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of the WDF, it is enough to fully account for the Wigner 
dynamics of the beam under paraxial propagation through 
first-order optical systems. The analysis here presented 
complements that developed in [1] and can usefully be 
exploited for further investigations.

A definite interest for the Lorentz and Lorentz–Gauss 
beams clearly emerges from the literature. In fact, after the 
primary explicit introduction of the Lorentz beams [5] (see 
also [6, 7]) on the basis of the experimental observations 
reported in [8, 9], mainly regarding the radiation emitted by 
single-mode diode lasers [10], various properties of such 
beams as well as of their Gaussian-modulated version have 
been widely investigated (see, for instance, [11–15]). In 
particular, the WDF of Lorentz and Lorentz–Gauss beams 
has been considered in [16, 17] as that of a super-Lorentz–
Gauss beam in [17, 18].

Lorentz–Gauss vortex beams can be produced, for 
instance, by letting the radiation emitted by a single-mode 
diode laser to pass through a spiral phase plate, by which 
one can suitably modulate the wavefront phase of the beam. 
Carrying on orbital angular momentum, Lorentz–Gauss 
vortex beams could be appropriate, for example, for opti-
cal micro-manipulation, quantum information processing 
and phase contrast light microscopy [19]. Indeed, several 
properties of the Lorentz–Gauss vortex beams have been 
examined; the paraxial propagation through optical systems 
has been discussed in [20] and, in particular, that through 
a fractional Fourier transformer in [21]. Also, the propa-
gation through a turbulent atmosphere has been object of 
analysis in [22], whereas the non-paraxial propagation in 
uniaxial crystals whose optical axis is orthogonal to the 
propagation axis has been considered in [23].

As is well known, the WDF is a basic tool for the 
hybrid, i.e., space/spatial frequency, representation of opti-
cal signals [24–30]. The “quantum-like” pairs of Fourier 

Abstract  The Wigner distribution function of a Lor-
entz–Gauss vortex beam with one topological charge is 
considered. The topics have been the object of a recent 
publication. However, we present an alternative compact 
expressionthat could complement the analysis developed 
in the aforementioned publication. The deduced expression 
can be usefully exploited to fully account for the Wigner 
dynamics of the Lorentz–Gauss vortex beam as far as the 
paraxial propagation through first-order optical systems is 
concerned.

1  Introduction

We propose an analytic compact expression for the Wigner 
distribution function (WDF) of a Lorentz–Gauss vortex 
beam with one topological charge. The topic has been 
the subject of a recent publication [1]. Here, the authors, 
resorting to the approximation of a Lorentzian function 
by a finite sum of (even-order) Hermite–Gaussian func-
tions, as originally proposed in [2], and to the Collins inte-
gral [3, 4], worked out analytic expressions for the WDFs 
of the Lorentz–Gauss vortex beam at the input plane and 
after paraxial propagation through a separable optical sys-
tem accountable by a 2× 2 ray matrix. We will deduce a 
compact closed-form expression for the WDF of the Lor-
entz–Gauss vortex beam at the input plane. It involves 
known functions, like the erfc function, which is supported 
by almost any software. Also, due to the transfer properties 

 *	 A. Torre 
	 amalia.torre@enea.it

1	 ENEA FSN-FUSPHY-TSM, via E. Fermi 45, 00044 Frascati, 
Rome, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00340-016-6320-4&domain=pdf


A. Torre

1 3

55  Page 2 of 13

conjugate space/spatial-frequency variables span the 4D 
wave-optical phase space. In it, following the replacement 
of light rays by optical wave functions as descriptors of 
optical disturbances, light signals with the relevant propa-
gation “dynamics” are described by suitable phase-space 
distribution functions, among which the WDF is definitely 
the most important one. It represents the wave-optical tool 
closest to the geometric-optical concept of light ray, due to 
its localization properties and dynamical behavior, which 
under paraxial propagation through real (first-order) optical 
systems is ruled by the same transfer law of ray optics. The 
WDF retains in fact the information about the optical signal 
as conveyed by the relative wave-optical description while 
obeying the simple rules of evolution according to the cor-
responding ray-optical approach. It then accommodates for 
both the formal and conceptual simplicity of geometrical 
optics and the completeness of wave optics.

In Sect. 2, we deduce a closed-form expression for the WDF 
of a Lorentz–Gauss vortex beam with one topological charge. 
The analysis partly grounds on the results presented in [17], 
where the author proposed a closed-form expression for the 
WDF of a Lorentz–Gauss beam. It also exploits the symmet-
ric correspondences between the x- and y-coordinate depend-
ences in the input field. Then, in Sect. 3 we resort to the afore-
mentioned transfer law obeyed by the WDF under paraxial 
propagation through real optical systems. As is well known, 
it strictly relates to the evolution of the “classical-like” pair 
of optical variables, namely the light-ray coordinates of geo-
metrical optics, which evolution is in turn ruled by the system 
ray matrix. Thus, the WDF retains its formal expression under 
propagation, the arguments being basically transformed as the 
ray variables. For exemplificative purposes, we will show the 
Wigner charts of the Lorentz–Gauss vortex beam on some 2D 
planes at the initial z-position zi and at some subsequent z-posi-
tion under free propagation. In general, the expression of the 
WDF at the initial plane retains its crucial role in determining 
the WDF under paraxial propagation also through complex 
optical systems, although by means of a convolution-based 
evolution law. Therefore, as far as the paraxial propagation is 
concerned, the expression of the WDF at the initial plane zi is 
all one needs to fully account for the Wigner dynamics at sub-
sequent z > zi. Concluding notes are given in Sect. 4.

2 � The Wigner distribution function of a Lorentz–
Gauss vortex beam: a closed‑form expression

A Lorentz–Gaussian vortex beam with one topological 
charge can be represented by the wave function

(1)ϕ0(x, y) = C
x + iy

(1+ x2

w2
x
)(1+ y2

w2
y
)
e
− x2+y2

2w2
G ,

at the initial plane conventionally taken at zi = 0. Here, x 
and y address Cartesian coordinates in that plane as well as 
in any (transverse) plane along the z-direction of propaga-
tion. The arbitrary constant C serves to give ϕ0 the desired 
dimension. Thus, if one wished to work with a dimen-
sionless quantity, C could be fixed to have the dimensions 
of length−1 as conveyed, for instance, by 1/

√
wxwy. This 

choice will be implicitly taken throughout the paper. If on 
the other hand a normalized wave function is desired, for 
the explicit expression of C one can benefit from the fact 
that

where

and Wκ ,µ denotes Whittaker’s second function [31]1. 
Finally, the parameters wx, wy and w

G
 relate to the widths of 

the Lorentzian and Gaussian parts of the wave function; in 
fact, the two limits of purely Lorentzian or purely Gaussian 
vortex beams are recovered for w

G
→ ∞ and wx, wy → ∞, 

respectively.
As is well known, for any pair of functions ψ(x, y), 

φ(x, y), the relevant WDF is conveyed by the 2D Fourier-
like integral

�ϕ0�2 = |C|2
π

2
wxwye

w2x+w2y

2w2
G

[

N(wx ,wy,wG
)+ N(wy,wx ,wG

)
]

,

N(wx ,wy,wG
) =

√

w3
xwyW− 5

4 ,−
1
4

(

w2
x

w2
G

)

W− 3
4 ,−

3
4

(

w2
y

w2
G

)

,

1  We recall that Whittaker’s first and second functions, Mκ ,µ(s) and 
Wκ ,µ(s), are solutions of the second-order differential equation

whose standard solutions are in fact

except that Mκ ,µ(s) does not exist for 2µ = −1,−2, ... Here,  

1F1(a, c; s) = Ŵ(c)
Ŵ(a)

∑∞
n=0

Ŵ(a+n)
Ŵ(c+n)

sn

n! and U(a; c; s) = π
sin(πc)

1F1(a,c;s)
Ŵ(c)Ŵ(1+a−c)

− s1−c 1F1(a+1−c,2−c;s)
Ŵ(a)Ŵ(2−c)

 denote Kummer’s functions of the 

first and second kind, respectively, Ŵ being the gamma function.

d2

ds2
f (s)+

(

−1

4
+

κ

s
+

1
4
− µ2

s2

)

f (s) = 0,

Mκ ,µ(s) =e−
s
2 s

1
2
+µ

1F1

(

1

2
+ µ− κ; 1+ 2µ; s

)

,

Wκ ,µ(s) =e−
s
2 s

1
2
+µ U

(

1

2
+ µ− κ; 1+ 2µ; s

)

,

(2)

Wψ ,φ(x, y, kx , ky) =
1

π2

+∞
∫

−∞

+∞
∫

−∞

ψ∗(x − x′, y − y′)φ

(x + x′, y+ y′)e−2ikxx
′−2ikyy

′
dx′dy′,
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where kxand ky denote the Fourier conjugate variables to 
x and y , i.e., the spatial frequencies. The above is gener-
ally addressed to as the cross-WDF of ψ and φ, turning 
into the (self-)WDF Wψ when ψ = φ. The dependence 
on the propagation variable z is implied in (2). However, 
due to the well-known evolution law obeyed by the WDF 
under paraxial propagation, the knowledge of the WDF at 
the “initial” plane zi = 0 amounts to the knowledge of the 
WDF at any subsequent plane z > 0. Indeed, we will evalu-
ate the WDF of the initial wave function (1); later, we will 
consider its evolution under paraxial propagation through a 
first-order optical system.

In view of evaluating the WDF of ϕ0, we rewrite it as

the identification of ϕ1 and ϕ2 will be fixed later (see 
Eq. (5)).

The WDF will then be composed of the self- and cross-
terms according to

with, of course, Wϕ1,ϕ2 = W
∗
ϕ2,ϕ1

.
For each component in (3), the dependence on x and y 

is factorizable. Therefore, the self-WDFs Wϕ1and Wϕ2 turn 
out to be the product of the WDFs of the x- and y-depend-
ing functions.

Specifically, we have

and

It is easy to realize that �1(y) and �2(x) are both Lorentz–
Gauss functions, namely both are like

Correspondingly, �1(x) and �2(y) have the same form as 
well, being both conveyed by the product of a Lorentzian 
function and an Hermite–Gaussian function, namely both 
are like

The dependence se
− s2

2w2
G  can be understood as an Hermite–

Gaussian function by virtue of the fact that the Hermite 
polynomial of order 1 is just H1(s) = 2s [31].

(3)ϕ0(x, y) ≡ ϕ1(x, y)+ iϕ2(x, y);

(4)

Wϕ0 (x, y, kx , ky) =Wϕ1(x, y, kx , ky)+Wϕ2 (x, y, kx , ky)

+ iWϕ1,ϕ2 (x, y, kx , ky)− iWϕ2,ϕ1(x, y, kx , ky),

(5)
ϕ1(x, y) =�1(x)�1(y),

ϕ2(x, y) =�2(x)�2(y),

(6)
Wϕ1(x, y, kx , ky) =W�1

(x, kx)W�1
(y, ky),

Wϕ2(x, y, kx , ky) =W�2
(x, kx)W�2

(y, ky).

(7)�(s) =
1

1+ s2

w2

e
− s2

2w2
G , s = x, y, w = wx ,wy.

(8)

�(s) = C
1

(1+ s2

w2 )
se

− s2

2w2
G = C

w
G
/2

(1+ s2

w2 )
H1

(

s

w
G

)

e
− s2

2w2
G .

It is therefore evident that

under the interchanging x ←→ y, kx ←→ ky and wx ←→ 
wy.

Then, under the same interchanging of variables and 
parameters, we also have that

Let us examine now the cross-term. It factorizes as well 
into the product of two cross-WDFs as

with clearly

under the interchanging x ←→ y, kx ←→ ky and wx ←→ 
wy.

In conclusion, we are left with the evaluation of W�1
 

or equivalently of W�2
, and of W�1,�2

 or equivalently of 
W�1,�2

. This amounts to the evaluation of W� and W�,�. 
For completeness’ sake we will review the steps leading to 
the result presented in [17], concerning the WDF of a Lor-
entz–Gauss function, i.e., W�; as we will see, its expres-
sion will be central to the evaluation of the other WDFs of 
concern here.

2.1 � WDF of the Lorentz–Gauss function

The WDF of � reads as

The product of the two shifted Lorentzian functions enter-
ing the above integral can be properly managed to yield

where

Accordingly, expression (13) turns into

(9)W�2
= W�1

and W�1
= W�2

(10)Wϕ1 = Wϕ2 .

(11)Wϕ1,ϕ2(x, y, kx , ky) = W�1,�2
(x, kx)W�1,�2

(y, ky),

(12)W�1,�2
= W

∗
�1,�2

,

(13)

W�(s, k) =
1

π
e
− s2

w2
G

+∞
∫

−∞

1
[

1+ (s− s′)2/w2
][

1+ (s+ s′)2/w2
] e

− s′2
w2
G e−2iks′

ds′.

1
[

1+ (s− s′)2/w2
][

1+ (s+ s′)2/w2
] =

w4

4iws

[

1

A2 + s′2
−

1

B2 + s′2

]

A = w− is, B = w+ is = A∗.

(14)

W�(s, k) =
1

4iπs/w3
e
− s2

w2
G

+∞
∫

−∞

[

1

A2 + s′2
−

1

B2 + s′2

]

e
− s′2

w2
G e−2iks′

ds′,
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showing the difference of two integrals of the same form, 
i.e.,

where A denotes A or B. The evaluation of I(s, k) leads to 
the expression [17]

where

with erfc denoting the complementary error function [31], 
and

Using I(s, k) in (14), we end up with the expression [17]

for the WDF of the Lorentz–Gauss function (7). Here,

where Im signifies imaginary part and the function X (s, k) 
is taken for A = A = w− is, namely as

It is worth noting that

1F1 representing the Kummer’s function and D−1 the para-
bolic cylinder function [31]. Evidently, E∗(s, k) = E(−s, k).

Clearly, with the replacements s = y, k = ky, w = wy or 
s = x, k = kx, w = wx, W�(s, k) conveys W�1

 and W�2
, 

respectively.
Let us briefly comment on the obtained expression (19) 

for W�.
It is immediate to recognize the WDF of the Gauss-

ian part in �, being well known that the WDF of the 

(15)I(s, k) =
+∞
∫

−∞

1

A2 + y2
e
− y2

w2
G e−2ikydy,

(16)I(s, k) =
π

2A
e
−k2w2

G [E(s, k)+ E(s,−k)],

(17)E(s, k) = eX (s,k)2erfc(X (s, k)),

(18)X (s, k) =
1

w
G

(A+ kw2

G
), A = w± is.

(19)W�(s, k) =
1

4s/w2
e
− s2

w2
G

−k2w2
G
L(s, k),

(20)L(s, k) = Im

{

1

1− is/w
[E(s, k)+ E(s,−k)]

}

(21)

X (s, k) =
1

w
G

(

w− is+ kw2

G

)

= β

(

1− i
s

w

)

+ kw
G
, β ≡

w

w
G

.

(22)

E(s, k) = eX (s,k)2 −
2

√
π
X (s, k) 1F1

(

1;
3

2
;X (s, k)2

)

=
√

2

π
e
X (s,k)2

2 D−1

(√
2X (s, k)

)

,

Gaussian e
− s2

2w2
G  is ∝ e

− s2

w2
G

−k2w2
G. So, one can presume that 

the remaining part of W�, i.e., L(s, k)/s, be related to the 
WDF of the Lorentzian dependence. Indeed, the parame-
ter β = w

w
G

, introduced in the expression (21) for X (s, k),  
fixes the valence of the Lorentzian and Gaussian depend-
ence in � and hence in ϕ0. Evidently, β ≫ 1 amounts to 
w ≫ w

G
  , thus yielding the “Gaussian” limit, where � is 

mainly dominated by the Gaussian dependence. In fact, in 

the limit β → ∞ (i.e., w → ∞, w
G
 finite), �(s) → e

− s2

2w2
G . 

Conversely, β ≪ 1 amounts to w
G
≫ w, thus yielding the 

“Lorentzian” limit, where � is mainly dominated by the 
Lorentzian dependence; in the limit β → 0 (i.e., w

G
→ ∞, 

w finite), �(s) → 1

1+ s2

w2

.

In practice, resorting to the asymptotic representation of 
the erfc function, i.e., [31]

we can easily deduce from (19) the expression for the WDF 
of a Lorentzian function in the limit β → 0 (i.e., w

G
→ ∞, 

w finite), which explicitly reads as [17]

on account of that

As expected for a WDF, WL combines in some way both 
the space and Fourier domain dependence, 1

1+ s2

w2
L

 and 
e−|k|wL of �.

Likewise, the WDF of a Gaussian function is recovered 
from W�(s, k) in the limit β → ∞ (i.e., w → ∞, w

G
 finite),

being

Finally, we recall from [17] that, notwithstanding the factor 
s−1, W�(s, k) has no singularity at s = 0, as confirmed by 
the Taylor series expansion of W�(s, k) at s = 0, through 
which we obtain for W�(0, k) the finite value

erfc(z) ≈
e−z2

√
πz

, |z| → ∞, | arg(z)| <
3

4
π ,

(23)

W�(s, k) →
w
G
→∞

W
L
(s, k) =

1

2/w

1

(1+s2/w2)
e−2|k|w

× [cos(2ks)+ 2|k|wsinc(2ks)],

(24)

E(s, k)+ E(s,−k) ∼ 2e
k2w2

G e−2|k|w(1−is/w); w
G
→ ∞, w finite.

(25)W�(s, k) →
w→∞

W
G
(s, k) =

w
G√
π
e
− s2

w2
G

−k2w2
G
,

(26)

E(s, k)+ E(s,−k) ∼
2

√
πβ(1− is/w)

, w → ∞, w
G
finite.
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Plots of W�(s, k) are shown in Sect. 3.

2.2 � WDF of the Lorentzian modulated by the Hermite–
Gaussian function

For the evaluation of the WDF of the function �(s), we 
should deal with the integral

Since (s− s′)(s+ s′) = s2 − s′2, it can be recast as

The evaluation of the derivative entering the above expres-
sion is very simple; one obtains, in fact,

according to which W�(s, k) turns out to be

with

An alternative expression for H(s, k), which reproduces the 
same structure of L(s, k), is

with

W�(0, k) =
1

4/w
e−k2w2

G

{

4β
√
π

+ E(0, k)[1− 2βX (0, k)]

+ E(0,−k)[1− 2βX (0,−k)]}.

W�(s, k) =
|C|2

π
e
− s2

w2
G

+∞
∫

−∞

(s− s′)(s+ s′)

[1+ (s− s′)2/w2][1+ (s+ s′)2/w2]
e
− s′2

w2
G e−2iks′

ds′.

(27)W�(s, k) = |C|2
[

s2 +
d2

dk2

]

W�(s, k).

(28)

d

dk
W�(s, k) =

1

2s/w3
e
− s2

w2
G

−k2w2

G
Im[E(s, k)− E(s,−k)],

d2

dk2
W�(s, k) =

1

s/w4
e
− s2

w2
G

−k2w2

G
Im

{(

1− i
s

w

)

[E(s, k)+ E(s,−k)]
}

,

(29)W�(s, k) =
|C|2

4s/w4
e
− s2

w2
G

−k2w2
G
H(s, k),

(30)H(s, k) = Im

{

1− 2is/w

1− is/w
[E(s, k)+ E(s,−k)]

}

.

(31)H(s, k) =
w2

G

w2
Im

{

1

1− is/w
[J (s, k)+ J (s,−k)]

}

,

(32)

J (s, k) =

(

s2

w2
G

+ w2

G
k2

)

E(s, k)

−
1

√
π
e
X (s,k)2

2 X (s,−k)D−2

(√
2X (s, k)

)

.

It grounds on the expression of E(s, k) in terms 
of the parabolic cylinder function (Eq. (22)) and 
the recurrence relation for D−2(z), which reads as 
D−2(z) = D0(z)− zD−1(z) = e−

z2

4 − zD−1(z). It will be 
useful when looking for the “Gaussian” limit for W�(s, k).

Again, with the replacements s = x, k = kx, w = wx 
or s = y, k = ky, w = wy in (29), we obtain W�1

 or W�2
, 

respectively.
Some comments are in order. Like for W�, the factor s−1 

does not yield a singularity for W�, which in fact at s = 0 
takes on the finite value

The Lorentzian limit (w
G
→ ∞, w finite, i.e., β → 0) con-

veys the expression for the WDF of a Lorentz vortex beam. 
It is obtained as

following from (29) for β → 0, which implies the rela-
tion (24). Note that, according to (27), we also have that 
WLV(s, k) = |C|2(s2 + 1

4
d2

dk2
)WL(s, k).

Correspondingly, evaluating the limit of W�(s, k) for 
β → ∞ (i.e., w → ∞, w

G
 finite), we recover the expression 

of the WDG for the Hermite–Gaussian function of order 1, 
obtaining in fact

on the basis of the expression (31) for H(s, k) and the 
asymptotic representation of the parabolic cylinder func-

tion Dν(z) ≈ zνe−
z2

4  for |z| → ∞ and | arg(z)| < 3π
4

, appro-
priate in our case. The result is consistent with ( 27), giving 
indeed W�(s, k) →

w→∞
|C|2[s2 + d2

dk2
]W

G
(s, k). It conforms 

also to the general expression for the WDF of the (stand-

ard) Hermite–Gaussian function Hn(s/wG
)e

− s2

2w2
G , which 

reads as

where Ln denotes the Laguerre polynomial of order n; in 
particular, L1 = 1− x.

Plots of W�(s, k) are shown in Sect. 3.

W�(0, k) = |C|2
1

4/w3
e
−k2w2

G [
4β
√
π

− E(0, k)[1+ 2βX (0, k)]

− E(0,−k)[1+ 2βX (0,−k)]].

W
LV
(s, k) = |C|2

1

2/w3

1

(1+s2/w2)
e−2|k|w

[

2|k|w(1+ 2s2/w2)sinc(2ks)− cos(2ks)

]

,

(33)

W�(s, k) →
w→∞

W
HG

(s, k) = −|C|2
w3

G

2
√
π
e
− s2

w2
G

−k2w2

G

[

1− 2(
s2

w2
G

+ k2w2

G
)

]

,

(34)

W(s, k) = (−1)n
2nn!
√
π
w

G
e
− s2

w2
G

−k2w2

G
Ln

[

2

(

s2

w2
G

+ k2w2

G

)]

,
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The occurrence of the Lorentz–Hermite–Gauss function 
(in particular of order 1) naturally arises from the present 
approach to the evaluation of the Wigner integral for ϕ0.

An analysis of the behavior of the Lorentz–Hermite–
Gaussian functions vs. s reveals that for w < w

G
 the func-

tions retain the basic features of the relevant Hermite–
Gaussian functions but are squeezed around the origin. 
This could suggest using of the Lorentz–Hermite–Gaussian 
beams in applications where Hermite–Gaussian-beam fea-
tures are required but across a more limited space range. On 
the other hand, mathematically they can help the evaluation 
of the WDF of beams where vortices of arbitrary topologi-
cal charge ≥1 are embedded, for instance, in a Lorentz–
Gaussian beam. In such a case, the factor (x + iy) entering 
ϕ0 would be replaced by (x + iy)n. The nice relation

would make easier the evaluation of the WDF of a Lor-
entz–Gaussian beam with a vortex of topological charge 
n. In fact, since the WDF of Hermite–Gaussian beams is 
well known (Eq. (34)), one can conveniently resort to the 
property that the WDF of a product of functions is con-
veyed by the convolution of the WDFs of the single func-
tions in the spatial-frequency domain (Sect. 3). Even bet-
ter, if one wishes to consider a pair of vortices embedded 
in the Lorentz–Gauss beam, one with topological charge 
ε1n (ε1 = ±1) located at x = −x0, y = 0 and another with 
topological charge ε2m (ε2 = ±1) at x = x0, y = 0. In such 
a case, the factor (x + x0 + iε1y)

n(x − x0 + iε2y)
m would 

replace the factor (x + iy) in ϕ0. Relation (35) along with 
the aforementioned property of the WDF would be useful 
for the “elegant” evaluation of the relevant WDF as well.

2.3 � Cross‑WDF of the Lorentz–Gauss and Lorentz–
Hermite–Gauss functions

The cross-WDFs W�1,�2
 and W�1,�2

 signify the cross-
WDF of the functions �(s) and �(s) , and its complex con-
jugate. We should deal then with the integral

Using the first of (28), we readily obtain

with

(35)(x + iy)n =
1

2n

n
∑

j=0

(

n

j

)

ijHn−j(x)Hn(y),

(36)
W�,�(s, k) =

C

π
e
− s2

w2
G

+∞
∫

−∞

(s− s′)

[1+ (s− s′)2/w2][1+ (s+ s′)2/w2]
e
− s′2

w2
G e−2iks′

ds′

=C

(

s−
i

2

d

dk

)

W�(s, k).

(37)

W�,�(s, k) =
C

4s/w3
e
− s2

w2
G

−k2w2
G
[(s/w)L(s, k)− iC(s, k)],

The alternative expression for C(s, k) can be worked out as

with

At s = 0, the function W�,� takes on the value

It is worth noting that, conforming to the reality of the 
involved functions, the complex conjugate W∗

�,�, needed 
to finalize the expression (11) for the cross-WDF, is sim-
ply obtained also by the replacement k → −k, as even con-
veyed by (36).

Within the present context, the cross-WDF W�,� has 
no interest itself, but only when used to finalize the expres-
sion for Wϕ0, and hence its evolution will not be considered. 
Therefore, we show in Fig. 1 the (s / w, kw)-contour plots of 
its real and imaginary parts, and its squared amplitude for two 
values of β. As in the following plots, the space variable is 
scaled by the Lorentzian width parameter w, and accordingly, 
the corresponding dimensionless spatial frequency is kw.

2.4 � WDF of the Lorentz–Gauss vortex beam

Let us combine together the above results in order to spec-
ify the expression for Wϕ0(x, kx, y, ky).

Firstly, on account of the expressions (19) and (29) and 
of the relation (10), we see that the self-terms convey the 
expression

Then, as to the cross-terms, we note that

Hence, on the basis of the relations (11) and (12) and the 
expression (37), it is seen to be

Finally, using (39) and (40) in (4), we end up with

(38)C(s, k) = Im[E(s, k)− E(s,−k)].

C(s, k) = −
w

G

w
Im

{

1

1− is/w
[Y(s, k)− Y(s,−k)]

}

,

Y(s, k) = w
G
kE(s, κ)+

√

1

π
e
1
2X (s,κ)2D−2

(√
2X (s, κ)

)

.

W�,�(0, k) = C
iβ

2/w2
e
−k2w2

G [X (0, k)E(0, k)− X (0,−k)E(0,−k)].

(39)
Wϕ1 (x, y, kx , ky)+Wϕ2 (x, y, kx , ky) =

|C|2
(4x/w3

x )(4y/w
3
y )
e
− x2+y2

w2
G

−w2
G
(k2x+k2y )

{

wx

wy
H(x, kx)L(y, ky)+

wy

wx
L(x, kx)H(y, ky)

}

i[Wϕ1,ϕ2(x, y, kx , ky)−Wϕ2,ϕ1(x, y, kx , ky)] = −2Im(Wϕ1,ϕ2).

(40)

−2Im(Wϕ1,ϕ2 ) =
2|C|2

(4x/w3
x )(4y/w

3
y )
e
− x2+y2

w2
G

−w2
G
(k2x+k2y )

·
{

x

wx
L(x, kx)C(y, ky)−

y

wy
L(y, ky)C(x, kx)

}
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where

with H given by (30). The validity of the above formula 
has been checked by a direct evaluation of the 2D Wigner 
integral.

Expression (41) represents the main result of this note, 
offering indeed a compact closed-form expression for the 
WDF of the Lorentz–Gauss vortex beam (1), in terms of 
known functions, like the erfc function.

We finally note that the alternative expression (31) for H 
would yield the equivalent expression for Wϕ0 as

(41)

Wϕ0 (x, y, kx , ky) =
|C|2

(4x/w3
x )(4y/w

3
y )
e
− x2+y2

w2
G

−w2
G
(k2x+k2y )

·

{

V(y, ky,wy , x,wx)L(x, kx)+ V(x, kx ,wx ,−y,wy)L(y, ky)
}

.

(42)V(y, ky, x,wy,wx) =
wy

wx

H(y, ky)+
2x

wx

C(y, ky),

where

It looks more symmetric than (41). However, the latter is 
perhaps more suited for numerical implementation, resort-
ing only to the erfc function; typically, software easily 
deal with the erfc function (even with complex arguments) 
while rather hardly manage the parabolic cylinder function 
(or, equivalently the Kummer’s function), especially when 
complex arguments are involved.

(43)

Wϕ0 (x, y, kx , ky) =|C|2
w2

G

(4x/w2
x )(4y/w

2
y )
e
− x2+y2

w2
G

−w2
G
(k2x+k2y )

·

·
{

P(x, y, ky)L(x, kx)+ P(−y, x, kx)L(y, ky)
}

,

(44)P(x, y, ky) = H(y, ky)+
2x

w
G

C(y, ky).

Fig. 1   (s / w, kw)-contour plots of the real part, the imaginary part and the squared amplitude of the cross-WDF W�,� for  (a) β = 0.2 and (b) 
β = 1
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3 � Wigner charts for Lorentz–Gauss vortex beams

Expression (41) allows us to determine the WDF of the 
Lorentz–Gaussian vortex beam, represented at the input 
plane by (1), under paraxial propagation through any opti-
cal system.

As is well known, in fact, the WDF obeys the transfer 
law [11, 25, 26]

when the corresponding wavefield paraxially propagates 
through a real optical system. Here, the array v conveni-
ently gathers the WDF variables, namely the Fourier con-
jugate pairs (x, kx) and (y, ky) as v⊤ = (x, y, kx , ky); zi  and 
zo identify the z-locations respectively of the input and 
output planes, between which the optical system is under-
stood to operate, transporting the wave function on the 
plane at zito the wave function on the plane at zo. Finally, 

M=
(

A B/k

kC D

)

, where A, B, C and D are 2× 2 matrices, 

is the 4× 4 (symplectic) ray transfer matrix M =
(

A B

C D

)

 , 

up to the scaling by the field wavenumber k. According to 
the geometrical optics formalism, the ray matrix M synthe-
sizes the paraxial propagation through an optical system in 
terms of a linear transformation of the ray variables, namely 
the position q = (x, y) of the intersection point of the ray 
with the reference plane and the momentum p = (px, py) 
(basically the angles at q, that the projections of the ray 
on the (x,  z) and (y,  z) planes form with the z-axis). The 
relation between the ray momentum ps and the spatial 
frequency ks, which reads as ks = kps, s = x, y , imposes 
the k-scaling of the matrices B and C (whose entries have 
respectively dimensions of length and length−1 ) to account 
for the natural variables of the WDF.

In particular, the free propagation from zi = 0 to z can 
be analyzed separately with respect the x and y coordinates. 
In such a case, in fact, A = D = I, C = 0 and B = zI. 
Accordingly, the WDF for the Lorentz–Gauss vortex beam 
(1) propagating in free space is simply given by

(45)W(v, zo) = W(M
−1

v, zi),

W
LGV

(x, y, kx , ky, z) = W
LGV

(

x −
z

k
kx , y −

z

k
ky, kx , ky, 0

)

,

where, of course, W
LGV

(x, y, kx , ky, 0) = Wϕ0(x, y, kx , ky).
For exemplificative purposes, we firstly show in Fig.  2 

the Wigner charts of the WDF W� of the Lorentz–Gauss 
beam (7) at z = 0 and z = kw2 for some values of β; pre-
cisely, for β = 0 , amounting to a purely Lorentzian beam, 
β = 0.5 and β = 1. We see that with increasing β the con-
tour lines in the Wigner plane (s, k) tend to become ellip-
ses, which are well known to characterize the Wigner chart 
of the WDF of a Gaussian beam. As said, throughout in the 
plots, we will deal with normalized coordinates, namely 
s / w and kw, thus implying that the longitudinal coordinate 
z is normalized to the inherent diffraction length zd = kw2, 
i.e., z/zd.

Correspondingly, Fig. 3 shows the Wigner charts of the 
WDF W� of the Lorentz–Hermite–Gauss function (8) at 
z = 0 and z = kw2 for the same values of β as in Fig. 2. In 
both cases, as expected, the free propagation amounts to 
an s-shear of the Wigner chart in the Wigner phase plane 
(s, k).

Evidently, the dynamics of W
LGV

 would be much more 
complex involving four variables. The panels in Fig. 4 display 
the contour plots of W

LGV
 on some fixed 2D planes at z = 0 

and z = kw2. In the graphs, we have fixed βx = βy = 1√
2
, 

and once again normalized the space and Fourier variables by 
the Lorentzian width parameter w = wx = wy. The behavior 
of W

LGV
 is somewhat intermediate between that of W� and 

W�. Interestingly, on the (x/w, kxw)-plane for fixed values 
of y  / w and kyw (frames (c) and (d) in the figure), we can 
recognize an x-shear of the Wigner chart, whereas a rotation 
emerges from frame (a), conveying the Wigner chart on the 
(kxw, kyw)-plane for x/w = y/w = 0. The correctness of the 
displayed plots has been checked by the direct evaluation of 
the 2D Wigner integral (2) with ψ = φ = ϕ0.

More in general, the evolution of the WDF under par-
axial propagation through an optical system is conveyed by 
the relation [11, 25, 26]

whose kernel G(x, y, kx , ky, x
′, y′, k′x , k

′
y) is given by

(46)

W(x, y, kx , ky, zo) =
∫∫∫∫

G(x, y, kx , ky, x
′
, y′, k′x , k

′
y)

W(x′, y′, k′x , k
′
y, zi)dx

′
dy′dk′xdk

′
y,

(47)

G(x, y, kx , ky, x
′, y′, k′x, k

′
y) =

1
4π2

∫∫∫∫

g∗
(

x − x′′

2
, y− y′′

2
, x′ − x′′′

2
, y′ − y′′′

2

)

g
(

x + x′′

2
, y + y′′

2
, x′ + x′′′

2
, y′ + y′′′

2

)

· e−i(kxx
′′−k′xx

′′′)e−i(kyy
′′−k′yy

′′′)dx′′dy′′dx′′′dy′′′.
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It is completely determined by the point-spread function 
g(x, y, x′, y′) of the system of concern, which in turn rules 
the evolution of the wave function propagating through 
the system, being the kernel of the Collins (or, Huygens–
Fresnel diffraction) integral [3, 4].

Indeed, the phase-space transfer relation (46) for the 
WDF is paralleled by the space-domain transfer relation for 
the wave function,

ϕ(x, y, zo) =
∫∫

g(x, y, x′, y′)ϕ(x′, y′, zi)dx
′dy′.

Fig. 2   Wigner charts of the 
WDF W� of the Lorentz–Gauss 
function ( 7) at z = 0 (on the 
left) and z = kw2 (on the right) 
for (a) , (b) β = 0, (c), (d) 
β = 0.5,  (e), (f) β = 1
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Fig. 3   Wigner charts of the 
WDF W� of the Lorentz–Her-
mite–Gauss function (8) at 
z = 0 (on the left) and z = kw2 
(on the right) for (a), (b) β = 0, 
(c), (d) β = 0.5, (e), (f) β = 1
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Fig. 4   Contour plots of W
LGV

 on 
some fixed 2D planes at z = 0 
(to the left) and z = kw2 (to the 
right). Specifically, (a), (b) on the 
(kxw, kyw)-plane for x/w = 0,  
y/w = 0 and x/w = 0, y/w = 1,  
respectively, and (c), (d) on the 
(x/w, kxw)-plane for y/w = 0,  
kyw = 0 and y/w = 0, kyw = 1,  
respectively. In the graphs, 
βx = βy = 1√

2
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The point-spread function g(x, y, x′, y′) is determined by the 
ray matrix M according to

with

the symbol ⊤ denoting transposition and the principal root 
being conventionally taken for [det(B)]1/2.

Notably, the ray-spread function 
G(x, y, kx , ky, x

′, y′, k′x , k
′
y) has the structure of a “double” 

WDF, and hence, it has all the properties of a WDF.
When real entries are involved in the ray matrix M, the 

relations (46)–(47) yield the transfer law (45).
Evidently, this is not the case when complex entries are 

involved. However, complex matrices that are meaning-
ful in optics are those yielding Gaussian aperturing and 
Gaussian convolution. A circular aperture is, for instance, 
accounted for by a (spherical) thin lens-like ray matrix 
with purely imaginary “focal length” f = ia and hence 
A = D = I, B = 0 and C = i

ka
I, the parameter a relating 

to the characteristic width of the aperture. Accordingly, 
one would obtain the Gaussian apodization of the sig-

nal by e−k
x2+y2

2a so that ϕ0(x, y) would be transformed into 

ϕ0(x, y)e
−k

x2+y2

2a . A well-known and aforementioned prop-
erty of the WDF establishes that the WDF of the product 
of signals is the convolution in the Fourier domain of the 
WDFs of the product components. Therefore, the WDF 
of the Gaussian apodized Lorentz–Gauss vortex beam (1) 
would be conveyed by the convolution integral

Note that the same property could have been exploited on 
evaluating Wϕ0 since ϕ0(x, y) can be understood as result-
ing from the Gaussian apodization of the Lorentz vortex 
waveform.

Similarly, Gaussian convolution, amounting to the Pois-
son transform of the input signal, is accountable by a free-
space section-like matrix with purely imaginary “length” 
d = −iτ, so that A = D = I , C = 0 and B = −ikτ I. 
Gaussian convolution is optically implementable by the 
propagation through a Gaussian aperture (with a corre-
sponding to τ−1), enclosed between a direct and inverse 
Fourier transforms. Resorting again to a definite property of 
the WDF, we could obtain the WDF of the Lorentz–Gauss 

g(x, y, x′, y′) =
k

2π i[det(B)]1/2
ei

k
2�(r,r′),

�(r, r′) = r′ ⊤B−1Ar′ − 2r′ ⊤B−1r + r⊤DB−1r,

r =
(

x

y

)

, r′ =
(

x′

y′

)

,

(48)
W

(ga)
LGV

(x, y, kx , ky) =
a

πk
e−k

x2+y2

a

∫∫

Wϕ0(x, y, k
′
x , k

′
y)e

− a
k
[(kx−k′x)

2+(ky−k′y)
2]dk′xdk

′
y.

vortex beam (1) after undergoing a convolution, by con-
volving with respect to the space variables Wϕ0 and the 

WDF of the Gaussian e−k
x2+y2

2τ , and hence by the “dual” of 

W
(ga)
LGV

 with a replaced by τ.
Evidently, in both case one would deal with a Gaussian 

smoothed WDF.
Needless to say, the same results would be obtained 

from the relation (46) with the expressions for the ray-
spread function G relevant to the Gaussian aperturing and 
convolution that we will not report for sake of space.

4 � Concluding notes

We have deduced a closed-form expression for the WDF 
of a Lorentz–Gauss vortex beam at the initial plane. As 
recalled, the WDF of Lorentz–Gauss beams has been 
the object of a detailed analysis in [1], where it has been 
evaluated resorting to an approximation of the Lorentzian 
function by a finite sum of (even-order) Hermite–Gauss-
ian functions, as suggested in [2]. The expression (41), 
deduced here, parallels that worked out in the quoted paper. 
It is our opinion that it is more easily manageable than that 
proposed in [1], since it resorts to known functions, like the 
erfc function, which is supported by almost any software.

According to the evolution law obeyed in general by the 
WDF, expression (41) provides a complete description of 
the Wigner-space dynamics of the Lorentz–Gauss vortex 
beams paraxially propagating through first-order optical 
systems. In particular, as far as real optical systems are con-
cerned, one deals with the simple transfer law (45), which 
directly relates to that of the light-ray variables in geometri-
cal optics. The more involved propagation law (46) is indeed 
needed when dealing with complex ray matrices. However, 
for the cases of interest in optics, addressing Gaussian aper-
turing and Gaussian convolution, one should deal with the 
Gaussian smoothed WDF (48), with the parameter a being 
properly specified to signalize aperturing or convolution.
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