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rates providing an attractive platform for long-distance 
quantum communication.

1  Introduction

In classical data transmission, repeaters are used to amplify 
data signals (bits) when they become weaker during their 
propagation through the transmission channel. In contrast 
to classical information, the above mechanism is impos-
sible to realize when the transmitted data signals are the 
carriers of quantum information (qubits), which cannot be 
amplified or cloned without destroying the encoded infor-
mation [1, 2]. Therefore, the carrier has to propagate along 
the entire length of the transmission channel which, due to 
various losses, leads to an exponentially decreasing prob-
ability to receive it intact at the end of the channel.

To circumvent this problem, the quantum repeater was 
proposed in the seminal Ref.  [3] that encapsulates three 
building blocks such as (1) entanglement distribution, (2) 
entanglement purification, and (3) entanglement swapping, 
which have to be applied sequentially. Using the first build-
ing block, a large set of low-fidelity entangled qubit pairs is 
generated between all repeater nodes, which becomes dis-
tilled by the second block into a smaller set of high-fidelity 
entangled pairs. Entanglement swapping, finally, combines 
two purified entangled pairs distributed between the neigh-
boring repeater nodes into one entangled pair leading to a 
gradually increasing distance of shared entanglement.

Obviously, quantum repeater schemes are not straight-
forward. The above-mentioned building blocks, for 
instance, require a feasible and reliable quantum logic, 
while low-fidelity entangled pairs have to be distributed 
over reasonably long distances. Up to now, only a few 
schemes, which distribute entanglement over the distance 
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of 200 km using fiber-optic [4] and 100 km using free-
space channel [5] between the nodes have been experi-
mentally demonstrated. Nevertheless, motivated by a rap-
idly growing experimental and theoretical progress in the 
field of quantum communication, various quantum repeater 
schemes and single building blocks have been proposed 
[6–11].

In our previous paper [12], we already proposed a 
dynamical quantum repeater scheme in which the entan-
glement between the two neighboring repeater nodes was 
distributed using controlled displacements of input coher-
ent light, while the generated low-fidelity entangled pairs 
were purified using ancillary (four-partite) entangled states. 
This scheme exploited solely the evolution of short chains 
of atoms coupled to optical cavities located in each repeater 
node, such that any explicit usage of quantum logical gates 
has been avoided. In the present paper, we propose an 
improved quantum repeater scheme that (as well) avoids 
two-qubit quantum logical gates and where the entangle-
ment is distributed using a sequence of controlled phase 
shifts and displacements of input coherent light, while 
entanglement purification is free of ancillary entangled 
resources. This repeater scheme exhibits reasonable fideli-
ties and repeater rates providing an attractive platform for 
long-distance quantum communication.

In particular, our entanglement distribution becomes 
very efficient, simple, and practical, as it only requires dis-
criminating two optical coherent states with opposite signs, 
where each allows for conditionally preparing a certain 
two-qubit Bell state over the distance in two neighboring 
repeater nodes. This way, in the ideal loss-free case, maxi-
mum two-qubit entanglement can be deterministically gen-
erated with unit fidelity in the limit of large coherent state 
amplitudes. Note that in the present work, we focus on a 
standard (original) quantum repeater scheme as described 
above and based on the use of quantum memories and 
two-way classical communication. Other more recent 
approaches that make use of quantum error correction 
codes reduce or completely eliminate the need for storing 
quantum information and for employing two-way commu-
nication. As a result, extremely high rates are achievable in 
this new generation of repeaters (for a classification into 
three generations of quantum repeaters, see Ref. [13]).

The paper is organized as follows. In the next sec-
tion, we describe in detail our practical quantum repeater 
scheme. We introduce and discuss the entanglement distri-
bution, purification, and swapping protocols in Sects. 2.1, 
2.2, and 2.3, respectively. In Sect. 2.4, we discuss a few rel-
evant issues related to the implementation of our repeater 
scheme, while a brief analysis of final fidelities and 
repeater rates is given in Sect. 3 along with the summary 
and outlook.

2 � Quantum repeater platform

The main physical resources of our repeater scheme are 
(1) three-level atoms, (2) high-finesse optical cavities, (3) 
continuous and pulsed laser beams, (4) balanced beam 
splitters, and (5) photon detectors. In Fig.  1a, we display 
schematic view of our experimental setup that encapsulates 
two neighboring repeater nodes (B and C) and includes the 
entanglement distribution, purification, and swapping pro-
tocols in a single setup.

In this setup, each repeater node encapsulates single-
mode cavities C1, C2, and C3 (C4, C5, and C6), single atoms 
conveyed along the setup with the help of two vertical 
optical lattices, two sources of weak coherent state pulses 
P2 and P3 (P4 and P5), detectors D3 and D4 (D5 and D6) 
connected to the neighboring node via a classical commu-
nication channel, and a magneto-optical trap (MOT) that 
provides atomic chains to be conveyed. The alignment of 

Fig. 1   (Color online) a Sketch of experimental setup that realizes the 
two-node repeater scheme. In this setup, atoms in both repeater nodes 
are synchronously conveyed with the help of vertical optical lattices 
starting from the MOTs (oval regions) toward the resonators C3 (C6). 
In the upper region (framed by a dashed rectangle), the atomic pairs 
become (one by one) entangled providing the entanglement resources 
for the next framed region, where the entanglement purification takes 
place. A successful purification round leads to an increase in fidelity 
associated with a stationary atomic pair, while the other pairs get pro-
jected once they leave the cavities C2 (C5). In the final (lower) framed 
region, the atoms (associated with the purified atomic pair) enter the 
cavities C3 (C6), where they get swapped with atoms (associated with 
other two purified atomic pairs) leading to a triple distance enlarge-
ment of shared entanglement. b The coherent state discrimination 
(CSD) setup. The coherent states | ± √

ηα� encapsulated in Eq.  (7) 
are guided into the upper input port of the beam splitter, while the 
ancilla coherent state |ι̇√η�α into the lower input port. c Structure of 
a three-level atom in the Λ-configuration subjected to the cavity and 
laser fields. See text for description
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vertical lattices is such that the conveyed atoms cross cavi-
ties at their antinodes ensuring, therefore, a strong atom–
cavity coupling regime. In addition, node B includes a 
source of weak coherent state pulses P1, while node C 
includes a coherent state discrimination (CSD) setup dis-
played in Fig. 1b. Finally, each repeater node encapsulates 
two optical lattices denoted as S and V (conveyors), where 
the atoms inserted into the V-conveyor are transported with 
a constant velocity through all three cavities, while the 
atoms in the S-conveyor can be slowed down or accelerated 
by demand.

For convenience, our setup is divided into three (framed 
by dashed rectangles) parts corresponding to three building 
blocks of a quantum repeater as mentioned in the introduc-
tion. Below, we clarify each part of our setup and explain 
all the manipulations and elements.

2.1 � Entanglement distribution

In this part of setup, atoms 1 and 2 are extracted from the 
MOTs of each repeater node and inserted into the S-con-
veyors. Both atoms are initialized in the ground state |0� 
and arrive simultaneously in the cavities C1 and C4. Each 
atom encodes a qubit by means of a three-level atom in the 
Λ configuration as displayed in Fig. 1c. In order to protect 
this qubit against the decoherence, the (qubit) states |0� and 
|1� are chosen as the stable ground and long-living meta-
stable atomic states or as the two hyperfine levels of the 
ground state.

Once conveyed into the cavity C1 (C4), atom 1 (2) cou-
ples simultaneously to the photon field of cavity and two 
continuous laser beams as displayed in Fig. 1c. The evolu-
tion of the coupled atom–cavity–laser system in the node B 
is governed by the Hamiltonian

where σX is the respective Pauli operator in the computa-
tional basis {|0�, |1�}, while J2 is the effective coupling (see 
“Appendix,” where we show that the above Hamiltonian 
is produced deterministically in our setup). The evolution 
governed by HR reads

where θ = −J2 t/2. This evolution implies a phase shift of 
the cavity field by the angle θ or (− θ) conditioned upon the 
atomic state, where θ is proportional to the atom–cavity–
laser evolution time that, in turn, is inversely proportional 
to the velocity of conveyed atom.

In contrast to node B, the evolution of the coupled 
atom–cavity–laser system in the node C is governed by a 
sequence of two evolutions. While the second evolution is 

(1)HR =
� J2

2
σXa†a,

(2)UR(θ) = eι̇ θ σ
Xa†a,

governed by the Hamiltonian (1), the first evolution is gov-
erned by the Hamiltonian

where J1 is the atom–field coupling (see “Appendix,” where 
we show that the above Hamiltonian is produced determin-
istically in our setup). The evolution governed by HD reads

where β = −ι̇ J1 t/2. This evolution implies a displacement 
of the cavity field mode by the amount β conditioned upon 
the atomic state, where β is proportional to the atom–cav-
ity–laser evolution time that, in turn, is inversely propor-
tional to the velocity of conveyed atom. We remark that 
both Hamiltonians imply that the (fast-decaying) excited 
state |e� remains almost unpopulated during the respective 
evolutions.

First, a pulse of a weak coherent light produced by the 
source P1 and characterized by a real amplitude α interacts 
with the atom–cavity system in node B, where the cavity is 
prepared in the vacuum state. The evolution (2) leads to the 
atom–light entangled state

where |+� = (|0� + |1�)/
√
2 and |−� = (|0� − |1�)/

√
2 . 

The resulting coherent state from the cavity is outputted 
into the transmission channel between the nodes. Since we 
are dealing with a high-finesse cavity and since the fast-
decaying atomic state |e� remains almost unpopulated dur-
ing the evolution, the dominant photon loss occurs in the 
optical fiber connecting the cavities C1 and C2 that plays 
the role of a transmission channel in our setup. Since pho-
ton loss increases with the length of the fiber, to a good 
approximation, we describe the loss using a beam splitter 
model that transmits only a part of the coherent light pulse 
through the channel,

where the subscript E refers to an environmental light 
mode responsible for the fiber relaxation. In this expres-
sion, η = e−ℓ/ℓ◦ describes the attenuation of the transmitted 
light through the fiber, where ℓ is the distance between the 
repeater nodes, while ℓ◦ is the attenuation length that can 
reach almost 25 km for fused-silica fibers at telecommuni-
cation wavelengths. Below, we set ℓ◦ = 25 km.

Next, the attenuated light pulse interacts with the atom–
cavity system in node C, where (as in node B) the cavity 
is prepared in the vacuum state. By tracing over the envi-
ronmental degrees of freedom (mode with the subscript E), 
the evolution UR(−π/2) in node B along with the sequence 

(3)HD =
� J1

2

(
a+ a†

)
σX ,

(4)UD(β) = e
(
β a†−β∗a

)
σX = D

(
β σX

)
,

(5)UR(θ)|α�|01� =
1√
2

(
|eι̇ θ α�|+1� + |e−ι̇ θ α�|−1�

)
,

(6)|vac�E |α� −→ |
√
1− η α�E |√η α�,
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of evolutions UD(−ι̇
√
η α) and UR(−π/2) in node C fol-

lowed by an unconditional displacement D(α
√
η) leads to 

the entangled state between the atoms and optical modes 
(see Fig. 2)

where

such that �p|p� = �q|q� = 1, while �p|q� = 0.
The (entangled with both atoms) light pulse is guided 

into the balanced beam splitter displayed in Fig.  1b and 
that is characterized by the transmissivity and reflectiv-
ity parameters T = 1/

√
2 and R = ι̇ /

√
2, respectively. 

According to this coherent state discrimination (CSD) 
setup, the input pulse interferes with the (ancilla) coher-
ent state |ι̇√η α� sent into another input port of the beam 
splitter. It can be readily checked that the coherent states 
| ± √

η α� encapsulated in Eq.  (7) and supplemented by 
the ancilla state are transformed due to the beam splitter as 
follows:

(7)ρ =
1+ e−2α2(1−η)

2
|p��p| +

1− e−2α2(1−η)

2
|q��q|,

(8)|p� =
1√
2

(
|√η α�|φ−

1,2� + | − √
η α�|φ+

1,2�
)
;

(9)|q� =
1√
2

(
|√η α�|ψ−

1,2� − | − √
η α�|ψ+

1,2�
)
,

(10)

|ι̇√η α�|√η α� → |0�|ι̇
√
2 η α�,

|ι̇√η α�| − √
η α� → | −

√
2 η α�|0�.

On the right-hand side of above equations, each ket vector 
in the expression corresponds to an output port of the beam 
splitter. Having two detectors resolving click or no-click 
detection events, there are three possible detection patterns, 
since the pattern {click, click} cannot happen. Among these 
patterns, the pattern {no click, no click} is inconclusive, 
while the remaining two patterns {click, no click} and {no 
click, click} lead to the desired state discrimination.

We compute first the respective probabilities of success

where ρ̂ denotes the state ρ ⊗ |ι̇√η α��ι̇√η α| being trans-
formed in concordance with Eq.  (10). Conditioned upon 
above detection patterns, the density function ρ̂ reduces to 
the one of two (atom–atom) entangled states

or

where the entanglement fidelity is given by the expression

If the output of photon detection yields the inconclusive 
pattern {no click, no click}, then the atoms 1 and 2 should 
be discarded and the entanglement distribution protocol 
repeated using the next atomic pair conveyed by means of 
S-conveyors along the setup in both repeater nodes.

In this section, we developed a feasible scheme for dis-
tribution of atomic entanglement that is conditioned upon 
two detection patterns indicated above, where the total suc-
cess probability associated with these patterns is 2Pdist , 
while the fidelity is given by the above expression. We 
exploit the controlled phase shift (2) in both repeater nodes 
supplemented by a controlled displacement in the second 
node. In contrast to Ref. [14] and our previous paper [12], 
this combined approach greatly simplifies the tripartite 
entangled state of light and two atoms [compare Eq. (7) in 
this paper to Eqs. (14) and (4) in the above-mentioned ref-
erences]. More specifically, Eq.  (7) encapsulates only two 
optical coherent states, which differ by a minus sign and 

(11)

P
dist =Tr

(
ρ̂|no click, click��no click, click|

)

=Tr
(
ρ̂|click, no click��click, no click|

)

=
1

2

(
1− e

−2 η α2
)
,

(12)
ρ̃
1,2

−,f =
�no click, click| ρ̂ |no click, click�

Pdist

= f |φ−
1,2��φ

−
1,2| + (1− f )|ψ−

1,2��ψ
−
1,2|;

(13)
ρ̃
1,2

+,f =
�click, no click| ρ̂ |click, no click�

Pdist

= f |φ+
1,2��φ

+
1,2| + (1− f )|ψ+

1,2��ψ
+
1,2|,

(14)f =
1

2

(
1+ e−2α2(1−η)

)
.

Fig. 2   (Color online) For each product state of two atoms (on the 
basis of {|+�, |−�}), we display the evolution of the input coherent 
state |α� due to the sequence of three operations, namely (1) con-
trolled phase shift UR(−π/2) in node B, (2) controlled displacement 
UD(−ι̇ α) in node C, and (3) controlled phase shift UR(−π/2) in node 
C. In this figure, for simplicity, we set η = 1 (lossless case)
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are, therefore, much easier to discriminate. This simplifi-
cation, in turn, implies a rather uncomplicated discrimina-
tion setup (CSD) displayed in Fig. 1b consisting of a single 
beam splitter and two photon detectors to resolve click and 
no-click events.

We emphasize that in the above-cited references, the 
entangled state of light and two atoms involve three differ-
ent coherent states leading to a more demanding discrimi-
nation scheme. Specifically, the discrimination scheme in 
Ref.  [14] requires two beam splitters and three uncondi-
tional displacements together with three photon detectors 
capable to resolve click and no-click events. Although the 
respective CSD scheme in our previous paper [12] requires 
a single beam splitter and one unconditional displacement, 
a notable difficulty poses the requirement to use photon 
number resolving detectors. As a consequence of simplified 
CSD in this paper, we obtain a much higher success prob-
ability (compare Eq. (11) in this paper to N−/4 in Ref. [12] 
and to Ptotal,USD and Ptotal,ent in Ref. [14]) leading, in turn, 
to much higher repeater rates. We remark that, in contrast 
to the controlled phase shift used in Ref. [14], in this paper, 
we exploit the evolution (2) based on σX instead of σ Z and, 
moreover, we avoid manipulations of atomic states associ-
ated with the produced entangled state.

Finally, we note that Eq. (14) coincides with the respec-
tive fidelity obtained in our previous paper, in which we 
have mentioned that this fidelity is close to one when 
α2(1− η) ≪ 1. Since we considered one single purifica-
tion round, this restriction led us to the regime α2 ≤ 1 that 
we considered through the paper. Due to four purification 
rounds considered in this paper, we succeed to relax this 
restriction and consider α2 = 1, 2, 3 (see below).

2.2 � Entanglement purification

Assuming that the entanglement distribution was success-
ful, atoms 1 and 2 are conveyed into the area, in which they 
are subjected to the (single-qubit) Hadamard transforma-
tion. Due to this unitary transformation, the states (12) and 
(13) take the form

Once atoms 1 and 2 enter the cavities C2 and C5, their (con-
veyed) velocities decrease gradually until zero, such that 
atoms remain trapped right inside the respective cavities.

At the same time, atoms 3 and 4 are inserted from MOTs 
into V-conveyors of both repeater nodes and transported 
with a constant velocity along the setup. Similar to atoms 
1 and 2, this atomic pair is entangled and subjected then 

(15)ρ
1,2
−,f = f |ψ+

1,2��ψ
+
1,2| + (1− f )|ψ−

1,2��ψ
−
1,2|,

(16)ρ
1,2
+,f = f |φ+

1,2��φ
+
1,2| + (1− f )|φ−

1,2��φ
−
1,2|.

to the Hadamard gate. Assuming that the second entangle-
ment distribution was successful, atoms 3 and 4 are now 
described by the state ρ3,4

−,f  or ρ3,4
+,f  having the structure of 

Eqs. (15) or (16), respectively. Atoms 3 and 4 are conveyed 
along the setup until they couple (simultaneously) to cavi-
ties C2 and C5 prepared both in the vacuum state. At this 
point, each of these cavities shares a pair of atoms 1, 3, and 
2, 4, respectively.

Inside the cavities C2 and C5, these atomic pairs evolve 
due to the interaction governed by the Heisenberg XX 
Hamiltonians

over the time period T = π/(2 J3), where J3 is the effective 
coupling. The resulting density functions

describe four-partite entangled states. We remark that the 
above Heisenberg XX Hamiltonian is produced determin-
istically in our setup by coupling atoms (simultaneously) 
to the same cavity mode and two laser beams in the strong 
driving regime (see “Appendix” of Ref. [12]).

Being further conveyed along the setup, atoms 3 and 4 
decouple from cavities C2 and C5, and get projected outside 
in the computational basis. Purification protocol is success-
ful if the outcome of atomic projection reads

In this case, above detection patterns lead to the reduced 
density functions

(17)H
1,3
XX =

� J3

2
σX
1 σ

X
3 , and H

2,4
XX =

� J3

2
σX
2 σ

X
4 ,

(18)
ρ1−4
++,f = e

−ι̇H
1,3
XX T/�

e
−ι̇H

2,4
XX T/�

(
ρ
1,2

+,f ⊗ ρ
3,4

+,f

)
e
ι̇H

2,4
XX T/�

e
ι̇H

1,3
XX T/�;

(19)
ρ1−4
−−,f = e

−ι̇H
1,3
XX T/�

e
−ι̇H

2,4
XX T/�

(
ρ
1,2

+,f ⊗ ρ
3,4

−,f

)
e
ι̇H

2,4
XX T/�

e
ι̇H

1,3
XX T/�;

(20)
ρ1−4
+−,f = e

−ι̇H
1,3
XX T/�

e
−ι̇H

2,4
XX T/�

(
ρ
1,2

+,f ⊗ ρ
3,4

−,f

)
e
ι̇H

2,4
XX T/�

e
ι̇H

1,3
XX T/�;

(21)
ρ1−4
−+,f = e

−ι̇H
1,3
XX T/�

e
−ι̇H

2,4
XX T/�

(
ρ
1,2

+,f ⊗ ρ
3,4

+,f

)
e
ι̇H

2,4
XX T/�

e
ι̇H

1,3
XX T/�

,

(22){0, 1} or {1, 0} for ρ1−4
++,f and ρ1−4

−+,f ,

(23){0, 0} or {1, 1} for ρ1−4
−−,f and ρ1−4

+−,f .

(24)

ρ
1,2
−,F1

=
�03, 14|ρ1−4

++,f |03, 14�

P
purif
1

=
�13, 04|ρ1−4

++,f |13, 04�

P
purif
1

=
�03, 04|ρ1−4

+−,f |03, 04�

P
purif
1

=
�13, 14|ρ1−4

+−,f |13, 14�

P
purif
1

= F1|ψ+
1,2��ψ

+
1,2| + (1− F1)|ψ−

1,2��ψ
−
1,2|;
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where the purified fidelity and the success probability take 
the form

The above purified states preserve the rank 2 form and 
are characterized by the fidelity (26) displayed in Fig.  3a 
by a dotted curve. We remark that if the outcome of atomic 
projection disagrees with the patterns (22) and (23), the 
entanglement purification is considered unsuccessful. In 
this case, we discard all atoms and repeat both distribution 
and purification protocols using fresh atomic pairs con-
veyed from MOTs in each repeater node.

Assuming that the entanglement purification is success-
ful, atoms 5 and 6 are inserted from MOTs into V-con-
veyors and transported with a constant velocity along the 
setup. Similar to atoms 3 and 4, this atomic pair gets entan-
gled, subjected to the Hadamard gate, and conveyed further 
into the cavities C2 and C5, such that each of these cavities 
shares a pair of atoms 1, 5, and 2, 6, respectively. In these 
cavities, atoms evolve due to the Heisenberg XX interac-
tion over the time period T. Being further conveyed along 
the setup, atoms 5 and 6 are then projected in the compu-
tational basis. As before, the entanglement purification is 
successful if the outcome of atomic projection coincides 
with (22) and (23). In this case, we get the reduced density 
functions

where the purified fidelity F2 and the success probability 
P
purif
2  are computed using the iterative formulas

where F0 ≡ f , while F2 is displayed in Fig. 3a by a dashed 
curve.

Assuming that the third purification (using atoms 7, 8) 
is successful, atoms 9 and 10 are conveyed along the setup 

(25)

ρ
1,2
+,F1

=
�03, 14|ρ1−4

−+,f |03, 14�

P
purif
1

=
�13, 04|ρ1−4

−+,f |13, 04�

P
purif
1

=
�03, 04|ρ1−4

−−,f |03, 04�

P
purif
1

=
�13, 14|ρ1−4

−−,f |13, 14�

P
purif
1

= F1|φ+
1,2��φ

+
1,2| + (1− F1)|φ−

1,2��φ
−
1,2|,

(26)F1 =
f 2

1+ 2
(
f 2 − f

) , P
purif
1 =

1

2
− f + f 2.

(27)ρ
1,2
−,F2

=F2|ψ+
1,2��ψ

+
1,2| + (1− F2)|ψ−

1,2��ψ
−
1,2|,

(28)ρ
1,2
+,F2

=F2|φ+
1,2��φ

+
1,2| + (1− F2)|φ−

1,2��φ
−
1,2|,

(29)Fn =
f Fn−1

1− Fn−1 + f (2Fn−1 − 1)
,

(30)Ppurif
n =

1

2
(1− Fn−1 + f (2Fn−1 − 1)),

and coupled then to the cavities C2, C5 in order to realize the 
last (fourth) purification round. In contrast to the sequence 
we described above, atoms 9 and 10 are not projected after 
they leave the respective cavities. Instead, atoms 1 and 2 
are projected in the computational basis using the (nonde-
structive) projective measurements directly inside the cavi-
ties (see Sect.  2.4 below). In contrast to the patterns (22) 
and (23), the entanglement purification is successful if the 
outcome of atomic projection (atoms 1 and 2) reads

With the success probability Ppurif
4 , above patterns yield the 

reduced density functions

(31){0, 1} or {1, 0} for ρ
1,2,9,10
++,F3

and ρ
1,2,9,10
+−,F3

,

(32){0, 0} or {1, 1} for ρ
1,2,9,10
−−,F3

and ρ
1,2,9,10
−+,F3

.

(33)ρ
9,10
−,F4

=F4|ψ+
9,10��ψ

+
9,10| + (1− F4)|ψ−

9,10��ψ
−
9,10|;

(34)ρ
9,10
+,F4

=F4|φ+
9,10��φ

+
9,10| + (1− F4)|φ−

9,10��φ
−
9,10|,

Fig. 3   (Color online) a Purified fidelities F1,F2, and F4 along with 
the swapped fidelity FS as functions of the initial fidelity (14). b Suc-
cess probability Ppd associated with the entanglement distribution and 
purification as a function of elementary repeater distance ℓ displayed 
for α2 = 1 (solid curve), α2 = 2 (dotted curve), and α2 = 3 (dashed 
curve)
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completely characterized by the fidelity F4 displayed in 
Fig.  3a by a dot-dashed curve. It is readily seen that we 
obtain an almost-unit-purified fidelity for f ≥ 0.75 using 
four (successful) purification iterations.

In this section, we developed a high-fidelity scheme for 
entanglement purification that leads (iteratively) to a grad-
ual growth of the purified fidelity, and where the total prob-
ability of success

is associated with four purification rounds which, in turn, 
encapsulates success probabilities of five entanglement dis-
tributions. By inserting Eq.  (14) in the above expression, 
we display Ppd in Fig. 3b as a function of ℓ (encoded by η ) 
for α2 = 1, 2, and 3. As expected, the total success prob-
ability decreases with the growth of the distance between 
the nodes. We emphasize that the sequence of steps utilized 
in this section can be related to the entanglement purifica-
tion scheme C (so-called entanglement pumping) suggested 
in Ref.  [15], in which the fidelity of a single low-fidelity 
entangled pair becomes gradually increased at the cost of 
all other low-fidelity entangled pairs available. Indeed, in 
our approach we also produced first the entangled pair (15) 
or (16) described by the fidelity F0 that became gradually 
increased up to F4 at the cost of entangled pairs associated 
with the atoms 3, . . . , 10 and each described by the fidelity 
F0 as well.

In each node of proposed purification protocol, we 
exploit one evolution governed by the Heisenberg XX Ham-
iltonian (17) followed by a projection of a single atom in the 
computation basis. In contrast to our previous paper [12], 
in which we have utilized (1) a four-partite entangled state 
[see Eq. (8) in the above reference] generated in a probabil-
istic fashion through the cat state discrimination, (2) evolu-
tion governed by the Heisenberg XY Hamiltonian, and (3) 
projection of two atoms in each repeater node, the proposed 
approach greatly simplifies our protocol since we avoid any 
ancilla state and we postselect only the atomic state detec-
tion events associated with two atoms (and not four as in the 
previous paper). Due to these improvements, in this paper, 
we succeed to increase significantly the success probability 
Ppd associated with the entire purification protocol [com-
pare Eq. (35) with Eq. (26) in our previous paper].

We emphasize that a high purified fidelity obtained 
in this paper is the consequence of multiple purification 

(35)

Ppd = 24P
purif
1 P

purif
2 P

purif
3 P

purif
4 (2Pdist)5

=
(
15f 2 − 180f 3 + 1130f 4 − 4700f 5 + 14, 088f 6 − 31, 584f 7

+ 53, 776f 8 − 69, 600f 9 + 67, 648f 10 − 48, 000f 11 + 23552f 12

− 7168f 13 + 1024f 14
)(

1− e−2ηα2
)5

,

rounds realized as an inherent part of our repeater scheme 
in this paper. Although we considered just four such rounds, 
our setup is capable of performing an arbitrary number of 
rounds at the cost of reduced success probability. The setup 
displayed in Fig.  1a of our previous paper, in contrast, is 
by design limited to a single purification round, such that 
an extension to four such rounds would require three addi-
tional cavities and six additional atoms in each repeater 
node along with three additional communication channels. 
Using this extended setup in the framework of approach 
proposed in our previous paper, we have checked that the 
purified fidelity obtained using four successive purification 
rounds is slightly smaller as the fidelity F4 obtained in this 
paper. However, since one successful purification round is 
conditioned upon the generation of the ancilla state (8) and 
atomic postselection (15), we obtained a much lower prob-
ability of success if compared with Ppd derived above. This 
result leads, in turn, to a dramatically low success probabil-
ity associated with the entire scheme and almost vanishing 
repeater rates.

2.3 � Entanglement swapping

Assuming that the entanglement purification was success-
ful, the (high-fidelity) entangled atoms 9 and 10 are con-
veyed along the setup to the swapping region displayed 
in the bottom rectangle of Fig. 1a. Here, atoms couple the 
cavities C3 and C6, both prepared in vacuum state. The 
conveyed atoms together with the trapped atoms form two 
atomic pairs 9, 12, and 10, 13. We recall that atoms 12 and 
13 are entangled with atoms 11 and 14, respectively, where 
each pair is described by the mixed states ρ11,12

±,F4
 and ρ13,14

±,F4
 

having the structure of Eqs. (33) and (34).
According to the entanglement swapping protocol we 

proposed in Ref. [12], each atomic pair evolves in cavities 
C3 and C6 due to the Heisenberg XX interaction utilized 
in the previous section. We remark that being applied on 
the separate states of an atomic pair (in the computational 
basis) over the time period T = π/(2 J2), this evolution 
implies

(36)|1, 1� −→
−ι̇√
2
(|0, 0� + ι̇ |1, 1�);

(37)|0, 0� −→
1√
2
(|0, 0� − ι̇ |1, 1�);

(38)|1, 0� −→
−ι̇√
2
(|0, 1� + ι̇ |1, 0�);

(39)|0, 1� −→
1√
2
(|0, 1� − ι̇ |1, 0�),
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such that the resulting states form the modified Bell basis

where k = 1, 2, 3, 4.
This observation suggests a deterministic realization of 

entanglement swapping using just two consecutive steps 
(1) atomic pairs 9, 12, and 10, 13 are subjected to the evo-
lutions e−

ι̇
�
H

9,12
XX T and e−

ι̇
�
H

10,13
XX T, respectively, that is fol-

lowed by (2) projection of each atomic pair in the computa-
tional basis. Obviously, these two steps are equivalent with 
the atomic projection in the modified Bell basis (40), where 
the swapped state is given by the expression

taken here, for simplicity, for a particular case when all 
three entangled pairs have the structure of Eq. (34). In this 
expression, N  is the normalization factor, the states ϕi,j 
and χ i,j are displayed in Table 1, while the swapped fidelity 
takes the form

As expected, the swapped density function (41) is diagonal 
in the standard Bell basis and is completely characterized 
by FS displayed in Fig. 3a by a solid curve.

In this section, we employed the swapping protocol 
introduced in our previous paper. This protocol is deter-
ministic and exploits the same evolution as utilized in the 
previous section along with atomic projections. In contrast 
to the entanglement distribution and purification protocols, 
however, the swapping protocol is entirely characterized by 
the success probability Psw that is affected mainly by the 
efficiency of atomic projective measurements and can be 
close to one (see below). We conclude, therefore, that the 
total probability of success associated with the entangle-
ment distribution, purification, and two swappings is given 
by the expression

(40)|mk
a,b� = e−

ι̇
�
H

a,b
XX T {|1a, 1b�, |0a, 0b�, |1a, 0b�, |0a, 1b�},

(41)

1

N

〈
m

i
9,12,m

j
10,13|

(
ρ
9,10
+,F4

⊗ ρ
11,12
+,F4

⊗ ρ
13,14
+,F4

)
|mi

9,12,m
j
10,13

〉

= FS |ϕi,j
11,14��ϕ

i,j
11,14| + (1− FS)|χ i,j

11,14��χ
i,j
11,14|,

(42)FS = F4(3− 6F4 + 4F2
4 ).

(43)Ptotal = P2
sw Ppd.

2.4 � Remarks on the implementation of our scheme

For simplicity, in the setup displayed in Fig. 1a, we consid-
ered just two repeater nodes (B and C), where the atomic 
pairs 11, 12 and 13, 14 were initially entangled and given 
both by Eq. (24). We are ready now to introduce the experi-
mental setup that includes explicitly nodes A, B, C, and D. 
This setup is displayed in Fig. 4 and, in contrast to Fig. 1a, 
includes entanglement distribution and purification pro-
tocols associated with the (initially disentangled) atomic 
pairs 11, 12 and 13, 14. Simultaneously with the atomic 
pair 9, 10, these pairs are conveyed along the setup (but in 
the opposite direction) and follow the same sequence of 
interactions and projective measurements.

We recall that all three building blocks of our repeater 
require projective measurements of atoms which are 
located inside and outside the cavity. The method of atomic 
nondestructive measurements demonstrated in Refs.  [16, 
17] enables projective measurements of atoms coupled 
(strongly) to a cavity field that fits perfectly in our experi-
mental setup. The physical mechanism behind these meas-
urements exploits the suppression of cavity transmission 
due to the strong atom–cavity coupling. Recall that each 
atom in our scheme is a three-level atom in the Λ-config-
uration (see Fig.  1c), where only the states |0� and |e� are 
coupled to the cavity field. If one such atom couples the 
cavity and is prepared in the |0� state, such that the cavity 
resonance is sufficiently detuned from the atomic |0� ↔ |e� 
transition frequency, then the cavity transmission drops 
according to the atom–cavity detuning and atom–cav-
ity coupling. On the other hand, the cavity transmission 
remains unaffected if the atom was prepared in the state |1�.

Once sufficiently many readouts of cavity transmis-
sion are recorded, this technique enables us to determine 
the state of a single atom with a high efficiency [16]. Since 
the atom–cavity coupling increases proportionally with the 

Table 1   Pairs of Bell states identified with ϕi,j and χ i,j for given i 
(column) and j (row)

1 2 3 4

1 ψ+,ψ−   ψ−,ψ+   φ+,φ−   φ−,φ+

2 ψ−,ψ+ ψ+,ψ− φ−,φ+ φ+,φ−

3 φ−,φ+ φ+,φ− ψ−,ψ+ ψ+,ψ−

4 φ+,φ− φ−,φ+ ψ+,ψ− ψ−,ψ+

Fig. 4   (Color online) Sketch of experimental setup that realizes the 
four-node repeater scheme
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number of loaded (into cavity) atoms, the same technique 
enables us to distinguish the following three separate states 
of two atoms (1) |0, 0�, (2) |0, 1� or |1, 0�, and (3) |1, 1� (see 
[17]). We remark, however, that this approach cannot dis-
tinguish between the states |0, 1� and |1, 0� leading to an 
incompleteness of information about the swapped state 
(41) (see Table 1). In order to avoid this problem, one of 
the atoms in C3 (C6) has to leave the cavity right after the 
inconclusive event occurs and be again projected outside 
the cavity.

The atomic projection outside the cavity is realized 
using a laser beam and a CCD camera located inside the 
oval regions displayed in Fig. 1a below the cavities C2 and 
C5. While the laser beam removes atoms in a given quan-
tum state from the conveyor without affecting atoms in the 
other state (so-called push-out technique [18]), the CCD 
camera is used to detect the presence of remaining atoms 
via fluorescence imaging and determine, therefore, the state 
of each atom in question. In contrast to the previously dis-
cussed atomic projection, this technique is destructive, and 
thus, the projected atoms cannot be further utilized.

3 � Summary and outlook

In the previous section, we have introduced our repeater 
scheme encapsulating three segments (four nodes) that 
corresponds to the overall distance of 3 ℓ. The extension 
of the sketch shown in Fig. 4 to an arbitrary number N of 
segments is straightforward. With no loss of generality, we 
consider odd values of N corresponding to N + 1 repeater 
nodes or N − 1 swappings. Setting α2 = 1, 2, and 3, we 
display in Fig.  5a–c the overall distance as a function of 
N taken for the final fidelities Ffinal = 0.8, 0.85, 0.9, 0.95, 
which are identified with the fidelity obtained after N − 1 
swapping operations. We infer from this figure that smaller 
values of α2 lead to larger overall distances, while the 
segment length ℓ decreases with the increasing of N. We 
remark that this drawback is originated to the lack of repu-
rification in our scheme that is supposed to act after each 
(or a few) swapping operation(s). We also emphasize that 
the obtained final fidelity is higher by about one order of 
magnitude as the respective fidelity obtained in our pre-
vious paper (compare, for instance, Fig.  5a to Fig.  5a in 
Ref. [12]).

Besides final fidelities, we calculate the repeater rates 
which, together with the success probabilities displayed in 
Fig. 3b, provide the main set of characteristics associated 
with a quantum repeater. Since the atomic (fast-decaying) 
excited states remain almost unpopulated and each atomic 
qubit is encoded by other two (long-living) states, we 
assume that the atomic coherence times exceed the over-
all time required to complete entanglement distribution, 

purification, and swapping in all repeater nodes. This 
assumption corresponds to a repeater with an ideal memory 
and implies that the only source of decoherence is the pho-
ton loss in the transmission channel.

We compute repeater rates (in units of pairs per second) 
using the following expression [19]

where T◦ is the total time required to distribute and purify 
an entangled pair over one repeater segment followed by 
two swappings, N is the number of segments, while

According to the experimental setup displayed in Fig. 1a, 
the total time is composed of (1) interaction times required 
for entanglement distribution, purification, and swapping 
protocols, (2) time required for both destructive and nonde-
structive atomic projections, and (3) time required to com-
municate between the repeater nodes by means of coherent 
state light and classical communication. In contrast to the 
cases (1) and (2), the time (3) is readily computed using the 
relation 14 ℓ/υ, where υ = 2× 108 m/s is the velocity of 

(44)R =
1

T◦ ZN (Ptotal)
,

(45)ZN (P) =
N∑

j=1

(
N

j

)
(−1)j+1

1− (1− P)j
.

Fig. 5   (Color online) For the average photon numbers α2 = 1 (a), 
2 (b), and 3 (c), we display the overall repeater distance L = N ℓ 
as a function of N (number of segments) plotted for the final fideli-
ties Ffinal = 0.95 (solid curve), 0.9 (dotted curve), 0.85 (dashed 
curve), and 0.8 (dot-dashed curve). For the average photon numbers 
α2 = 1 (d), 2 (e), and 3 (f), we display rescaled repeater rates (46) 
as functions of ℓ (elementary length) plotted for the final fidelities 
Ffinal = 0.95 (solid curve), 0.9 (dotted curve), 0.85 (dashed curve), 
and 0.8 (dot-dashed curve). We remark using plots (d–f) along with 
plots (a–c), one can easily calculate rescaled repeater rates as func-
tions of entire distance L
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light in the optical fiber. Without loss of generality, there-
fore, we express the total time as T◦ = S 14 ℓ/υ, where 
S > 1 is a real number encoding the times (1) and (3) in 
terms of (3). By inserting this expression into Eq. (44), we 
consider the rescaled repeater rate

This rescaled repeater rate is determined by the triplet 
{α, ℓ,N}, which we extract from Fig. 5 for a given value of 
Ffinal. Setting α2 = 1, 2, and 3, we display in Fig. 5d–f the 
rescaled repeater rates as functions of ℓ taken for the final 
fidelities Ffinal = 0.8, 0.85, 0.9, and 0.95. We infer from 
this figure that smaller values of α2 lead to smaller repeater 
rates R̃. We remark that this behavior was expected since 
small α2 imply a larger total distance L, which, in turn, 
leads to a reduction in the amount of produced entangled 
pairs (per second).

In this paper, a complete quantum repeater scheme that 
encapsulates entanglement distribution, purification, and 
swapping protocols was proposed. In contrast to conven-
tional repeater schemes, we completely avoid two-qubit 
logical gates by exploiting cavity QED evolution along 
atomic projective measurements. Our repeater scheme 
has a conveyor-like structure, in which single atoms are 
inserted into one of two optical lattices and conveyed along 
the entire repeater node. At the same time, another chain 
of atoms is conveyed along the neighboring repeater node 
in a synchronous fashion. These two nodes form together 
a repeater segment, while the entire set of segments form 
the quantum repeater itself. In Figs.  1a and 4, the sketch 
of experimental setup was displayed and a detailed descrip-
tion of all necessary steps and manipulations was provided. 
A comprehensive analysis of success probabilities and final 
fidelities obtained after multiple purification and swapping 
operations was given. In addition, the comparison with 
regard to the results obtained in our previous paper has 
been provided.

In particular, our entanglement distribution here is based 
on a simpler coherent state discrimination measurement 
distinguishing only two coherent states with opposite signs, 
which can be easily and optimally done by linear optics 
and on–off detections. Following recent developments in 
cavity QED, finally, we briefly pointed to and discussed 
a few practical issues related to the implementation of 
our repeater scheme. We stress that although the physical 
resources utilized in our repeater are experimentally fea-
sible, its explicit realization for a long-distance quantum 
communication still poses a serious challenge.

Acknowledgments  We thank the BMBF for support through the 
Q.Com (former QuOReP) program.

(46)R S =
υ

14 ℓZN (Ptotal)
≡ R̃.

Appendix: Derivation of Hamiltonians (1) and (3)

In this appendix, we show that the evolutions (2) and (4) 
governed by the Hamiltonians (1) and (3) are produced 
deterministically in our framework. Namely, we consider 
an atom coupled strongly to the cavity and subjected to the 
detuned laser fields as displayed in Fig. 1c. The evolution 
of this interacting system is governed by the Hamiltonian

where g denotes the coupling strength of atoms to the cav-
ity mode, while Ω denotes the coupling strengths of atoms 
to both laser fields.

We switch to the interaction picture using the unitary 
transformation

In this picture, the Hamiltonian (47) takes the form

where the notation ∆L ≡ (ωE − ω1)− ωL, ∆C ≡ (ωE − ω0)−
ωC, and ∆ ≡ ∆L −∆C has been introduced.

We require that ∆L and ∆C are sufficiently far detuned, 
such that no atomic |e� ↔ |0� or |e� ↔ |1� transitions can 
occur. We expand the evolution governed by the Hamil-
tonian (49) in series and keep the terms up to the second 
order, that is,

By performing integration and retaining only linear-in-time 
contributions, we express this evolution in the form

where the effective Hamiltonian is given by

after removing constant contributions. We switch to the 
interaction picture with respect to the first term of H3. In 
this picture, we obtain

(47)

H1 = �ωC a† a

− ι̇�

[
g

2
a |e��0| +

Ω

2

(
e
−iωL t |e��1| + e

−iωP t |e��0|
)
− H.c.

]

+ �(ω1|1��1| + ωE |e��e| + ω0|0��0|),

(48)
U1 = e

−ι̇ t
[
(ω1|1��1|+(ω1+ωL+∆L)|e��e| +ω0|0��0|)+(ω1+ωL−ω) a†a

]
.

(49)

H2 = �∆ a†a

− ι̇�

(
g

2
e
−i∆L ta |e��0| +

Ω

2
e
−i∆L t(|e��1| + |e��0|)− H.c.

)
.

(50)U2
∼= I −

ι̇

�

∫ t

0

H2 dt
′ −

1

�2

∫ t

0

(
H2

∫ t′

0

H2 dt
′′
)
dt′.

(51)U2
∼= I−

ι̇

�
H3 t ∼= exp

[
−
ι̇

�
H3 t

]
,

(52)H3 = �∆ a†a+
�Ω

4∆L

(Ω |1��0| + g |1��0| a+ H.c.)
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We switch now from the atomic basis {|0�, |1�} to the 
basis {|+�, |−�}, where

In this basis, the Hamiltonian (53) takes the form

where S ≡ |−��+| and SZ ≡ |+��+| − |−��−|, and where 
we removed all the constant contributions. We switch one 
more time to the interaction picture with respect to the first 
term of (55). In this picture, the Hamiltonian (55) becomes

In the strong driving regime, i.e., for 
Ω2/(2∆L) ≫ {∆, gΩ/(8∆L)}, we eliminate the last (fast 
oscillating) term using the same arguments as for the rotat-
ing wave approximation. Using the identity SZ = σX, the 
Hamiltonian (56) reduces to

In the case of vanishing ∆ (equivalently ∆L = ∆C), the 
above Hamiltonian takes the simplified form

which, under the notation J1 ≡ gΩ/(4∆L), coincides with 
the Hamiltonian (3).

In the case of nonvanishing ∆, we introduce 
δ = ∆−Ω2/(2∆L), such that Ω2/(2∆L) > δ. Due to this 
assumption, we eliminate in Eq.  (56) the first term along 
with the terms S†a†eι̇ (δ+Ω2/∆L)t and S a e−ι̇ (δ+Ω2/∆L)t 
due to the rotating wave approximation, by which these 
fast oscillating terms play a minor role in the evolution. 
Without these terms, the Hamiltonian (56) takes the usual 
Jaynes–Cummings form

expressed in the (effective) atomic basis {|−�, |+�}.

(53)H4 =
�Ω

4∆L

(
Ω |1��0| + g e−i∆ t|1��0| a+ H.c.

)
.

(54)|+� =
1√
2
(|0� + |1�); |−� =

1√
2
(|0� − |1�).

(55)
H5 =

�Ω

8∆L

[
2ΩSZ + g SZ(e−i∆ ta+ ei∆ ta†)

+ g (S† − S)(e−i∆ ta− ei∆ ta†)
]
,

(56)

H6 = �
gΩ

8∆L

[
SZ(e−i∆ ta+ e

i∆ ta†)

+
(
S† e

ι̇ Ω2

2∆L
t − S e

−ι̇ Ω2

2∆L
t
)(

e
−i∆ ta− e

i∆ ta†
)]

.

(57)H7 = �
gΩ

8∆L

(
e−i∆ ta+ ei∆ ta†

)
σX .

(58)H8 = �
gΩ

8∆L

(
a+ a†

)
σX ,

(59)H9 = �
gΩ

8∆L

(
S†a e−ι̇ δ t + S a†eι̇ δ t

)
,

We require, finally, that δ is sufficiently far detuned, such 
that the transition |−� ↔ |+� cannot occur. As above, we 
expand again the evolution governed by (59) in series up 
to the second order and retain only linear-in-time contri-
butions after the integration. This procedure leads to the 
effective Hamiltonian,

where we removed all constant contributions and used the 
identity SZ = σX. Since the second term commutes with 
the first term, we eliminate the second term by means of 
an appropriate interaction picture. The resulting Hamilto-
nian [i.e., the first term of (60)], coincides with (1) under 
the notation J2 = g2 Ω2/(32∆2

L δ).
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