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atom. This leads to strong heating of the atoms, requiring 
additional cooling.

Alternative imaging techniques using the diffraction of a 
laser beam by an atomic ensemble have been demonstrated 
for the detection of cold atomic clouds [8–13]. However, 
these techniques have not been discussed either for single-
particle resolution or for single-site detection.

Here, we propose to image an atomic array with high 
resolution by using a variation of the off-axis holography 
technique of Leith and Upatnieks [13, 14]. Two coherent 
laser beams are used to record the hologram of an illumi-
nated atomic array. One acts as a probe beam and is coher-
ently scattered by the atoms [15], while the other acts as 
a reference beam which bypasses the atoms. Both beams 
are superimposed to interfere and to generate the hologram 
which is recorded with a charge-coupled device (CCD) 
camera. An algorithm based on fast Fourier transforma-
tion reconstructs an image of the atomic array. The refer-
ence beam fulfills two purposes: On the one hand, it sepa-
rates the holographic image from disturbing low-spatial 
frequency signals in the reconstruction. On the other hand, 
it strongly amplifies the atomic signal, as in spatial hetero-
dyne detection [13]. This allows the use of a weak probe 
beam while keeping the signal high compared to detection 
noise. We estimate that for our scheme the number of scat-
tered photons per atom can be small enough (≈150 pho-
tons) such that single-site detection could be realized with-
out additional cooling. Moreover, the scheme might open 
the path for multi-particle detection per lattice site, since 
the low photon flux reduces photoassociation.

The paper is organized as follows: Sect.  2 sketches 
the basic scheme of the holographic detection method. 
Section  3 reviews theoretical background on atom light 
interaction, and on optical signals. In Sect.  4, we pre-
sent the results of numerical calculations for the concrete 

Abstract  We propose a novel approach to site-resolved 
detection of a 2D gas of ultracold atoms in an optical lat-
tice. A near-resonant laser beam is coherently scattered by 
the atomic array, and after passing a lens its interference 
pattern is holographically recorded by superimposing it 
with a reference laser beam on a CCD chip. Fourier trans-
formation of the recorded intensity pattern reconstructs the 
atomic distribution in the lattice with single-site resolution. 
The holographic detection method requires only about two 
hundred scattered photons per atom in order to achieve a 
high reconstruction fidelity of 99.9  %. Therefore, addi-
tional cooling during detection might not be necessary even 
for light atomic elements such as lithium. Furthermore, first 
investigations suggest that small aberrations of the lens can 
be post-corrected in imaging processing.

1  Introduction

Ultracold atoms in optical lattices allow for investigating 
many-body physics in a very controlled way (see e.g., [1]). 
For such experiments, site-resolved detection of the exact 
atomic distribution in the lattice can be very advantageous 
and it has recently been demonstrated [2–7]. In these exper-
iments, the fluorescence of illuminated atoms is detected 
using a high-resolution objective. During the imaging pro-
cess, typically several thousand photons are scattered per 
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example of 6Li atoms in an optical lattice. Furthermore, we 
discuss the conditions for which a successful reconstruction 
of an atomic distribution can be achieved, including noise, 
mechanical vibrations, and lens aberrations. Section 5 con-
cludes with a short summary and an outlook.

2 � Detection scheme 

We discuss the proposal in terms of a concrete example. As 
depicted in Fig.  1, we consider an ensemble of NA = 50 
atoms distributed over a 2D lattice with 11× 11 sites and 
a lattice constant of a = 1µm. Each site is either empty or 
occupied by one single atom. We assume the lattice poten-
tial to be deep enough such that tunneling between the lat-
tice sites is negligible.

The overall setup for the detection method is shown in 
Fig. 2. A Gaussian laser beam, near-resonant to an optical 
atomic transition, is split into two beams, the probe and the 
reference beam. The probe beam propagates perpendicu-
larly to the atomic layer and illuminates the atoms in the 
optical lattice. It has a diameter much larger than the spa-
tial extent of the atomic sample, such that its electric field 
strength is approximately the same for all atoms.

The atoms are treated as Hertzian dipoles that coherently 
scatter the probe light. The scattered light is collimated by 
a diffraction-limited lens with a large numerical aperture 
and forms nearly perfect plane waves, which propagate 
toward the CCD detector. Since the spatial extent of the 
atomic sample is typically about three orders of magnitude 
smaller than the focal length f (Fig. 2 is not to scale!), the 
wave vectors of the plane waves are nearly parallel to the z 
direction (optical axis).

The non-scattered part of the probe beam is blocked by 
a small beam dump in the back focal plane of the lens. The 
reference beam bypasses the atomic layer and is superim-
posed with the collimated scattered light in the detection 
plane at an angle θ. In order to keep θ small (see discussion 
in Sect.  4), the reference beam is transmitted through the 
same lens as the scattered probe light. For this purpose, it is 
focussed to a micrometer spot size in the front focal plane 
(at a sufficiently large distance to the atoms) and then col-
limated by the lens.

The overall intensity pattern is recorded by a CCD cam-
era with a high dynamic range in order to resolve weak 
interference fringes on a high background signal. The pat-
tern is subjected to a 2D Fourier transform (FT) [16] which 
directly yields the atomic distribution in the lattice. This 
step is analogous to classical holography where a readout 
wave reconstructs the original object, corresponding to the 
holograms Fourier transform [17].

3 � Theoretical description

3.1 � Coherent light scattering

We use a semiclassical model for the interaction of a single 
atom with a monochromatic coherent light field. Each atom 
acts as a quantum mechanical two-level system with transi-
tion frequency ω0. The atom is driven by a weak external 
laser field with frequency ω. This leads to photon scattering 
with a rate [18]

where I denotes the incident intensity of the driving field, 
Isat the saturation intensity of the atomic transition, and 
∆ = ω − ω0 the detuning between laser and transition 

(1)RS =
Γ
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=

Nph
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,

Fig. 1   Ensemble of NA = 50 atoms, distributed over a 2D square lat-
tice with lattice constant a = 1µm
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Fig. 2   Basic scheme of the holographic detection method. A probe 
beam illuminates the 2D array of atoms and the scattered light is col-
limated by a lens with focal length f. The scattered light is superim-
posed with a reference beam on the CCD detector which is placed 
at a distance d behind the back focal plane. A beam dump blocks the 
unscattered light
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frequency. Γ  is the linewidth of the atomic transition, and 
Nph the total number of scattered photons per atom within 
the acquisition time Tac.

In general, the intensity Isc of the scattered light consists 
of both coherently and incoherently scattered parts. The 
coherent fraction of the scattered light Icoh/Isc is given by 
[18, 19]

A weak incident beam with large detuning will therefore 
yield mainly coherently scattered light. As a concrete 
example, choosing I/Isat < 1 and ∆ = −Γ  yields mostly 
coherent emission.

The probe beam as well as the reference beam 
(θ ≈ 1◦,φ = 45◦ see Eq.  9) are linearly polarized along 
the y direction. Treating the atoms as Hertzian dipoles, the 
electric field at position r = (x, y, z) in the far field, emitted 
by a single atom n at position rn = (xn, yn, 0), is given by

with the wave number k = 2π/�. Integrating the corre-
sponding intensity over the entire solid angle 4π relates 
EA0 and the total number Nph of scattered photons per atom

Here, c denotes the speed of light in vacuum and ǫ0 the per-
mittivity of free space.

The wave emitted by the nth atom in the optical lattice is 
converted by the lens into a nearly perfect plane wave with 
wave vector

The field distribution of the plane wave in the detector 
plane z = zD reads

where ϕn includes the constant term zDkn,z and the phase 
shift acquired by the wave while passing through the lens.

The field envelope gA(x, y) is a slowly varying function 
which can be determined from Eq. (3). Since f ≫ |xn|, |yn| , 
the propagation directions of all plane waves behind the 
lens are almost parallel to the z-axis and gA(x, y) is essen-
tially independent of z. Therefore, we calculate gA(x, y) at 
the position of the lens. Setting z = f  in Eq. (3) and using 
the relation |rn| ≪ |r| we obtain

(2)
Icoh

Isc
=

1+ (2∆/Γ )2

1+ (2∆/Γ )2 + I/Isat
.

(3)EA(r, rn) = EA0

√

(x − xn)2 + z2

k|r − rn|2
eik|r−rn| ,

(4)E2
A0 =

3k2�ω

4πcǫ0Tac
Nph.
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
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−xn
−yn
f



.

(6)ES,n(x, y) = EA0 gA(x, y) e
i(xkn,x+ykn,y+ϕn),

The Heaviside function Θ accounts for the finite size of the 
lens with radius rl.

The electric field of the Gaussian-shaped reference beam 
at the detector reads

with the wave vector

For small θ, the Gaussian field envelope gR(x, y) is given by

with reference beam waist w.

3.2 � Interference and Fourier transformation

The total electric field in the detector plane is obtained by 
adding up all individual fields. The corresponding intensity,

can be written as a sum of three contributions

The particle distribution is derived from the Fourier trans-
form FD of the intensity profile ID. FD decomposes into 

(7)gA(x, y) ≈
√

x2 + f 2

k(x2 + y2 + f 2)
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√

x2 + y2).
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(12)ID = I0 + IS + IRS.

Fig. 3   1D cut through a schematic 2D FT along the spatial frequency 
axis νx at νy = 0, illustrating the contributions of F0,FS, and FRS. The 
four peaks around νx × �f ≈ 20 µm reconstruct the positioning of the 
four atoms in Fig. 1 arranged along the xA axis at yA = 0
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three parts, F0,FS, and FRS. This is illustrated in the sche-
matic plot in Fig. 3, which depicts a 1D cut through a 2D 
FT along the spatial frequency axis νx at νy = 0. The illus-
tration is consistent with the atomic distribution in Fig.  1 
and presumes a wave vector kR with kR,y = 0.

The first contribution I0 in Eq. (12) is a broad structure-
less intensity background

whose FT F0 is represented by the large peak at the ori-
gin in Fig. 3. The width of the peak is determined by the 
inverse beam sizes gR and gA. The second contribution

with ∆ϕnm = ϕn − ϕm arises from the interference between 
the electric fields ES,n emitted by the individual atoms in 
the optical lattice. Since f ≫ |xn|, |yn|, the spatial frequen-
cies νnmx and νnmy are approximately given by

where (xn, yn) are the atomic positions in the optical lattice. 
Each pair of spatial frequencies νnmx, νnmy gives rise to a 
well-defined peak in the FT close to the origin. The width 
of the peaks is again determined by the inverse of the col-
limated beam width gA. The third term in Eq. (12),

arises from the interference of the scattered beams with the 
reference beam. Here, ∆ϕRn = ϕR − ϕn. The FT of IRS, i.e., 
FRS, can be conveniently used to extract the atomic distri-
bution in the lattice. Apart from an overall constant factor 
�f , the spatial frequencies νnx and νny directly correspond to 
the coordinates xn and yn of each particle n.

The offsets, sin θ cosφ/� and sin θ sin φ/�, can be tuned by 
adjusting the direction of the incident reference beam (see 
Eq. 9). As in spatial heterodyne detection, they are used to 
shift the peaks of the signal FRS away from the origin to 
separate them from the peaks of F0 and FS. Resolving Eq. 
(17) for the atomic coordinates xn and yn yields

(13)I0 ∝ E2
R0 g

2
R(x, y)+ NAE

2
A0 g

2
A(x, y)

(14)

IS ∝ E2
A0 g

2
A(x, y)

∑

n>m

cos[2π(νnmxx + νnmyy)+∆ϕnm]

(15)νnmx =
xm − xn

f �
, νnmy =

ym − yn

f �
,

(16)

IRS ∝ ER0EA0 gR(x, y) gA(x, y)

×
∑

n

cos[2π(νnxx + νnyy)+∆ϕRn],

(17)

νnx =
xn

�f
+

sin θ cosφ

�
,

νny =
yn

�f
+

sin θ sin φ

�

4 � Numerical calculations

In this section, we present the results of our numerical cal-
culations. First, we specify the used parameters and discuss 
the case of a noiseless detection. Then, we include detec-
tion noise and analyze its influence on the reconstruction 
fidelity. Finally, we compare our method with direct fluo-
rescence detection, estimate its sensitivity to mechanical 
vibrations, and discuss lens aberrations.

4.1 � Parameters and details

In the following, we consider an ensemble of NA = 50 
6Li atoms in a 2D lattice (see Fig.  1). The wavelength 
of the coherent probe and reference laser beams is set 
to � = 671  nm, close to the D2 transition of 6Li. The 
saturation intensity is Isat = 2.54  mW/cm2 at a natural 
linewidth of Γ = 2π × 5.87  MHz. The focal length of 
the collimation lens is chosen to be f = 7  mm and the 
numerical aperture (NA) is 0.71, which matches typical 
parameters of a custom long-working-distance objective 
(see Fig. 2).

In the given case, we set the reference beam waist to 
w = 5 mm (see Eq. 10). The illuminated area in the detec-
tion plane, which is located 70 mm away from the lens, has 
a radius of about 7  mm. In our simulations, we consider 
only a part of this area, namely a square section of 10×
10 mm2. The CCD pixel size is assumed to be Ap = 7× 7µ

m2, the quantum efficiency is set to Q = 0.8. We choose an 
acquisition time Tac of 200 µs. On the considered timescale, 
mechanical vibrations and particle tunneling inside the lat-
tice can be neglected.

Two fundamental parameters are varied: the average 
number of photons Nph scattered by a single atom into the 
entire solid angle 4π within Tac and the total power PR of 
the reference beam. In the present study, we consider the 
ranges 100 ≤ Nph ≤ 500 and 10−8 W ≤ PR ≤ 10−2 W. 
Given an average number of scattered photons Nph, the cor-
responding electric field strength EA0 is obtained from Eq. 
(4). Using Eqs. (1) and (2), we verify that with these param-
eters we stay in the regime of mainly coherent emission.

4.2 � Calculating the intensity pattern

We calculate the image captured by the CCD camera as fol-
lows. First, the intensity profile ID(x, y) in the considered 
section of the detection plane is calculated using Eq. (11). 

(18)
xn = �f νnx − f sin θ cosφ,

yn = �f νny − f sin θ sin φ.
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Then, the intensity ICCD(xp, yp) collected by a CCD pixel at 
position (xp, yp) is obtained by averaging over all intensity 
contributions covered by the corresponding pixel area. In 
contrast to x and y, the coordinates xp and yp exhibit only 
discrete values. ICCD is converted into an integer number 
ND of nominally incident photons, ignoring for now photon 
shot noise,

The output signal of a CCD camera in counts is

where ξ denotes the number of accumulated electrons 
per pixel that correspond to one count. It predefines the 
dynamic range of the CCD camera, which decreases with 
increasing ξ. In the calculations presented in Sect. 4, we use 
ξ = 1. For the considered parameters, however, values up 
to ξ = 10 yield almost the same results.

4.3 � Calculations without noise

Let us start the discussion of our calculations by consid-
ering the idealized situation of absent noise. Furthermore, 
for the purpose of better illustration, we choose an example 
where the power of the reference laser is comparatively low 
(PR = 10−8  W). For this choice, interference fringes are 
clearly visible, since the ratio IRS/I0 is comparatively high.

Figure 4a shows a cut through the corresponding inten-
sity profile ID(x, y) along the x-axis at y = 0 calculated with 
Nph = 500.

The pronounced oscillations on top and at the tails of a 
Gaussian profile as well as weak oscillations in between 
arise from the interference between the scattered probe 
light and the Gaussian-shaped reference beam. Since the 
relevant information about the atom positions is stored in 
these interference fringes, the period length of the oscil-
lations must be large enough to be resolved even after 
averaging intensity values within a pixel (see explanation 
above). We achieve this by using a small angle of incidence 
θ ≈ 1◦. This results in a sufficiently large period length of 
about 40 µm as revealed by the inset of Fig. 4a. The angle 
corresponds to a distance between the focus of the refer-
ence beam and the atomic ensemble of about 100 µm (see 
Fig. 2).

The emergence of the pronounced interference peaks at 
0,±4.5 mm in Fig. 4a can be understood as follows. The 
light scattered by the rectangular array of atoms resem-
bles the diffraction pattern of a perfect 2D square lattice, 
as depicted in Fig.  4b. The quickly oscillating intensity 
peaks in the center and at the edges in Fig. 4a are the cor-
responding zeroth and first-order diffraction peaks which 

(19)ND(xp, yp) = round

(

ICCD(xp, yp)TacAp

�ω

)

.

(20)Ncounts(xp, yp) = round

(

ND(xp, yp)Q

ξ

)

,

interfere with the reference beam. The atomic array, how-
ever, is not perfect as a number of lattice sites are unoc-
cupied. As a consequence, the intensity in between the 
major diffraction peaks is nonzero. This leads to the weak, 
but still clearly visible interference patterns in Fig.  4a 
between the strong oscillations in the middle and at the 
edges. The information about occupied lattice sites is con-
tained in these oscillations. In order to resolve them, espe-
cially for a higher reference laser power, the CCD camera 
needs a large dynamic range (12 bit or better).

As explained in Sect.  3, the atomic positions in the 
lattice can be directly derived from a 2D FT of the 

Fig. 4   a 1D cut through the calculated 2D intensity profile ID(x, y) 
in the detection plane along the x-axis for y = 0. The intensity pro-
file results from a superposition of the scattered probe beam and the 
broad Gaussian reference beam. An enlargement of the central part 
(inset) clearly reveals a sinusoidal interference pattern. For illustra-
tion purposes, a very low reference signal has been used in this model 
calculation, such that the interference fringes are clearly visible on 
the Gaussian background signal. b 2D intensity distribution in the 
detection plane without reference beam (false color image; blue: low, 
red: high intensity). It strongly resembles the diffraction pattern of a 
2D square lattice where the zeroth and first-order peaks are located in 
the center and at the edges, respectively
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intensity profile ID(x, y) or more precisely from a FT of 
Ncounts(xp, yp). An appropriately chosen section of such 
a FT is shown in Fig. 5, where the absolute values of the 
Fourier coefficients are displayed as a false color image.

The coordinates xA and yA give the position within the 
atomic layer and are related to the spatial frequencies νx 
and νy of the FT by (see Eq. 18)

The maxima in the 2D plot at yA = 0 correspond to the 
group of peaks labeled by FRS in the schematic 1D illustra-
tion of Fig. 3. In contrast to Fig. 4a, Ncounts(xp, yp) is cal-
culated using Nph = 150 and PR = 10−5 W. A comparison 
with Fig. 1 reveals that the atomic distribution is perfectly 
reconstructed.

4.4 � Speckle and shot noise

Let us now turn to the realistic situation where the image 
acquired by the CCD camera is disturbed by differ-
ent kinds of noise. These need to be taken into account 
to understand where the limits of the presented holo-
graphic detection method lie. In general, in an experi-
ment there are several sources which decrease the fidelity 
of a detection. For a CCD camera, there are photon shot 
noise, readout noise, and dark counts which have to be 
taken into account. However, for the case of a relatively 
strong reference beam and thus of a high light intensity, 

(21)
xA =�f νx − f sin θ cosφ,

yA =�f νy − f sin θ sin φ.

the dominant detection noise is given by shot noise. Shot 
noise describes fluctuations in the number of detected 
photons and obeys a Poisson distribution. It is taken into 
account by replacing ND, calculated from ICCD(xp, yp) in 
Eq. (19), by a Poisson-distributed variable with expecta-
tion value ND.

Imperfections of the ideally Gaussian intensity profiles 
of the probe and reference beams will also have an effect 
on the reconstruction. Such corrugations can be caused 
by effects such as shortcomings in the quality of optical 

Fig. 5   Section of the 2D FT yielding a perfectly reconstructed image 
of the atomic distribution in Fig. 1. The false color plot displays abso-
lute values of the Fourier coefficients (blue: low, red: high FT ampli-
tude). The simulation was performed without noise using the param-
eters Nph = 150 and PR = 10−5 W

Fig. 6   1D cut through the calculated CCD image Ncounts(xp, yp) 
along the xp axis at yp = 0 including noise (red line/dots). The param-
eters used in the calculation are Nph = 150 and PR = 10−5 W. The 
blue line depicts the undisturbed interference signal for comparison

Fig. 7   Example of a reconstructed image of the atomic distribution 
(2D FT of Ncounts(xp, yp)) taking into account speckle, shot, and read-
out noise (blue: low, red: high FT amplitude). The simulation was 
performed using the parameters Nph = 150 and PR = 10−5  W. For 
this example, our simple recognition algorithm (see text) yields a 
fidelity of 99.2 % to identify the occupation of an individual site
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elements or weak stray reflections of the laser beams. The 
resulting intensity distribution typically shows high-fre-
quency intensity fluctuations similar to laser speckle [20, 
21]. If we assume the fluctuations to occur on a length scale 
of about 1 µm in the detection plane, this kind of noise 
adds the intensity ISP(x, y) to ID(x, y). It is known [20, 21] 
that this added noise has an exponentially decreasing prob-
ability as a function of |ISP|

From our own laboratory experience, we estimate that the 
typical amplitude of these fluctuations is on the level of 
about one percent. Therefore, we set α = 0.01.

In order to take into account readout noise, we add an 
integer number ∆Ncounts(xp, yp) to Ncounts(xp, yp). This 
noise is obtained from a zero-centered normal distribution 
with a standard deviation of 3 counts (typical specification 
of a commercial electron multiplying CCD camera).

The combined effects of intensity averaging, noise, 
and photon counting (see Eq. 20) are illustrated in Fig. 6. 
It depicts a 1D cut through the CCD image Ncounts(xp, yp) 
along the xp axis for −0.3mm ≤ xp ≤ 0.3mm and yp = 0 , 
calculated with Nph = 150 and PR = 10−5 W. In contrast 
to the inset of Fig. 4a, which displays the same x range, the 
interference pattern is now barely perceptible. The corre-
sponding 2D FT is shown in Fig. 7.

In contrast to Fig. 5, it is very noisy. However, we can 
still reconstruct the atomic distribution with a sufficiently 
high fidelity.

For this, we use the following simple algorithm. We 
normalize the reconstruction signal (absolute values of 
the Fourier coefficients) within the FT section depicted 
in Figs. 5 and 7. Next, we place the lattice grid on top as 
shown in Fig.  7. The normalized value at each grid point 
is compared to a threshold value. If the value lies (below) 
above the threshold, the lattice site is identified as (un)
occupied. We define a fidelity as the percentage of correctly 
identified sites. An analysis of a variety of atomic arrays 
with different filling factors shows that for the investigated 
range of parameters Nph and PR a threshold value of 0.4 
yields the highest fidelity.

The histogram in Fig. 8 displays the probability distribu-
tion of the normalized Fourier coefficients for Nph = 150 , 
PR = 10−5 W. It is obtained by averaging over the prob-
ability distributions of 1000 reconstructed images of the 
particle distribution of Fig.  1. The calculation includes a 
fixed speckle noise and randomly varying shot and readout 
noise. As shown by the red line in Fig. 9, the distribution 
resembles two overlapping Gaussians with a pronounced 
minimum at 0.4.

In Fig. 9, the fidelity is plotted as a function of PR for 
different values of Nph. Each data point is again obtained 

(22)PSP(ISP) ∝ exp

(

−
|ISP|
αID

)

.

by averaging over the fidelities of 1000 reconstructed 
images, calculated with randomly varying shot and readout 
noise. For Nph ≥ 150 the fidelity reaches maximum values 
clearly exceeding 99.5 %, for Nph = 100 (not shown) it is 
still nearly 98.5 %.

Depending on the range of PR, the fidelity is limited by 
different kinds of noise. At low and high reference power, 
readout noise and speckle noise prevail, respectively. In 
both cases, the noise leads to a strong decline of the fidel-
ity. In between, shot noise is dominant. The dependence of 

Fig. 8   Probability distribution of the normalized Fourier coefficients 
determined at the optical lattice sites (see Fig. 7). The histogram rep-
resents an average over 1000 probability distributions obtained for 
Nph = 150, PR = 10−5 W, fixed speckle noise, and randomly vary-
ing shot noise. The dip at 0.4 coincides with the threshold value with 
highest reconstruction fidelity. The red solid curve are two partially 
overlapping Gaussians which are fitted to the histogram

Fig. 9   Fidelity as a function of PR for different average total num-
bers of scattered photons per atom Nph. Each data point is obtained 
by averaging over the fidelities of 1000 reconstructed images (with 
fixed particle distribution), calculated with randomly varying shot and 
readout noise. Above a critical value of PR, marked by the dashed 
line, the pixels near the center of a CCD camera with a dynamic 
range of 16 bit start to saturate
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the fidelity on PR and Nph can be understood by the signal-
to-noise ratio (SNR) of the interference fringes on the CCD 
camera. Neglecting atomic contributions to I0 in Eq. (13), a 
rough estimate yields

In the fraction IRS/
√
I0, the field amplitude ER0 of the refer-

ence beam drops out and the SNR is independent of PR. As 
a consequence, the fidelity features a plateau. The width of 
the plateau as well as the maximum fidelity decreases with 
decreasing Nph. This can be explained by the proportion-
ality of SNR to the atomic field amplitude EA0 ∝

√

Nph . 
Above a critical value of PR, marked by the dashed line in 
Fig. 9, the pixels near the center of the CCD camera satu-
rate (assuming a dynamic range of 16  bit). Therefore, in 
practice the speckle-induced drop should be irrelevant.

Moreover, all effects leading to global laser intensity 
fluctuations do not disturb the interference signal, since 
they do not change the relative phase between atomic and 
reference signal.

4.5 � Comparison with fluorescence detection

As demonstrated in Fig. 9, the proposed detection scheme 
should yield fidelities higher than 99.5  % even for mod-
erate numbers of scattered photons. This is achieved by 
means of the reference beam which amplifies the atomic 
diffraction signal. In contrast, the direct fluorescence detec-
tion method, e.g., used in [3–7], does not involve such a 
reference beam. During detection several thousands of pho-
tons are scattered by a single atom. As a disadvantageous 
consequence, the atoms are strongly heated and may hop 
between lattice sites even in the case of deep optical lattices 
(see e.g., [7]). Therefore, complex cooling techniques have 
to be applied.

To compare our scheme with the fluorescence detec-
tion, we estimate the particle heating. We assume that 
the particles are initially in the vibrational ground state 
|v = 0� of a deep optical lattice with a depth of 2.5  mK 
and a Lamb–Dicke parameter of η = 0.23 (see [22]). Dur-
ing detection, the particles scatter 150 photons per atom. 
The transition probability from |v = n� to |v = n± 1� for 
a single scattering event is given by η2(n+ 1) and η2n , 
respectively. An estimate based on random walk yields 
that 99  % of the atoms end up at a vibrational state 
|vFinal ≤ 24�. The excitation to higher vibrational states 
reduces the tunneling time of a particle inside the lat-
tice. However, since the tunneling time of a particle in 
state |vFinal = 24� is on the order of 1 ms, i.e., long com-
pared to the acquisition time Tac = 200µs, tunneling can 
be neglected. This means that the heating due to light 

(23)SNR ≈
IRS√
I0

∝ EA0 ∝
√

Nph.

scattering should hardly influence the reconstruction 
fidelity. Therefore, our scheme might open the path to cir-
cumvent additional cooling during detection.

4.6 � Mechanical vibrations

In terms of a technical issue of the proposed scheme, we 
need to take into account the sensitivity of the setup to 
mechanical vibrations. For this, we consider Eqs. (16) and 
(21). During the acquisition time, the relative phases ∆ϕRn 
between reference and scattered laser fields may vary, lead-
ing to a blurring of the contrast of the interference fringes. 
A jitter δθ in the reference angle θ leads to a similar effect. 
In order to estimate the influence of the jitter, we rewrite xA 
in Eq. (21) for angles close to θ ≈ 1◦ (as used in our simu-
lations) with φ = 45◦ fixed:

A jitter δθ thus causes a blurring δx = f δθ/
√
2 of the coor-

dinates in the reconstruction. If we demand δx ≪ a, the jit-
ter has to be much smaller than 

√
2× 1µm/f ≈ 200µrad. 

This should not pose a problem since pointing stabilities of 
10µrad or better are typical in an optical laboratory envi-
ronment. Furthermore, achieving fluctuations in the relative 
phase ∆ϕRn ≪ π is standard on an optical table.

4.7 � Lens aberrations

Another technical issue of the holographic detection scheme 
is lens aberrations. In our scheme, a large NA lens colli-
mates the emitted light of the atoms and the reference beam. 
Even for a high-quality lens the transmitted wavefront can 
be distorted by lens imperfections and aberrations.

To estimate such shortcomings, we perform a 1D calcu-
lation in the presence of small spherical aberration which 
results in a position-dependent tilt of the wave vectors kn 
and kR (see Eqs. 5, 9). We simulate the tilt in the detection 
plane by

where the empirical parameter β sets the influence of the 
spherical aberration and xR denotes the position of the 
reference beam in the front focal plane of the lens. The 
black curves in Fig. 10a, b show the interference fringes 
and the corresponding reconstruction, respectively, for a 
reference beam and three atoms at positions xn = 0, 2, 5µ

m. The aberration leads to an increase in the spatial fre-
quency νSF(x) in the interference pattern with increas-
ing distance x to the optical axis. As a result, the Fourier 
transform no longer yields a high-fidelity reconstruction 

(24)xA = �f νx −
f
√
2
θ .

(25)kn,R ∝
(

−xn,R − β(x + 10 xn,R)
3

f

)

,
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(Fig.  10b). However, the effect of the aberration can be 
compensated with the help of an empirical nonlinear map-
ping which locally stretches the interference pattern such 
that it exhibits a constant νSF (red curve in Fig. 10a). The 
sharp peaks at xn = 0, 2, 5µm in Fig. 10b demonstrate that 
the atomic distribution can be successfully reconstructed 
in this way.

In order to derive an appropriate nonlinear mapping, 
we calculated the interference between the reference beam 
and a single point emitter at xn = 0µm in the presence of 
aberration and determined the dependence of νSF(x) on 
the position x. The mapping results from a comparison 
between νSF(x) and the known spatial frequency in the case 
of absent aberration. Although the correction is obtained 
only for a single point emitter, it successfully works even 
for a larger number of atoms.

We thus demonstrate a preliminary way to correct dis-
torted interference patterns. Clearly, more general and 
sophisticated compensation algorithms can be developed 
which will turn the holographic detection scheme robust 

against aberrations of the lens. This might prove to be very 
useful in the future as it relaxes the required lens specifica-
tions for high-resolution imaging.

5 � Conclusion

In conclusion, we propose a holographic scheme for site-
resolved detection of a 2D gas of ultracold atoms in an 
optical lattice. We have discussed the method for the exam-
ple of 50 lithium atoms in a square optical lattice, but it will 
also work for larger sample sizes, other atomic elements, or 
other lattice geometries. The method features a high detec-
tion fidelity (>99.5 %) even for a low number of scattered 
photons per atom (≈150) in the presence of detection noise 
and small lens aberration.

The low number of scattered photons might open the 
path for single-site detection without additional cooling. 
Moreover, it might allow for imaging multiple occupancy 
of a single lattice site.
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