of cw- 
and ultrafast induced OLPGs will be presented here. Ana-
lytical expressions for the evolution of the modal contents 
of the probe beam were derived, which describe the energy 
evolution exactly in the cw-limit. Remaining limitations of 
the accuracy of the predicted mode conversion were found 
to arise for a mismatch in pulse duration or when the occur-
ring group delay of the used ultrashort control and probe 
pulses is comparable to or even larger than their pulse dura-
tion. However, even in these unfavorable cases the analyti-
cal model allows to determine the order of magnitude of 
the achievable conversion at given fiber and control beam 
parameters. If more exact predictions are necessary, the 
results from the model can be used to quickly narrow the 
range of initial parameters for a full numerical simulation 
to save valuable numerical simulation time (minutes up to 
hours for a full simulation compared to milliseconds for 
evaluating the analytical expression). The analytical nature 
of the model, furthermore, accomplishes a direct insight 
into the physical process and allows to determine the major 
control pulse and waveguide parameters that govern the 
mode conversion.

2 � Analytical model

OLPGs have been described theoretically via the induced 
change of the refractive index by the optical Kerr effect 
(material representation, [16]). The refractive index change 
being induced by the multi-mode interference of two con-
trol beam modes (amplitude Aj, j = 1, 2) and acting on 
two probe beam modes ( j = 3, 4) can be evaluated by the 

so-called coupled mode theory [24], very similar to the 
treatment of permanent long-period gratings. The result-
ing change in refractive index alongside the waveguide 
(z-direction),

with �n being a function of the control beam power and 
Ω = �βc = β1 − β2 of its propagation constants βj 
directly leads to the coupled mode equations (see “Appen-
dix 1” for details).

The solution in the material representation is equivalent 
to describing the interaction in a nonlinear wave interac-
tion representation of four-wave mixing (see “Appendix 
2”). The coupled mode equations can be directly derived 
from the four-wave mixing interaction between the modes 
p, l, m, n described in the MM-NLSE by the overlap inte-
grals Q(1,2)

plmn (see reference [25] for details):

with n2 being the nonlinear index of refraction, ω0 the 
angular frequency of the control beam and D34,D33 the 
coupling coefficients. The equivalency of the two theoreti-
cal approaches connects the four-wave mixing interaction 
directly with transverse mode conversion for the first time 
and strengthens the physical interpretation of the mode 
conversion process in reference [18] being a result of opti-
cally induced long-period gratings.

After deriving the coupled mode equations for OLPGs, 
the results from standard coupled mode theory can be read-
ily applied: The dimensionless phase mismatch σ normal-
ized to the coupling strength between the induced grating 
and the two probe modes for OLPGs results in

with κ =
√

D̄34D̄43 ∝ |A1||A2| and � = �βc −�βp being 
the mismatch of the difference in propagation constants of 
the control and the probe modes. With an induced grating 
and assuming unit power in one probe mode ( j = 3) and 
zero power in the other probe mode ( j = 4) at the begin-
ning of the fiber results in an asymptotic power transfer to 
the second probe mode of

The power in the first probe mode is always given by 
P3 = 1− P4 due to energy conservation. The first deduc-
tion from Eqs.  (3) and (4) is that the effective conversion 

(1)n(x, y, z) = n′0(x, y)+�n(x, y) cos(Ωz − φ0),

(2)

∂A3

∂z
= iβ3 · A3 + 4

in2ω0

c
|A1||A2| cos [(β1 − β2)z]

·
(

Q
(1)
3412A4 + Q

(1)
3312A3

)

= iβ3 · A3 + iD34 · A4 + iD33A3,

(3)σ = 2

κ
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2

κ
�,

(4)P4(z) = F2 sin2
(κ · z
2F

)

, F = 1/

√

(

1+ σ 2

4

)

.
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phase mismatch σ does not only depend on the difference in 
propagation constants of both modes (�), but is instead nor-
malized to the coupling strength κ ∝ |A1||A2| =

√
P1 · P2 

and thereby to the power of the control beam modes. The 
resulting power dependency of the conversion efficiency 
(η = P4/(P3 + P4)) was also found in the numerical sim-
ulations presented in references [21, 23]. In these simula-
tions, the decreasing effective conversion phase mismatch 
with control beam power was interpreted physically as an 
increasing conversion rate making up for the dephasing of 
the propagating probe and control modes.

Furthermore, when taking into account the first-order 
correction to the asymptotic solution from Eq.  (4) in the 
phase-matched scenario (σ = 0, leading to F = 1), the 
power in mode j = 4 is given by [26]:

leading to a small oscillation of the modal power around 
the asymptotic solution with a period much shorter than 
the conversion length. The main contribution is still the 
asymptotic solution sin2

(

κ·z
2

)

 that was already found in 
Eq.  (4). The amplitude of the oscillations is given by the 
fraction κ/�βp, so that a very strong control beam as well 
as a very small difference in modal propagation constants 
in the probe beam would result in a large modulation of the 
energy transfer. A first investigation of this modulation was 
already done numerically for cw-control and probe beams 
[22], where it was observed, that the fast oscillations are 
connected to the mode beating period. This hypothesis 
has hereby been verified analytically, although the beating 
period of the probe modes is responsible for the modula-
tion, and not that of the control beam modes as claimed in 
[22].

In order to verify the developed theoretical description 
of all-optical mode conversion, the calculated results can 
be compared to numerical simulations, e.g., using a sca-
lar three-dimensional beam propagation method as dem-
onstrated in reference [22]. The result of such a compari-
son is shown in Fig. 1: For the numerical simulation, two 
cross-polarized beams and a resulting nonlinear index of 
nXPM2 = 2

3
· n2 has been chosen. The resulting evolution of 

the electrical field is shown decomposed into the modes of 
the waveguide, the black solid line showing the evolution 
of the LP11-mode and the black dashed line the evolution of 
the fundamental mode. The modal powers derived from the 
OLPG coupled mode theory (OLPG-CMT) are displayed 
as the blue and red curve, respectively. Excellent agreement 
between the analytical model and the numerical simulation 
was found with a normalized rms deviation

(5)P4(z) = sin2
(κ · z

2

)

− κ

4�βp
sin

(

2�βp · z
)

sin (κ · z)

(6)
ρrms =

1

N · P̄4

N
∑

i=1

∣

∣P4,sim(zi)− P4,CMT(zi)
∣

∣

2

of ρrms = 0.03, with P̄4 being the mean value of the modal 
power in the waveguide. Hence, the OLPG-CMT does rep-
resent a straightforward tool to estimate the power transfer 
for a given control beam power and phase mismatch.

3 � Results and discussion

The developed analytical model can be applied to calcu-
late the conversion efficiency η that one has to expect from 
an OLPG at a given control beam peak power and phase 
mismatch without the need for time-consuming numerical 
simulations. In order to provide a very general result that 
can be applied to virtually any waveguide, the conversion 
efficiency as well as the conversion length zc, after which 
the conversion maximum is reached, is displayed in Fig. 2 
a and b as a function of the coupling strength κ as well as 
the mismatch of the difference of the propagation constants 
� of the involved modes. The individual peak powers that 
will be necessary in a particular waveguide depend on the 
effective modal areas as well as the nonlinear coefficient of 
the used waveguide material [see Eqs. (20) and (31)]. For a 
graded-index fiber with a core diameter of 50µm and a con-
trol beam center wavelength of 1030 nm, the correspond-
ing peak powers in each control beam mode are displayed 
alongside κ as a reference. As was discussed in the last sec-
tion, the conversion efficiency displayed in Fig.  2a drops 
when a phase mismatch � occurs between control and 
probe beam, and only by increasing the coupling strength a 
high efficiency can be regained reaching η = 100% in the 
limit of an infinite coupling strength. A different behavior 
is found for the conversion length shown in Fig. 2b which 
is reduced to shorter waveguide lengths with increasing 
phase mismatch as well as coupling strength. The displayed 
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Fig. 1   Calculated all-optical cw power transfer from the LP01 (red 
dashed line) to the LP11 probe mode (blue solid line) in comparison 
with a numerical simulation relying on a three-dimensional beam 
propagation method (dashed and solid black lines). The control beam 
was assumed to be cross-polarized and at a power of 60 kW in each 
mode. Both beams were centered in wavelength around 1030 nm, and 
the fiber was a step-index fiber with a core diameter of 25µm and a 
numerical aperture of about 0.06 at 1030 nm
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false color plots allow to quickly estimate the expected effi-
ciency of a conversion process and the needed length of the 
waveguide for planning an experiment.

However, note that the presented results are only exact 
in the cw-limit. In order to explore the usefulness of the 
presented results for pulsed applications, we conducted 
a systematic study by comparing the results of the theo-
retical model with full simulations of the MM-NLSE in a 
graded-index fiber and by taking into account the nonlin-
ear interactions between the pulses as well as dispersive 
broadening and walk-off (� = 7.3/m, κ = 20.3/m—cor-
responding to a peak power of 40 kW in each control mode 
at a center wavelength of 1030 nm and a probe beam wave-
length of 1300  nm). In general, a deviation of the results 
can be expected from two main contributions: (1) If probe 
and control pulses are of similar duration or the control 
pulses are even shorter than the probe pulses, the grating 
(coupling) strength κ will vary at different temporal posi-
tions of the probe pulse. When the cw-model would predict 
a complete conversion at a certain peak power of the con-
trol pulse, e.g., some remaining energy in the pulse wings 
was observed in numerical simulations [18]. (2) Even for 
probe pulses considerably shorter than the control pulses, 
meaning the coupling strength is nearly uniform, the cw-
model can fail if strong pulse walk-off occurs. In this case, 
the coupling strength, while being uniform for the probe 
pulse at each waveguide position, will decrease along the 
waveguide.

In order to study both of these cases, we varied the ratio 
tc/tp of the control and probe pulse duration from equal 
durations up to five times longer control than probe pulses. 
Furthermore, for a fixed ratio of pulse durations we var-
ied the occurring group delay relative to the control pulse 

duration ranging from 10  % up to over 100  %. This was 
achieved by scaling the control pulse durations (tc from 
500 fs to 5 ps) while keeping the fiber length and param-
eters and thereby the occurring absolute group delay (�τ 
about 521 fs) fixed. For each combination of pulse duration 
ratios and relative group delay, we then calculated the nor-
malized rms deviation ρrms of the power in the higher-order 
mode in comparison with the powers calculated with the 
cw-model assuming cw-control powers equal to the peak 
power of the control pulses. The resulting rms deviations 
are displayed in Fig.  3a. As it was expected, the error of 
the cw-model dropped with increasing pulse duration ratio 
between the control and the probe pulses and saturated 
toward a ratio of five. Furthermore, the influence of the 
group delay became significant when surpassing half the 
control pulse duration. The mean squared error for short 
probe pulses at relative group delays bigger than 70–80 % 
was found to be equivalent to the error of equal probe to 
control pulse durations at low group delay.

In Fig.  3b, c, the predicted power in the higher-order 
mode is plotted for the cw-model and compared to the 
result of a numerical simulation during one conversion 
cycle for parameters indicated by gray circles in Fig.  3a 
to give an impression of the occurring deviation between 
both models. In Fig.  3b, the control pulses are assumed 
to be of the same duration as the probe pulses resulting in 
a relatively large rms error of more than ρrms = 0.4. The 
large rms error resulted from the cw-model (depicted by 
the dashed black line) clearly overestimating the occur-
ring mode conversion in comparison with the full numeri-
cal simulation (red solid line) for the reasons given above. 
In contrast, the conversion along the fiber for five times 
shorter probe than control pulses is displayed in Fig. 3c and 
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Fig. 2   Results of the analytical model of the all-optical cw power 
transfer between two higher-order modes as a function of the cou-
pling strength κ as well as mismatch between the propagation con-
stants of probe and control beam �. For reference, the corresponding 
peak power in a 50 µm graded-index fiber is given alongside κ for a 

control beam wavelength of 1030 nm. In a the conversion efficiency 
η is displayed color coded with contour lines indicating a set of fixed 
conversion efficiencies while in b the conversion length after which 
maximum conversion is achieved is shown on a logarithmic scale
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shows very good agreement corresponding to an rms error 
of less than ρrms = 0.04.

The points discussed above show the benefits as well as 
limitations of the developed model and allow to classify the 
results given by the model: For control pulses significantly 
longer than the probe pulse in combination with a negligi-
ble group delay within one conversion length, the results 
of the analytical model can directly be used as a very good 
approximation for the expected conversion efficiency. 
When these requirements are not met, the results from the 
analytical model can still be used to get an understanding 
of the expected order of magnitude of the conversion effi-
ciency in dependence of the fiber length and control pulse 
power. As the analytical model allows to calculate results 
within milliseconds, these results can be used as appropri-
ate predictions to drastically lower the amount of initially 
free parameters for a more exact numerical simulation or 
even for an experimental verification.

4 � Conclusion

In this manuscript, an analytical description of optically 
induced long-period gratings was presented connecting for 
the first time the material representation with an ultrashort 
pulse induced four-wave mixing interaction. It was suc-
cessfully demonstrated that the all-optical mode conversion 
process can be described either in a material representa-
tion, in which the local modes are altered and the result-
ing energy transfer is described by coupled mode equa-
tions, or alternatively in a four-wave mixing representation, 
derived from the coupled nonlinear Schrödinger equations. 
Both approaches led to the same analytical description of 
the energy transfer that is supposed to exactly describe the 
process in the long-pulse or quasi-continuous-wave regime. 

The developed model was compared to numerical simula-
tions that have already been published elsewhere, describ-
ing the conversion process in the material representation 
[22] as well as in the four-wave mixing representation [18]. 
Excellent agreement was found for comparison to contin-
uous-wave simulations, while modeling nonlinear trans-
verse mode conversion with ultrashort pulses was shown 
to depend on occurring pulse walk-off, leading to a devia-
tion from the analytical model when the walk-off is becom-
ing significant. Despite these shortcomings, the presented 
analytical model allowed to gain insight into the physical 
dependence of the conversion efficiency on the control 
beam power and the normalized phase mismatch. Due to 
the analytical nature of the description of the conversion 
process, the developed model allows to directly estimate 
(within milliseconds) the maximum achievable mode con-
version for any combination of control beam and wave-
guide parameters (e.g., control power and center wave-
lengths, initial phases) without having to rely on numerical 
simulations (calculation time of hours for a single initial 
parameter set) and, hence, saving valuable computation 
time.

Appendix 1: Material representation

In this section, coupling coefficients of an optically induced 
long-period grating are derived in detail in the material 
representation, i.e., describing the mode conversion pro-
cess with coupled mode theory. The coupling of trans-
verse modes by a sinusoidal perturbation of the refractive 
index, as it is the case by a periodic long-period grating, 
has been described already by Snyder in 1972 [24] before 
first experimental results have been discussed. The result-
ing so-called coupled mode theory is very well described 
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in several textbooks [26, 27] as well as papers [28] and in 
this section only the necessary modifications to describe 
all-optically induced long-period gratings are given. The 
nomenclature and mode normalization is the same as in 
Snyder  [26] so that the analytical signal of the electrical 
field E(x, y, z) of the forward-propagating bound modes of 
a translation invariant optical waveguide is given by:

Here, the frequency-dependent propagation constant or 
eigenvalue of the jth mode is called βj(ω), whereas the kth 
coefficient of its Taylor series centered at ω0 will be given 
as β(k)

j . The transverse electric field distributions êj(x, y) 
and magnetic field distributions ĥj(x, y) contain the implicit 
time dependence exp(−iω0t) and are considered orthonor-
mal with regards to the definition given in reference [26]:

The total power Pj of one mode propagating in the 
z-direction is, therefore, given by the modal expansion 
coefficient Aj:

The electrical field of the multi-mode interference of 
two control modes can be described as:

with A1,A2 ∈ R and with a relative phase of φ0 between the 
two modes. The Kerr-induced local refractive index expe-
rienced by the probe beam is proportional to the control 
beam intensity I(x, y, z) and given by

As the index change is induced by cross-phase modulation 
(XPM), the nonlinear index nXPM2  differs from the regular 
nonlinear index n2 known from, e.g., self-phase modu-
lation by a factor of nXPM2 = 2n2 for two beams with the 
same polarization and nXPM2 = 2

3
n2 for two cross-polarized 

beams in cylindrically symmetric optical fibers [29]. The 
induced index change is proportional to the multi-mode 
interference intensity or power density pattern that can be 
calculated from the z-component of the Poynting vector 
I = �Sz� [26]. If the longitudinal component of the electri-
cal field ez can be neglected in comparison with its trans-
verse components, as it is the case in the weakly guiding 
regime, the mode fields êj under investigation in this section 
can be transformed to be completely real valued. When, 
furthermore, assuming β1 ≈ β2 ≈ 2πn0

�0
 for calculating the 

(7)
E(x, y, z) =

∑

j

AjEj(x, y, z),

(8)Ej(x, y, z) = êj(x, y) exp(iβjz).

(9)
1

2

∫

A∞
êj × ĥ

∗
k · ẑdA =

{

1, if j = k

0, if j �= k.

(10)Pj = |Aj|2.

(11)
E(x, y, z) = A1ê1(x, y) exp(iβ1z)

+ A2ê2(x, y) exp (i(β2z + φ0)),

(12)n(x, y, z) = n0 + nXPM2 · I(x, y, z).

magnitude of the modal intensities (both are of the order of 
magnitude 106/m), the power density reduces to

with n0 being the refractive index of the core of the fiber, �0 
the wavelength of the light in vacuum and the angular wave 
number Ω = β1 − β2, here, the approximation used for the 
magnitude of the modulation is not valid as for the phase of 
the cosine the small difference between β1 and β2 is of sig-
nificance. The resulting changed refractive index,

can be interpreted as a z-independent change of the nomi-
nal refractive index n0(x, y) due to an added constant offset

and an interference term that leads to a cosinusoidal modu-
lation of the refractive index with magnitude

For the coupling of transverse modes, the square of the 
refractive index (or the permittivity) is the relevant material 
parameter, which can be calculated to

The coupling coefficients for an optically induced 
long-period grating can, therefore, be reduced to the same 
form as in the standard coupled mode equations in refer-
ence [26] with δn2 = 2n′0(x, y) ·�n(x, y), when the initial 
phase between both control beam modes is φ0 = π/2. In 
order to directly adapt the results from [26], the relative 
phase between the two control modes is assumed to be 
φ0 = π/2 for the rest of this section. As the all-optically 
induced refractive index change can then be reduced to 
the same type of equation as for a conventional sinusoi-
dally shaped long-period grating, the asymptotic solution, 
describing the energy transfer from one mode to another, 
as well as the higher-order corrections leading to a mod-
ulation of the energy transfer, can be readily taken from 
reference [26] to describe the cw-limit of all-optical mode 
conversion. The coupled mode equations in this case are

(13)

�Sz� =
〈

1

2
Re

(

E×H
∗)
ẑ

〉

= n0

2

√

ǫ0

µ0

{

|A1|2|ê1(x, y)|2 + |A2|2|ê2(x, y)|2

+ 2A1A2ê1(x, y) · ê2(x, y) cos(Ωz − φ0)
}

,

(14)n(x, y, z) = n′0(x, y)+�n(x, y) cos (Ωz − φ0),

(15)
n′0(x, y) = n0(x, y)+

1

2
nXPM2 · n0

√

ǫ0

µ0

·
{

|A1|2|ê1(x, y)|2 + |A2|2|ê2(x, y)|2
}

(16)�n(x, y) = nXPM2 · n0
√

ǫ0

µ0

A1A2ê1(x, y) · ê2(x, y).

(17)

n
2(x, y, z) = n

′2
0 (x, y)+ 2n

′
0 ·�n(x, y) cos(Ωz − φ0)

+O(�n
2) ≈ n

′2
0 (x, y)+ 2n

′
0�n cos(Ωz − φ0).
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The coupling coefficient for two probe modes ( j = 3, 4) 
determined by the index grating induced by control modes 
( j = 1, 2), which is the main result of this section, is then 
given by

with the integral of the area element dA over the total mode 
area.

Appendix 2: Four‑wave mixing representation

The theoretical description of OLPGs given in the last sec-
tion can be interpreted as a periodic perturbation of the 
local probe modes of the waveguide by the refractive index 
change induced by the control beam. This description is 
well suited for long pulses in the picosecond regime or 
ultimately in the cw-limit. In this section, the all-optical 
mode conversion will be described in detail in the four-
wave mixing representation derived from the multi-mode 
generalized nonlinear Schrödinger equations (MM-NLSE) 
presented by Poletti and Horak [25]. This set of equations 
can be used to accurately describe the nonlinear interaction 
of different transverse modes even for ultrashort pulses. It 
will be shown that the description of an optically induced 
grating by the MM-NLSE is equivalent to the material 
representation of Sect. 1 in the cw-limit and is, therefore, 
perfectly suited for numerically modeling the conversion 
process in case ultrashort pulses are used.

The evolution of the complex modal amplitude Ap(t, z) 
as formulated in reference [25] is given by the following 
coupled equations:

(18)
∂A3

∂z
= iβ3 · A3 + iD34 · A4 + iD33A3,

(19)
∂A4

∂z
= iβ4 · A4 + iD43 · A3 + iD44A4.

(20)

D34 = D̄34 · sin(Ωz)

D̄34 = nXPM2 · k
2
n20

ǫ0

µ0

A1A2

∫

A∞

(

ê1 · ê2
)(

ê3 · ê4
)

dA,

(21)

∂Ap

∂z
=i

(

β(0)
p − β(0)

)

Ap + Dp(Ap)

+ in2ω0

c

∑

l,m,n

{(

1+ iτ
(1)
plmn

∂

∂t

)

· 2Q(1)
plmnAl

·
∫

R(τ )Am(t − τ)A∗
n(t − τ)dτ +

(

1+ iτ
(2)
plmn

∂

∂t

)

· Q(2)
plmnA

∗
l ·

∫

R(τ )Am(t − τ)An(t − τ)e2iω0τdτ

}

,

with β(j)
p  being the jth Taylor series coefficient of the 

propagation constant β of the pth mode, Dp the dispersion 
operator, Q(1,2)

plmn the coupling coefficients between the trans-
verse modes, τplmn the shock-time coefficients and R(τ ) 
the delayed Raman response of the waveguide. In order to 
derive the mode conversion efficiency in the long-pulse or 
quasi-cw approximation, dispersion as well as self-steepen-
ing or the Raman effect can be neglected reducing the cou-
pled equations to the simpler form

At first, the case of a strong control beam being distrib-
uted between two modes (p = 1, 2) and also being cross-
polarized to the probe beam is considered. With the power 
of the control beam being much higher than that of the two 
probe modes (p = 3, 4, P1 ≈ P2 ≫ P3 ≈ P4), changes of 
the control beam induced by the probe beam can be eas-
ily disregarded. This treatment can be compared to the case 
of an undepleted pump beam in conventional four-wave 
mixing and leads to an unperturbed control beam and to a 
straightforward description of the modal coefficients of the 
control beam

with p = 1, 2. In contrast to four-wave mixing amplifi-
cation, the self- and cross-phase modulation of the con-
trol beam itself can be neglected in a first approximation 
as well as only phase differences between the modes are 
of interest, and the difference in acquired nonlinear phase 
between the two control modes is usually small. The small 
probe beam power (usually two to three orders of magni-
tude smaller than the control beam), furthermore, allows to 
disregard all terms in the sum over l, m and n in Eq. (22) 
which contain any product of A3 and A4, as it will be small 
in comparison with a product containing at least two of the 
control beam modal coefficients (A1 and/or A2). Finally, 
noting that in case of a cross-polarized control and probe 
beam Q3lmn = 0 for l �= 3, 4 [25], we end up with the fol-
lowing equation for the change in amplitude of the probe 
mode 3 (A3(z, t), omitting the superscript index at β(0)

j  for 
better readability): 

(22)

∂Ap

∂z
= i

(

β(0)
p − β(0)

)

Ap +
in2ω0

c

·
∑

l,m,n

{

2Q
(1)
plmnAlAmA

∗
n + Q

(2)
plmnA

∗
l AmAn

}

.

(23)Ap(z, t) = |Ap(t)| · exp
(

iβ(0)
p · z

)

,

(24a)

∂A3

∂z
= iβ1A3 +

in2ω0

c

{

A4

(

2Q
(1)
3412

· |A1||A2| · e i(β1−β2)z

+ 2Q
(1)
3421

· |A2||A1| · e
i(β2−β1)z

)
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The according equation for A4 can be obtained by 
exchanging the index 3 with the index 4 and vice versa for 
the terms A,β and Q. The two terms in Eq. (24c), contain-
ing the coupling coefficients Q(1)

3311 and Q(1)
3322, constitute the 

XPM acting from the control beam on the probe beam that 
can be identified with the constant refractive index offset 
introduced in Eq.  (15). In the considered scenario, XPM 
as well as SPM can be approximated as being of the same 
strength for both control beam modes, except for a slight 
dependence on the difference in transverse mode shape. As 
for phase matching only relative phase differences matter, 
we neglect these terms in the following as a constant phase 
contribution during propagation. The term labeled  (24d) 
and the following terms are considered non-phase-matched 
terms. Assuming a nearly phase-matched mode conversion 
scenario with β1 − β2 ≈ β3 − β4, in general, these terms 
oscillate with a frequency relative to A3 that is very fast 
in comparison with the phase-matched contributions from 
Eq. (24a). Therefore, the terms following Eq. (24d) do not 
contribute to the energy exchange, resulting in a descrip-
tion of the energy transfer as an asymptotic solution gov-
erned by the Q(1) coupling coefficients of Eq. (24a). While 
this assumption cannot exactly be justified easily a priori, 
it will be shown that it leads to the correct description of 
the all-optically induced mode conversion. The remaining 
terms denote a coupling of the amplitude of probe mode 3 
(A3) to probe mode 4 (A4) described by the terms in (24a) 
as well as a self-coupling (24b), both induced by the mag-
nitude of the two control modes (|A1| and |A2|). With these 
assumptions and recognizing that

(24b)

+ A3

(

2Q
(1)
3312 · |A1||A2| · e i(β1−β2)z

+ 2Q
(1)
3321 · |A2||A1| · e i(β2−β1)z

)

(24c)+ A3

(

2Q
(1)
3311 · |A1|2 + 2Q

(1)
3322 · |A2|2

)

(24d)

+ A4

(

2Q
(1)
3411

· |A1|2 + 2Q
(1)
3422

· |A2|2
)

+ A
∗
3

(

Q
(2)
3311

· |A1|2 · e
i2β1z + Q

(2)
3322

· |A2|2 · e
i2β2z

+ Q
(2)
3312

· |A1||A2| · e i(β1+β2)z + Q
(2)
3321

· |A2||A1| · e
i(β2+β1)z

)

+ A
∗
4

(

Q
(2)
3411

· |A1|2 · e
i2β1z + Q

(2)
3422

· |A2|2 · e
i2β2z

+Q
(2)
3412

· |A1||A2| · e i(β1+β2)z + Q
(2)
3421

· A∗
4
|A2||A1| · e

i(β2+β1)z
)}

.

(25)Q34 := Q
(1)
3412 = Q

(1)
3421 = Q43 := Q

(1)
4312 = Q

(1)
4321

we end up with the following two coupled equations for 
the modal coefficients of both probe modes A3 and A4:

These two equations are of identical form to the coupled 
mode equations derived in reference [26]. Using the defini-
tion for the Q’s of reference [25], the coupling coefficients 
can be expressed as:

with

Comparing the coefficients D′
34 and D′

43 with the coupling 
coefficients D34 and D43 introduced in Eq.  (20), further-
more, reveals that they are indeed identical to the cross-
polarized case in the material representation. Extending the 
analysis described above for the co-polarized case is eas-
ily done by acknowledging that Q3lmn �= 0 also for l �= 3, 4 
is leading to additional nonzero contributions that change 
the value of the fractional in front of the nonlinear index 
in Eq.  (31) to 2 · n2. Thereby, it is shown that describing 
the OLPG by the four-wave mixing interaction that can be 
numerically modeled by solving the multi-mode coupled 
nonlinear Schrödinger equations is equivalent to the solu-
tion of the coupled mode perturbation theory in the long-
pulse or quasi-cw regime. This equivalence analytically 
verifies that indeed the numerically observed transverse 
mode conversion during nonlinear interaction of probe 
and control beams physically originates from an optically 
induced long-period grating.

(26)Q33 := Q
(1)
3312 = Q

(1)
3321,

(27)

∂A3

∂z
= iβ3 · A3

+ 4
in2ω0

c
|A1||A2|

× cos [(β1 − β2)z] · (Q34A4 + Q33A3)

= iβ3 · A3 + iD′
34 · A4 + iD′

33A3

(28)
∂A4

∂z
= iβ4 · A4 + iD′

43 · A3 + iD′
44A4

(29)

D′
34 = 4

n2ω0

c
|A1||A2| cos (β1 − β2)z

· n20ǫ0

12µ0

∫

A∞

(

ê3ê4

)

·
(

ê1ê2

)

dA

(30)= D̄′
34 · sin(β1 − β2),

(31)

D̄′
34 =

2n2

3

k

2
n20

ǫ0

µ0

· |A1||A2|
∫

A∞

(

ê3ê4

)

·
(

ê1ê2

)

dA.
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