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Finally, we aim to use femtosecond ω/2ω pulse pairs 
to demonstrate a theoretically proposed scheme for all-
optical current detection in thin GaAs membranes. How-
ever, we find the signal to be superimposed by second 
harmonic generation related to the electric field inducing 
the current. As a result, the currents’ signature cannot be 
unambiguously identified.

1 Introduction

Current flow through semiconductor devices is usually 
achieved by applying potential differences to contacts. 
Over the last 20 years, however, all-optical concepts 
to induce charge transport have sparked the interest of 
researchers. Such techniques are particularly appealing 
because currents can be located wherever one can focus an 
optical beam. In addition, the use of femtosecond pulses 
provides a THz bandwidth for current control—something 
contact-based methods cannot do. Depending on the sym-
metry of the material, different optical configurations can 
be utilized to induce electrical currents as well as pure 
spin currents. The most established example is current 
injection utilizing phase-stable superpositions of a funda-
mental beam (ω) and its second harmonic (2ω) [1, 2]. In 
a perturbative approach, it is related to a third-order opti-
cal nonlinearity (χ(3)). It arises from a quantum interfer-
ence of one- and two-photon absorption pathways across 
the direct gap EG of a semiconductor which satisfies 
�ω < EG < 2�ω and is allowed in any crystal structure. 
The process has been established in the prototypical mate-
rial GaAs and subsequently applied to 2D systems, indi-
rect semiconductors as well as nanostructures [3, 4]. It has 
also been observed at metal surfaces [5] and topological 
insulators [6].
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The purpose of the present paper is to review our work 
on coherently controlled electrical currents in semicon-
ductors. It comprises of three independent studies all of 
which are related to spectroscopy involving phase-related 
ω/2ω femtosecond pulse pairs interacting with GaAs 
microstructures.

In Sect. 2, we experimentally and theoretically investi-
gate the power dependence of coherently controlled cur-
rents in bulk GaAs [7]. For moderate irradiances, it is well 
known that these currents are linked to the third-order 
optical nonlinearity χ(3)(0;ω,ω,−2ω). Here we focus on 
elevated irradiances where absorption saturation and ulti-
mately the onset of Rabi oscillations contribute to the opti-
cal response. Current diagnostics is achieved electrically 
by recording the photoresponse of contacted specimens 
of low-temperature grown GaAs as a function of the rela-
tive phase of the ω and 2ω pulses. Especially for stronger 
ω irradiance, we find the magnitude of the coherently con-
trolled current to be markedly reduced when compared to 
χ(3)-expectation dJ/dt ∝ E2

ωE2ω. Theoretical simulations 
for the coherently controlled current based on the semicon-
ductor Bloch equations and a 14 band k · p model agree 
well with the experimental trends.

In Sect. 3, we demonstrate a versatile scheme to analyze 
the phase structure of femtosecond pulses [8]. It relies on 
phase-sensitive χ(3)-current injection driven by two time-
delayed portions of an ω/2ω pulse pair. In particular, we 
are able to determine the group velocity dispersions of both 
the ω and the 2ω part by a simple Fourier transform of the 
resulting current interferogram. We test the concept for 
45-fs pulses at 1.45 µm and directly compare it to second 
harmonic generation FROG.

In Sect. 4, we tackle a theoretical proposal by Liu 
et al. [9] for current detection utilizing coherently con-
trolled currents. This proposal is based on the fact that 
both a current’s carrier distribution and the induced transi-
tion rates of the coherent control technique are asymmet-
ric with respect to the crystal momentum. Depending on 
whether both exhibit the same or opposite asymmetry, the 
transmission of the input beams is expected to be either 
more or less increased due to state blocking. By control-
ling the asymmetry of the transition rates via the pulse 
pair’s relative phase, quantum interference control of 
electrical currents (QUIC) could be utilized to probe an 
anisotropic charge distribution via transmission measure-
ments. In turn, this technique would allow to investigate 
ultrafast current dynamics by all-optical means. How-
ever, we find the currents’ signatures to be superimposed 
by nonlinear second harmonic generation in the sample 
which obstructs a verification of the theoretical ideas.

2  Signatures beyond the perturbative χ(3)‑Limit

The discussion in Sect. 2 follows the more detailed descrip-
tion in Ref. [7]. In particular, the present article is restricted 
to the main findings that reveal deviations from the estab-
lished χ(3)-picture of current injection while a number of 
additional experimental checks and verifications can be 
found in Ref. [7].

2.1  Theoretical model and simulation results

We follow the theoretical approach described in Ref. [11–
13]. In short, we analyze the dynamical optoelectronic 
response using the multiband semiconductor Bloch equa-
tions (SBE) [11–13]

where x��
k

≡ n�
k
 is the population of electron with wave 

vector k in the band � and x��
′

k
 with � �= �

′ is the coherence 

between two bands � and �′. The collision term ∂
∂t
x��

′

k

∣

∣

∣

coll
 

describes either the relaxation of population or the dephas-
ing of coherence. Here, we treat this term in a phenomeno-
logical approach. We assume that the relaxation toward the 
quasi-equilibrium Fermi–Dirac distributions n�FD(k,T) is 
given by ∂

∂t
n�
k

∣

∣

coll
= −(n�

k
− n�FD(k, T))/τ1 and the dephas-

ing is described by ∂
∂t
x��

′

k

∣

∣

∣

coll
= −x��

′

k
/τ2. In the calcula-

tion, we use a typical value of 150 fs for both relaxation 
time τ1 and dephasing time τ2. In order to obtain the realis-
tic band energy ǫ�

k
 and momentum matrix elements ���

′

k
 in 

Eq. (1), we employ a 14-band k · p theory with parameters 
for GaAs taken from Ref. [10]. The vector potential A in 
Eq. (1) is given by A(t) = −

∫ t

−∞
E(t)dt, where E(t) is the 

electric field of laser pulses. For the optical excitation of 
two colinearly polarized ω and 2ω pulses, the field takes the 
form
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The population obtained from the SBE is used to evalu-
ate the time-dependent current density

We calculate the current density in GaAs bulk which 
is excited by Gaussian ω/2ω pulses with τL = 100 fs and 
2�ω = 1.6 eV. The phase relation φ2ω − 2φω = π/2 is cho-
sen in order to maximize the current. The dependence of 
the calculated current density on the amplitude of the elec-
tric field Eω for fixed E2ω amplitudes is shown in Fig. 1. We 
note that our theoretical approach is also able to describe 
shift currents if off-resonantly excited bands, in particular, 
energetically higher conduction bands are included in the 
numerical evaluations [13].

2.2  Experimental setup and samples

The scheme of the experimental setup is shown in Fig. 2. 
The optical source for the current injection experiments is 
a commercial femtosecond Er:fiber laser (Toptica FFS). It 
delivers a 75-MHz pulse train of 250 mW average power 
and 90-fs pulse duration at a central wavelength of 1.55µm 
such that 2�ω = 1.6 eV > EG = 1.42 eV of GaAs at room 
temperature. The light is passed through a 2-mm BiBO 
nonlinear optical crystal to generate second harmonic radi-
ation at 775 nm. A phase-stable superposition of co-polar-
ized fundamental (ω) and second harmonic radiation (2ω) 
is synthesized in a two-color Michelson interferometer. 

(3)J(t) =
e

m0

∑

�,k

�
��
k
n�
k
.

A high-precision motorized stage and polarization optics 
ensure full control over the relative phase and the polariza-
tion state of the ω/2ω pulse pair. The light is focused onto 
the sample using an aspheric lens with a numerical aper-
ture of NA = 0.26. Spot sizes are ≈ (10µm)2 for ω radia-
tion and 20µm × 35µm for 2ω light. The photocurrent is 
extracted with a lock-in amplifier referenced to the excit-
ing light that is mechanically chopped at 570 Hz. The sam-
ple is based on an annealed 2µm thick low-temperature 
grown (LT-) GaAs epilayer on an intrinsic GaAs substrate. 
The most favorable aspect of this material is the possibil-
ity to characterize coherently controlled currents by metal-
lic electrodes in the vicinity of the excitation. In essence, 
the short lifetime of unbound electrons in LT-GaAs inhibits 
dielectric charge relaxation and leads to a long-lived in-
plane electrical dipole which manifests as a voltage drop 
between adjacent metal pads [2, 14]. We note that we have 
measured the lifetime of the unbound electron-hole pairs 
by time resolving the free-carrier absorption subsequent to 
photoexcitation. For the sample of this study, we find a rea-
sonable lifetime of 1–2 ps.

On the LT-GaAs specimen, gold electrodes with a gap of 
50µm are formed. Coherently controlled currents can be 
generated and electrically measured in the LT-GaAs sub-
strate throughout the entire gap between the gold electrodes. 
Due to differing detection efficiencies, the magnitude of the 
phase-dependent signal in the external circuit varies with the 
distance between the excitation position and the electrodes 
as found before [14]. A phase-independent photocurrent 
offset reflects photoresponses from the illumination outside 
the center of the device. As expected from the response of 
Schottky contacts, it is most pronounced for excitations close 
to the electrodes. We therefore illuminate the center of the 
device to reduce potential influences of the metal contacts.
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Fig. 1  Simulated dependence on the Eω amplitude for fixed E2ω 
amplitudes of current density at 100 fs after the pulse maximum. 
Here, incident pulses have a duration of τL = 100 fs, the 2ω pulse has 
photon energy of 1.6 eV, and the temperature is T = 300 K. The para-
bolic fits correspond to the perturbative χ(3)-model

Fig. 2  Schematic of the experimental setup: An Er:fiber laser gener-
ates 1.55µm femtosecond pulses that are partially frequency doubled 
in a BiBO crystal. The individual intensity, the relative delay τ and 
the polarization of the fundamental and the second harmonic can be 
controlled in a two-color interferometer. Both beams are focused on 
a contacted LT-GaAs sample; the photoinduced potential difference 
between the contacts is measured with a lock-in amplifier
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2.3  Irradiance dependence of the coherently controlled 
currents

This section contains the central experimental results of the 
paper, i.e., the analysis of the magnitude of the coherently 
controlled current as a function of the ω/2ω irradiance. 
Since those data potentially not only reflect the photoin-
duced current strengths but are also influenced by the relaxa-
tion dynamics of the photoinduced electron-hole dipole, we 
have performed additional time-resolved experiments to 
produce a consistent overall picture of photocurrent genera-
tion, absorption saturation and carrier relaxation dynamics. 
For those additional measurements, we refer to the more 
detailed discussion in Ref. [7]. Figure 3 shows the magni-
tude of the injected current for numerous combinations of 
the field strengths Eω and E2ω. The electric fields represent 
the peak field amplitudes of the pulses within the GaAs sam-
ple deduced from the incident optical intensity corrected 
for reflection losses. For comparison, the upper abscissa of 
Fig. 3 also contains information about the corresponding irra-
diance levels. The values for the current strengths are deter-
mined from the amplitude of the interferometric oscillations 
∝ sin(2φω − φ2ω) during optimum ω/2ω overlap. For all the 
E2ω irradiances used for Fig. 3, we observe a quadratic rise 
of the coherently controlled current as a function of a moder-
ate field Eω. This is consistent with the perturbative picture 
of coherent control whereby dJ/dt ∝ E2

ωE2ω is expected. 
More interestingly, marked departures from this prediction 
are seen for field strength Eω ≥ 0.5MV/cm. Those satura-
tion effects occur at very similar ω/2ω excitation strengths 
as predicted from the simulation results shown in Fig. 1. In 
particular, the Eω dependence seen in Fig. 3a matches the 
theoretical results for E2ω = 180 kV/cm in Fig. 1 very well. 
For moderate E2ω illumination (cf. Fig. 3c), the saturation 
effects in the experiment are more pronounced when com-
pared to the theoretical expectation. Ultimately, even a pro-
nounced decrease in the current as a function of the ω field 
strength is visible in Fig. 3c. However, this current reduction 
is mainly governed by internal discharge effects due to the 
elevated carrier density generated by ω irradiance [7].

We note that we have also analyzed current injection with 
perpendicularly polarized ω and 2ω pulses. In such a config-
uration, current injection takes advantage of the element ηxyyx 
of the current injection tensor. ηxyyx is much smaller when 
compared to the element ηxxxx and gives rise to a current in 
the direction of the 2ω polarization [1]. In the experiment, 
the observed phase-dependent photoresponses are indeed 
markedly reduced to the values seen in Fig. 3. However, the 
current saturation looks very similar to the above results for 
parallel ω/2ω polarizations (data not shown). In addition, we 
observe increased current magnitudes but similar saturation 
effects in a sample with a gap of 25µm between the gold 
electrodes. Taken together, the saturation effects are therefore 

actually linked to the optical irradiance levels as opposed to 
potential saturation effects in the charge extraction.

We now want to comment about the direct compara-
bility of the simulation results in Sect. 2.1 to the present 
experimental findings. First of all, a comparison of the 
absolute current magnitudes is beyond the scope of the 
study because the experimental values, e.g., depend on the 
location of the excitation spot on the metal-semiconductor-
metal microstructure as well as the unknown efficiency of 
charge extraction into the contacts. The simulation takes 
into account a realistic description of the bandstructure 
of GaAs and an appropriate interaction of one- and two-
photon absorption processes. However, the experiment is 
likely influenced by two additional factors: (i) We work 
with Gaussian pulse envelopes in time and space, whereas 
the simulation only considers plane waves with the tempo-
ral profile of the experiment. (ii) The experiments utilize 
LT-GaAs samples because its large defect density inhib-
its dielectric charge relaxation and leads to a long-lived 
in-plane electrical dipole which we in turn measure as 
a voltage drop between adjacent metal pads. The simula-
tion, however, does only treat the current injection itself in 
pure GaAs and does not account for the charge accumula-
tion and screening, i.e., a partial relaxation of the electrical 
dipole by the internal space charge field.
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2.4  Conclusion

In conclusion, we have identified marked departures from 
the perturbative χ(3)-expectation of ω/2ω current injec-
tion in bulk GaAs in both theory and experiment. They are 
directly linked to macroscopic state filling during the ultra-
fast light–matter interaction and lead to a significant current 
reduction at elevated irradiances. The results are of particu-
lar importance for a quantitative understanding of current 
injection in nanoscale devices where tightly focused fem-
tosecond pulses easily reach the irradiances of the present 
study.

3  Phase retrieval of fs pulses utilizing ω/2ω 
quantum interference control

3.1  Motivation

Phase-resolved techniques have advanced the spectro-
scopic applications of laser light. Phase sensitivity can be 
achieved by frequency-resolved methods such as FROG 
(i.e., frequency-resolved optical gating) [15] or directly in 
the time domain. As an important example within the latter 
category, time-domain THz spectroscopy is now employed 
to analyze phenomena ranging from the dynamics of an 
electron-hole plasma in semiconductors [16] to THz con-
trol of magnetic excitations [17].

A few years ago, we have demonstrated a method for 
phase-sensitive spectroscopy which relies on the above 
field-sensitive third-order optical nonlinearity of current 
injection [18]. It is well known that phase-stable superpo-
sitions of transform-limited ω and 2ω pulses incident on 
a semiconductor induce a coherently controlled electrical 
current according to [2]

Here, Eω,2ω denote the electric fields of the harmonically 
related and φω,2ω their phases. In the experiment, we inter-
ferometrically scan the time delay τ between the ω and 2ω 
spectral components and detect the coherently controlled 
current induced in a semiconductor with a direct band-
gap EG satisfying �ω < EG < 2�ω. Current detection is 
performed in a time-integrating fashion, i.e., by analyz-
ing charge accumulation at contacted ends of the semi-
conductor specimen. As a result, we measure the quantity 
I(τ ) ∝

∫

Eω
2(t − τ)E2ω(t)dt. Taking advantage of the con-

volution theorem, its Fourier transform reads:

In particular, the spectral density I(ν) contains the spectral 
density of the electric field of the 2ω pulse. We note that 

(4)J̇ ∝ Eω
2E2ω sin (2φω − φ2ω).

(5)I(ν) =

∫

I(τ ) exp (−i2πντ)dτ ∝ [Eω(ν)]
2E2ω(ν)

a modified experimental scheme discussed in 3.3 allows 
for a characterization of both the ω and the 2ω field. In this 
subsection, our main aspect is the sensitivity of the scheme 
to amplitude and phase modifications of the 2ω spectral 
components upon transmission through a sample. To this 
end, we compare current interferograms detected with and 
without sample in the 2ω arm of the interferometer. In par-
ticular, transmission through the sample alters the electric 
field of the 2ω pulse to Ẽ2ω. Consequently, we now detect 
a modified interferogram Ĩ(t) ∝

∫

Eω
2(t − τ) Ẽ2ω(t)dt and 

compute the corresponding spectral density Ĩ(ν). As evi-
dent from Eq. 5, the ratio of those two spectral densities 
reads: Ĩ(ν)/I(ν) = Ẽ2ω(ν)/E2ω(ν). Most strikingly, this 
quantity is exactly the frequency dependent complex trans-
mission coefficient Ẽ2ω(ν)/E2ω(ν) = T (ν)eiΦ(ν) of the 
sample that induces the modification of the 2ω spectrum. 
This concept is similar to the use of an unbalanced Michel-
son interferometer [19]. However, the use of nonlinear cur-
rent injection offers low background signals as well as the 
potential to characterize very weak 2ω fields.

As an example, we analyze the spectral response of a 
Fabry–Pérot etalon with a low finesse of ∼3 [18]. It consists 
of a d = 152µm thick glass slide with ∼30 nm gold cover-
age on both surfaces. The optical setup is practically identi-
cal to the one shown in Fig. 2, and the etalon is inserted 
into the 2ω arm of the interferometer. As evident from the 
temporal scan in Fig. 4a, the insertion of the etalon leads 
to a substantially lower photocurrent signal and multiple 
backreflections. Amplitude and phase of the interfero-
gram’s Fourier transform are shown in Fig. 4b. It shows 
pronounced equidistant peaks with a spacing of �ν =

c
2nd

 , 
where n is the refractive index of the glass. Their position 
agrees well with the intensity transmission of the etalon 
as detected with a fiber-coupled spectrometer of 0.25 THz 
spectral resolution. The corresponding phase response of 
the etalon is shown as green curve in Fig. 4b. It consists of 
plateaus between adjacent Fabry–Pérot maxima and phase 
steps at those resonances. For a quantitative understanding, 
we compute the spectral phase for the etalon: The transmit-
ted electric field of Gaussian pulses with temporal width τp 
(full width half maximum) is given by (cf. Ref. [20])

Here, ω0 denotes the center frequency of the pulse, r the 
(real) field reflection coefficient, and c the speed of light. 
The spectral phase of the transmitted light can then be 
expressed as [21]

(6)E(ω) ∝ exp

(

−

τ 2p (ω − ω0)
2

16 ln 2

)

1

1− r2 exp (iω 2nd
c
)

(7)
ΦEtalon = arctan





r2 sin
�

ω 2nd
c

�

1− r2 cos
�

ω 2nd
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�
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where the phase term Φ0(ω) =
ωx0
c

 is related to the center 
position x0 of the pulse. The light solid line in Fig. 3b 
shows the theoretical expectation for the spectral phase 
with r = 0.93 and n = 1.5. It agrees very well with the 
experimental findings.

3.2  Experimental scheme

We now turn toward a modified scheme which allows for 
phase-sensitive characterization of both the ω and the 2ω 
field. In essence, the emerging ω/2ω beam is split up and 
superimposed again to result in two time-delayed collinear 
beams. Governed by the scaling of the injection process, 
interferograms obtained by varying the relative temporal 
delay are modulated by both ω and 2ω carrier frequencies. 
A subsequent Fourier transform extracts important infor-
mation about, e.g., the group velocity dispersion (GVD) of 
both ω and 2ω spectral components without a time-reversal 
ambiguity [8].

The experimental setup is shown in Fig. 5. Pulse charac-
terization is exemplarily realized for the output of a Coher-
ent OPA 9850. It operates at 1.45µm central wavelength 
and delivers 20 mW of tp,ω = 45-fs pulses (FWHM) at a 
repetition rate of 250 kHz. The pulses are frequency dou-
bled in a 0.5-mm-thick BBO crystal. The ω/2ω pulse pair 

is passed through a Michelson interferometer. In one arm, 
a low-dispersive, 140 µm thick Si-wafer blocks the second 
harmonic while a �/2 plate tilts the remaining fundamen-
tal E(2)

ω  to horizontal (x) polarization. The second arm con-
tains an unaltered pulse pair consisting of the y-polarized 
fundamental E(1)

ω  and the x-polarized second harmonic E2ω . 
The pulse combination emerging from the interferometer 
is focused onto a contacted, low-temperature grown GaAs 
specimen at room temperature using a f = 25mm para-
bolic mirror. On the chip, we use two gold contacts (spac-
ing ∼10 µm, tilted by ∼45◦ in the x–y-plane) for current 
extraction. If one records a current interferogram in this 
configuration (data not shown), it is strongly modulated 
with two carrier waves ω0 and 2ω0, i.e., the pulses’ center 
frequencies. We will illustrate below that those two modu-
lation frequencies arise from different beam combinations 
for current injection and their spectral phases ultimately 
reveal the phase structure of both ω and 2ω pulses. Note 
that the Si-filter in the interferometer effectively suppresses 
any disturbing direct interference of two 2ω pulses.

3.3  Theoretical background of phase retrieval

A superposition of ω and 2ω pulses induces a coherently 
controlled current with an injection rate of [1]:

↔

η  is a fourth-rank tensor proportional to the imaginary 
part of χ(3)(0;ω,ω,−2ω). It shows negligible frequency 
dependence in the spectral region of interest [1, 3]. Note 

(8)−̇→
J =

↔

η E
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ωE
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Fig. 4  a Photocurrent as a function of delay between the ω beam and 
the 2ω with an etalon in the 2ω arm [18]. b Amplitude (left axis) and 
phase (right axis) spectrum of the radiation transmitted through the 
etalon. The light solid line is a fit to the data. The inset shows a spec-
trum of the 2ω light transmitted through the etalon as measured with 
a spectrometer

Fig. 5  Experimental scheme [8]: A 0.5-mm-thick BBO generates the 
second harmonic (blue). An interferometer controls the delay τ of the 
fundamental portion E(2)

ω  (red) relative to a pulse pair composed of 
the remaining fundamental (E(1)

ω ) and the second harmonic E2ω. The 
emergent beam is focused onto a LT-GaAs sample with gold elec-
trodes spaced 10 µm apart. A lock-in amplifier measures the photore-
sponse. Inset geometry of the contacts and the optical polarizations



Quantum interference control of electrical currents in GaAs microstructures: physics and...

1 3

Page 7 of 15 44

that we work with complex fields and denote the com-
plex conjugate as, e.g., E∗

ω. Physically relevant quantities 
are given by the real part. As a result of Eq. (8), current 
injection driven by two ω and 2ω monochromatic waves 
with phases ϕω,2ω scales as J̇ ∝ Eω

2E2ω sin (2ϕω − ϕ2ω). 
For the present pulsed configuration currents are induced 
with one y-polarized field E(1)

ω (t + τ) and two x-polarized 
fields E(2)

ω (t) and E2ω(t + τ) with relative timing τ. For a 
zincblende crystal such as GaAs, the largest elements of the 
current injection tensor are ηxxxx ≈ 2ηyyxx [1]. We implicitly 
assume a frequency independent 

↔

η  and crystallographic 
axes aligned to the lab frame. We now restrict the consid-
eration to the two current contributions which depend on 
the relative timing τ. They read:

Intuitively, the term in Eq. (9) reflects a situation where the 
two ω driving fields in Eq. (8) are derived from the same 
interferometer arm. In contrast, the two ω fields originate 
from different interferometer arms to yield the current in 
Eq. (10). In the experiment, we interferometrically scan the 
delay τ between the two interferometer arms and detect sig-
natures I(τ ) of the coherently controlled current. Therefore, 
we expect signals Ix(τ ) ∝

∫

J̇xdt and Iy(τ ) ∝
∫

J̇ydt. As 
the detector is tilted in the x–y-plane, we do not separately 
measure Ix(τ ) and Iy(τ ) but a superposition I(τ ). Due to the 
different τ-dependence, the interferograms Ix(τ ) and Iy(τ ) 
feature carrier frequencies 2ω0 and ω0, respectively [8].

We now analyze how phase distortions of the ω and 2ω 
pulses manifest in the interference pattern I(τ ) and its FFT 
Î(ω). The above expressions Ix(τ ) and Iy(τ ) represent dif-
ferent field convolutions of the driving ω/2ω pulse combi-
nations. Utilizing the convolution theorem, their spectrum 
can be expressed by the Fourier transforms of the ω/2ω 
fields (⊗ denotes a convolution):

Such convolutions can be evaluated analytically for trans-
form-limited and linearly chirped Gaussian pulses. Higher-
order dispersions are incorporated numerically. The result 
of such a computation is a relation between the spectral 
phases of the incoming ω/2ω pulses and the phase prop-
erties of Î(ω). Most importantly, we find GVDs φ′′(ω0) 
and φ′′(2ω0) to manifest as corresponding FFT phase cur-
vatures Dω0

 and D2ω0
 at the respective center frequencies 

(9)J̇x =ηxxxx

[

E(2)
ω (t)E(2)

ω (t)
]

∗

E2ω(t + τ)

(10)J̇y =ηyyxx

[

E(1)
ω (t + τ)E(2)

ω (t)
]

∗

E2ω(t + τ)

(11)Îx(ω) ∝
[

Ê(2)
ω (ω)⊗ Ê(2)

ω (ω)

]

∗

· Ê2ω(ω)

(12)Îy(ω) ∝
(

Ê(2)
ω (ω)

)

∗

·

[(

Ê(1)
ω (−ω)

)

∗

⊗ Ê2ω(ω)

]

ω0 and 2ω0. We restrict the consideration to the situation 
of moderate chirp |φ′′(ω0)| ≪ (tp,ω)

2
= 2(tp,2ω)

2 where 
tp,ω/2ω denotes the pulse durations (a more detailed discus-
sion including stronger chirp can be found in Ref. [8]). In 
this limit, the phase curvatures Dω0

 and D2ω0
 are linked to 

the GVDs by

A further simplification is achieved by assuming 
φ′′(2ω0) =

1
2
φ′′(ω0) typical of second harmonic generation 

in a thin frequency doubler. In this situation, Eqs. (13) and 
(14) imply Dω0

=
8
9
φ′′(ω0) and D2ω0

= 0.

3.4  Application of the phase retrieval technique

We now use the above interferometric technique for the 
phase-sensitive characterization of chirped OPA pulses. To 
this end, we insert SF11 (Infrasil) glass slabs of different 
thickness and impose a positive (negative) GVD. Values of 
φ′′(ω0) = +620 fs2/cm (−160 fs2/cm) are expected from 
their Sellmeier equations. Fig. 6b shows the spectral phase 
of FFTs of exemplary current interferograms I(τ ) for unal-
tered, positively, and negatively chirped pulses. The linear 
contributions to the spectral phase have been subtracted as 
they only reflect temporal delays owing to the refractive 
indices. The phase within the fundamental peak around 
ω0 depends pronouncedly on the material introduced into 
the beam path. In comparison to the reference measure-
ment without additional material, the SF11 (Infrasil) adds a 
substantial positive (negative) phase curvature. In contrast, 
the spectral phase of the peak around 2ω0 depends little on 
the introduced material. This finding is in line with the pic-
ture put forward in Eq. (14) since frequency doubling of 
a chirped pulse implies φ′′(2ω0) =

1
2
φ′′(ω0). For a more 

(13)Dω0
=
10

9
φ′′(ω0)−

4

9
φ′′(2ω0)

(14)D2ω0
=
1

2
φ′′(ω0)− φ′′(2ω0)

Fig. 6  Spectral phases of the FFT of I(τ )-traces for pulses of dif-
ferent chirp. Positive (negative) chirp is introduced by 5.3-mm SF11 
(10-mm Infrasil). The lines are third-order polynomial fits
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quantitative analysis, we apply third-order polynomial 
fits to the spectral phases which are shown in Fig. 6. The 
extracted phase curvatures together with Eqs. (13) and (14) 
finally determine the GVDs φ′′(ω0) and φ′′(2ω0). We note 
that we do not further analyze the third-order terms here 
because they are small for the present configurations.

To provide a benchmark comparison to an established 
phase retrieval scheme, we also perform phase retrieval 
with second harmonic generation FROG [15]. The setup 
uses a 0.5-mm BBO and a fiber-coupled spectrometer. We 
use the freely available FROG code [22] to reconstruct the 
spectral phase of the pulse and to extract the GVD from its 
curvature.

Figure 7 depicts the final result for the measured GVD 
φ′′(ω0) for various chirp configurations as imposed by 
SF11 and Infrasil glass slabs of different thickness. The 
error bars are related to the scatter of three independent 
sets of measurements. The abscissa is calibrated using the 
corresponding Sellmeier equations. The dashed line shows 
the theoretical expectation assuming that the unaltered 
OPA output has a residual GVD of φ′′(ω0) = −50fs2. The 
FROG data nicely reveal the theoretically expected GVD 
even though our FROG setup is not particularly sensitive 
in unveiling very small GVDs. The GVDs extracted with 
the coherent control technique also agree very well with 
the theoretical expectation and show a similar small scat-
ter around the dashed line. We note that the analysis of the 
spectral phase of the FFT of I(τ ) utilizes the Eqs. (13) and 
(14). For the most strongly chirped configurations shown 
in Fig. 7 the limit |φ′′(ω0)| ≪ (tp,ω)

2 starts to break down. 
Here the simplified analysis of the coherent control data 
suggests a somewhat smaller absolute value of the GVD 
compared to the theoretical expectation.

3.5  Conclusion

We have demonstrated a new phase retrieval scheme for 
ultrashort laser pulses. It relies on second harmonic gen-
eration in combination with phase-dependent current injec-
tion driven by two time-delayed portions of the emerging 
ω/2ω pulse pair. Most remarkably, the phase information 
can be extracted from a simple Fourier transform of a one-
dimensional current interferogram. These ideas are tested 
for different chirp configurations of 45-fs pulses centered 
at 1.45µm wavelength. A direct comparison to FROG indi-
cates a similar sensitivity to the pulse’s GVD. Our scheme 
can be extended to much shorter pulses since current 
injection offers a broadband and spectrally flat nonlinear 
response [1, 3]. Since current injection occurs within the ∼
1 µm penetration depths of the 2ω light, phase mismatch 
in the detector is minimal. By choosing different detector 
materials, the scheme can be extended to various wave-
length regimes.

4  All‑optical current detection based on quantum 
interference control

4.1  Proposed detection scheme

Current measurements typically rely on the detection of 
a voltage drop across a resistor. In contrast, optical tech-
niques for current detection have rarely been demonstrated 
so far. One approach relies on the analysis of the momen-
tum of occupied electronic states by angle-resolved pho-
toemission spectroscopy. Femtosecond time-resolved two-
photon photoemission is a subtype of this approach and is 
based on an optical excitation of electrons via ultrafast laser 
pulses. As an example, such techniques have previously 
been utilized for time-resolved measurements of coherently 
controlled surface currents in copper [5]. The drawbacks 
of angle-resolved photoemission methods are their sophis-
ticated detection schemes including electron optics and 
high vacuum conditions. An optical current measurement 
technique which is based on the analysis of transmitted or 
reflected laser beams would simplify the detection scheme. 
However, such a method may not rely on linear transmis-
sion or reflection alone. As an example for possible nonlin-
ear interactions for current detection, current-induced sec-
ond harmonic generation in GaAs has been demonstrated 
recently [23].

There exists a theoretical proposal by Liu et al. for cur-
rent detection utilizing our above quantum interference 
control (QUIC) technique [9]. This proposal is based on the 
fact that both a current’s carrier distribution and the induced 
transition rates of QUIC are asymmetric with respect to the 
crystal momentum. Depending on whether both exhibit the 
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same or opposite asymmetry, the transmission of the input 
beams is expected to be either more or less increased due 
to phase space filling. By controlling the asymmetry of the 
transition rates via the pulse pair’s relative phase, QUIC 
could be utilized to probe an anisotropic charge distribu-
tion via transmission measurements. In turn, this technique 
would allow to investigate ultrafast current dynamics by 
all-optical means. In the following, the proposal for charge 
current detection via QUIC is sketched, experimentally 
investigated, and discussed with respect to its practicability.

The application of a static voltage to a semiconductor 
results in a current flow which is mediated by free carriers, 
i.e., electrons in the conduction band or holes in the valence 
bands. Without scattering, an external field would cause a 
monotonic increase in the crystal momentum. Carrier scat-
tering limits the average k-shift to a field-dependent value 
determined by the mobility and momentum relaxation time 
of the charge carriers. The resulting asymmetry of the car-
rier distribution in k-space corresponds to a directed charge 
current. Fig. 8a shows the voltage-induced k-shift of an 
optically excited carrier distribution in the conduction and 
valence band. For simplicity, only two bands are shown. 
Both the electron and hole distribution are shifted in the 
same direction. The behavior of the hole distribution can 
also be interpreted as a positive k-shift of an electron distri-
bution with respect to the energy minimum of the valence 
band. Owing to the opposite slope of both bands, electrons 
and holes move into opposite directions and their current 
contributions add up. We note that the displayed k-shift is 

exaggerated for clarity. Typically, the asymmetry of a volt-
age-induced current is relatively low, and only a small num-
ber of carriers which are not compensated by carriers with 
opposite velocities contribute to the current. Determined by 
the different mobility of electrons and holes, the average k
-shift of the electron distribution typically exceeds the shift 
of the hole distribution.

In contrast to voltage-induced current generation, QUIC 
is an all-optical process. As detailed earlier, the coherent 
absorption of a fundamental beam and its second harmonic 
causes interfering one-photon and two-photon transitions at 
crystal momenta with opposite sign. The absolute value of 
the crystal momentum is determined by the photon energy. 
Controlled by the beams’ relative phase and their polariza-
tion, carriers are predominantly excited at +k or −k. The 
resulting asymmetric electron and hole distributions corre-
spond to directed electron and hole currents. In contrast to 
voltage-induced current generation, the asymmetry of the 
distributions is much more pronounced and a majority of 
the excited carriers may contribute to the current.

If both current generation processes are combined, the 
voltage-induced current may influence the optical transi-
tions. Fig. 8b as well as c shows situations in which a fun-
damental beam and its second harmonic are incident onto 
a thin GaAs sample. Simultaneously, an external voltage 
induces a current in the sample. The external voltage causes 
a positive k-shift of the previously excited carrier distribu-
tion. The excitation could be either induced thermally or 
optically by an additional pump beam. Via appropriate 
polarization adjustment of the ω/2ω beams, the current is 
injected parallel to the voltage-induced current. Governed 
by the optical phase, the corresponding transitions are pre-
dominantly induced at −k, as in Fig. 8b, or at +k, as in c. 
Depending on whether the optical transitions at +k or −k 
dominate, the beams’ transmission is expected to be either 
more or less influenced by current-induced state blocking. 
In the latter case, as shown in Fig. 8b, optical transitions 
are induced between mostly unoccupied electronic states. 
The beams’ absorption is hardly influenced by the current’s 
carrier distributions which are centered at k > 0. However, 
if the optically addressed states are predominantly located 
at +k, as shown in Fig. 8c, they are significantly influenced 
by the current. Owing to the occupation of electron and 
hole states at +k by the current, there are less states avail-
able for optical excitation. As a consequence, the beams’ 
absorption is reduced. In practice, this effect should be 
more pronounced for the second harmonic beam as one-
photon transition rates are typically higher than two-photon 
transitions rates of the corresponding fundamental beam.

By analyzing the beams’ transmission as a function of 
their relative phase, QUIC in principle allows to probe the 
current direction all-optically. Since the in-plane angle of 
the coherently injected current can be controlled by the 

Fig. 8  Illustration of optical current detection in a direct band gap 
semiconductor utilizing QUIC. The upper panels depict simplified 
band diagrams; differently shaded areas mark the electron and hole 
distribution. The lower panels represent side views of the sample. 
a The generation of a current via application of an external voltage 
corresponds to a k-shift of the electron and hole distribution. b The 
coherent superposition of a fundamental beam and its second har-
monic induces transitions whose addressed crystal momentum k can 
be controlled by the beams’ relative phase. If the transitions at +k are 
suppressed, the beams’ absorption is not influenced by the current’s 
carrier distribution. c If the transitions are excited at +k, the beams’ 
absorption is reduced because of state blocking by the current’s car-
rier distribution
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beams’ polarization, it should also be possible to derive an 
angle-resolved current map. In comparison, one- or two-
photon absorption alone is only sensitive to the density 
of free carriers. As the induced transitions are symmetric 
with respect to the crystal momentum k, only the average 
occupation in the bands is probed. The average occupa-
tion, however, does not change by application of an exter-
nal voltage. QUIC only accounts for a small portion of the 
beams’ interaction with the semiconductor. In practice, the 
beams’ individual one- and two-photon absorption signifi-
cantly exceeds the current-induced absorption saturation. 
However, the proposed current detection technique benefits 
from the explicit phase dependence of QUIC. By measur-
ing the differential transmission with respect to the opti-
cal phase, the contribution of phase-independent one- and 
two-photon absorption cancels out and the current-induced 
transmission change remains. Therefore, Liu et al. [9] pre-
dict a high sensitivity of this technique.

4.2  Experimental implementation and sample

The optical current detection technique is exemplarily 
applied to a GaAs thin film in which a current is induced 
via application of an external voltage. Since the optical 
detection relies on QUIC, the experimental implementa-
tion partly resembles the QUIC setups for current injection 
layed out before.
Figure 9 depicts the experimental implementation of the 
current detection technique. The FFS fiber laser is used 
as a light source. On the one side, it features a stable out-
put with respect to the beams’ intensity as well as align-
ment. On the other side, it features a second synchronized 
beam output that is able to generate an additional second 
harmonic pump beam for current generation, as explained 
later. Both outputs emit 100-fs pulses with a central wave-
length of 1550 nm. One output beam is frequency doubled 
in a nonlinear crystal to provide a train of two-color pulse 
pairs for QUIC. Via a subsequent interferometer, both com-
ponents can be manipulated with respect to their individual 
intensity, polarization, and relative delay τ. In particular, 
a half-wave plate in one arm is used to achieve a parallel 
horizontal polarization of both harmonics. Furthermore, the 
interferometer allows to ensure a collinear propagation of 
both beams before these are focused onto the GaAs sample. 
To reduce back reflections that may distort the laser source, 
the sample is slightly tilted.

The sample consists of a thin layer of GaAs with gold 
contacts on top. First, a GaAs substrate was overgrown 
with a thin layer of AlAs and a GaAs layer of 1 µm. After-
ward, the substrate was locally removed from the back side 
via selective etching of predefined areas. The AlAs layer 
acted as etch stop and prevented the removal of the upper 
GaAs layer. Gold contacts on top of the windows were 

defined via optical lithography and metallic evaporation. 
To enhance mechanical stability, the sample was glued on 
a transparent glass substrate which in turn was glued into a 
sample holder with macroscopic electrical contacts. We use 
a pair of metallic contacts with a gap of 13 µm. Measure-
ments of the Franz–Keldysh spectrum evidence the exist-
ence of substantial in-plane electric fields when applying a 
voltage across the contact pair.

The pulse pairs are collinearly focused in the gap of 
two parallel metallic contacts. The focal spot diameters are 
approximately 20 µm for the fundamental beam and 25 
µm for the second harmonic component. Simultaneously, 
an external voltage supply induces a horizontal current 
between the contacts. Owed to the horizontal polarization 
of the beams, both the pulse pairs and the voltage-induced 
current address the same crystal momenta. To measure the 
current’s influence on the beams’ transmission, the sample 
thickness has to be in the order of the absorption length 
or less. In the case of GaAs and a second harmonic wave-
length of 775 nm, the absorption length amounts to 670 nm. 
As the photon energy is below the band gap, the absorption 
length of the fundamental beam is significantly higher than 
the absorption length of the second harmonic beam.

To enhance the amplitude of the voltage-induced cur-
rent, the conductivity of the intrinsic GaAs layer is locally 
increased by optical excitation. For that purpose, the 

Fig. 9  Experimental scheme for current detection utilizing QUIC: 
One output beam of the fiber laser source is frequency doubled in a 
nonlinear crystal and steered into a two-color interferometer which 
allows to control the probe beams’ individual delay τ, their polari-
zation and intensity (optics not shown). Both beams are collinearly 
focused on the 13 µm wide gap of two metal contacts on top of a thin 
GaAs sample. The second synchronized laser output is also frequency 
doubled to provide an additional second harmonic pump beam. It 
is focused on the same spot as the other beams to generate a spatial 
confined distribution of free carriers which is accelerated by an exter-
nal voltage. The intensity of the transmitted probe beams is recorded 
with a photodiode. A filter in front of the photodiode allows to select 
a specific beam
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second synchronized laser output is also frequency dou-
bled in a nonlinear crystal, resulting in a second harmonic 
beam of 20 mW power. A shortpass filter blocks the funda-
mental beam. The additional second harmonic pump beam 
allows to directly excite carriers in GaAs from a valence 
to the conduction band. It is focused on the same spot 
between the metal contacts as the pulse pairs. The mini-
mum focal spot diameter of the pump beam is 20 µm. A 
different angle of incidence minimizes disturbance of the 
pulse pairs’ transmission measurement. The delay τpump of 
the pump beam with respect to the pulse pairs is controlled 
with a motorized stage.

The transmitted pulse pairs are collected with a lens 
behind the sample and focused on a photodiode. An addi-
tional shortpass or longpass filter allows to select a spe-
cific beam. The induced photocurrent is proportional to 
the irradiance and recorded with a lock-in amplifier. The 
amplifier is either referenced to a chopper in a beam path 
or to a square-wave voltage which is applied to the sam-
ple to induce a modulated current. The latter is generated 
by a waveform generator which is connected to the contact 
pair. Alternatively, a constant-voltage source is used which 
is simultaneously able to precisely measure the induced 
current.

4.3  Application of the current detection technique

The optical current detection technique is now applied to 
a GaAs thin film. In essence, the pulse pairs’ transmission 
is measured as a function of their relative optical phase 
and the current amplitude which is induced in the window. 
The latter determines the asymmetry of the currents’ car-
rier distribution in k-space. The relative phase of the pulse 
pair components determines the asymmetry of the optical 
transitions. If the transitions predominantly address elec-
tronic states which are already occupied by the current, the 
transmission is expected to be increased due to absorption 
saturation.

The absorption saturation and thus the sensitivity of the 
current detection technique depend on the mutual coher-
ence of the pulse pairs. Therefore, special attention is paid 
to ensure collinear propagation and focusing of the pulse 
pair. To this end, the GaAs sample is exchanged with a 
beam profiler during adjustment. Furthermore, it is verified 
that the polarization of both pulse pair components coin-
cides with the direction of the voltage-induced current. In 
this way, the pulse pairs and the current address the same 
electronic states.

In order to adjust the temporal overlap of the pulse pair 
components, the amplitude of the current injected by the 
ω/2ω pulse pair is measured. At peak intensities of about 
6GW/cm2 for the fundamental beam and 200MW/cm2 
for the second harmonic component, the maximum peak 

to peak current amplitudes in the external circuit are 200 
nA. These relatively high current amplitudes are probably 
related to the small gap between the contacts.

The current to be probed is generated by an external 
voltage at the position where the additional pump beam 
is incident. The spatial overlap between the pump and the 
ω/2ω probe is adjusted by maximizing transient pump-
probe signatures. The temporal separation τpump is set such 
that the pump precedes the ω/2ω probe by a few picosec-
onds. This delay ensures a quasi-thermalized carrier distri-
bution with a well-defined asymmetry, determined by the 
external voltage.

After adjustment, the GaAs windows and the current 
within are probed by phase-dependent transmission meas-
urements of one pulse pair component. For this purpose, 
the relative delay τ of the pulse pair components is inter-
ferometrically varied around maximum temporal overlap 
while keeping the delay τpump of the pump beam constant. 
A photodiode behind the sample records the intensity of the 
transmitted beam. The pulse pair component to be moni-
tored is selected by an additional longpass or shortpass fil-
ter in front of the photodiode.

Despite careful alignment, measurements of the fun-
damental beam component do not show a significant and 
reproducible phase-dependent transmission signal. How-
ever, this observation is not unexpected since the funda-
mental beam may only interact via two-photon transitions. 
Given the same illumination intensity, these are less likely 
than corresponding one-photon transitions. Therefore, the 
following measurements concentrate on the transmission of 
the second harmonic beam.

Figure 10a exemplarily depicts the transmission of the 
second harmonic pulse pair component. A lock-in amplifier 
records the response of the photodiode. It is referenced to 
a chopper in the arm of the fundamental pulse pair compo-
nent. In this way, stray light by the second harmonic pump 
beam is suppressed. During the measurement, a fixed volt-
age of −10 V, 0 V, or +10 V is applied to the contacts. The 
approximate peak illumination intensities on the window 
are 6GW/cm2 (200MW/cm2) for the ω (2ω) pulse and 
700MW/cm2 for the additional (second harmonic) pump 
beam. The delay τpump is set such that each pump pulse pre-
cedes a pulse pair by 2.5 ps.

The graph reveals distinct oscillations of the transmis-
sion with respect to the delay τ with a period corresponding 
to the wavelength of the second harmonic pulse. The oscil-
lation amplitudes are in the order of 10−3 when normalizing 
the signal to the total intensity of the transmitted second 
harmonic probe pulse.

Apart from the oscillating signal, the recorded trans-
missions also contain phase-independent components in 
the order of 10−2. These are probably caused by the opti-
cally induced increase in the total carrier density. Since the 
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proposed optical current detection explicitly depends on the 
relative phase, the constant components are not analyzed in 
more detail and subtracted from the graph.

The voltage dependence of the oscillation amplitudes 
is less pronounced than expected. In particular, the oscil-
lation is even present if no voltage is applied to the GaAs 
window. If oscillatory features are solely caused by the 
current-induced transmission increase detailed in Sect. 4.1, 
the oscillation would be expected to vanish if no current 
and thus no asymmetry of the carrier distribution is present. 
Therefore, these oscillations must have another origin that 
is discussed in more detail below.

Most strikingly, an increase in the applied voltage results 
in a significant shift of the oscillation with respect to the 
delay τ. In order to separate this effect from the voltage-
independent oscillation, another measurement technique is 
used. Instead of the chopper in the fundamental beam arm, 
the lock-in amplifier is referenced to a square-wave voltage 
which alternates the voltage applied to the sample between 
0  V and ±10  V. In this way, the measurement is only sen-
sitive to voltage-induced transmission changes. Exemplary 
measurements of the voltage-induced transmission changes 
are shown in Fig. 10b obtained with the same irradiances 
as in panel a. Therefore, the differential transmission can 
be normalized in the same way. Furthermore, phase-inde-
pendent offsets are subtracted. The two curves correspond 
to measurements employing square-wave voltages with the 
same amplitude of 10 V but different polarity. Both curves 
feature similar oscillation amplitudes and the same oscilla-
tion period as the curves in Fig. 10a. However, the phases 
of the two curves differ by π and therefore correlate with 
the orientation of the applied voltage. Such a behavior is 

in agreement with the voltage-dependent phase shift of the 
three curves in Fig. 10a. The observed oscillations can be 
thought of as a superposition of two slightly shifted oscil-
lations, a voltage-independent component and a voltage-
dependent component.

In order to investigate the underlying mechanism of the 
voltage-dependent component, the corresponding oscillation 
amplitudes are determined as a function of the illumination 
intensity. To this end, measurements as shown in Fig. 10b are 
repeated with different intensity combinations of both pulse 
pair components. If the intensity of the second harmonic 
component is kept constant, the extracted oscillation ampli-
tudes scale linearly with the intensity of the fundamental 
beam. If the intensity of the fundamental component is kept 
constant, the oscillation amplitudes scale with the root of 
the second harmonic irradiance. Taken together, the phase-
dependent transmission scales in the same way as the QUIC 
amplitude. However, the intensity dependence alone is not 
sufficient to identify QUIC as the origin of the transmission 
oscillation. At least, it can be concluded that the transmission 
signal originates from a nonlinear optical effect.

4.4  Influence of second harmonic generation

The fact that the transmission signal features a sinusoidal 
phase dependence even if no voltage is applied to the GaAs 
windows indicates the influence of another effect than cur-
rent-induced absorption saturation. A likely candidate for 
such an effect is second harmonic generation (SHG) in the 
GaAs sample itself [24, 25]. If the fundamental pulse pair 
component is frequency doubled in the GaAs window, the 
emergent beam exhibits the same wavelength and propaga-
tion direction as the second harmonic pulse pair compo-
nent. As a consequence, the illumination intensity on the 
photodiode would also be determined by the interference 
of the two second harmonic beams. In particular, the inten-
sity would exhibit the same oscillation period as seen in 
Fig. 10a.

SHG in the GaAs window can be identified by a spec-
tral-resolved measurement. To this end, the photodiode 
behind the sample is exchanged with a spectrometer. Dur-
ing such a measurement, only the fundamental beam is 
focused on the GaAs window. The other two second har-
monic beams are blocked as their high intensity would 
saturate the spectrometer. Indeed, if the fundamental beam 
is focused on the GaAs window, the spectrometer reveals 
a peak at the second harmonic wavelength. Such spectra 
are shown in Fig. 11a for an exemplary fundamental beam 
intensity of 6GW/cm2. By detecting the signal with a pho-
todiode, the power of the emerging second harmonic com-
ponent can be estimated to about 0.3 nW.

The application of a voltage to the GaAs window signifi-
cantly influences the amplitude of the SHG. As an example, 
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a voltage of +20 V causes an increase of up to 50 %. In 
contrast, a negative voltage results in a slight decrease in 
the amplitude. It should be noted that the application of a 
voltage of ±10  V, as used in the previous measurements, 
has a qualitatively similar but less pronounced influence on 
the SHG amplitudes.

To confirm the signal as originating from SHG, its 
dependence on the input beam intensity is analyzed. 
Fig. 11b shows the integrated intensity of the second har-
monic component as a function of the fundamental beam 
intensity and the applied voltage. As expected, the data 
agree well with quadratic dependences. If a positive or 
negative voltage is applied to the GaAs film, the respective 
scaling factor of the parabolic fits is higher or lower than 
without a voltage. The underlying mechanism of this volt-
age dependence is addressed later in the chapter. First, we 
discuss the influence of SHG on the previously presented 
transmission measurements.

During transmission measurements, the photodiode 
is simultaneously illuminated by the second harmonic 
beam which is generated in the sample (E2ω,SHG) as well 
as the transmitted second harmonic pulse pair component 
(E2ω,probe). As a consequence, both second harmonic beams 
interfere. The intensity on the detector can be described by 
a superposition of the corresponding electric field ampli-
tudes E:

The first and third term on the right-hand side denote the 
individual transmitted intensities of the second harmonic 
pulse pair component and the beam generated in the sam-
ple, respectively. The additional term describes the interfer-
ence of both beams. Its magnitude is determined by their 
relative optical phase. If the relative delay of the pulse pair 
components in the interferometer is continuously swept, 

(15)
|E2ω,probe + E2ω,SHG|

2
∝

I2ω,probe + 2 cos(�φ2ω)
√

I2ω,probe · I2ω,SHG + I2ω,SHG

the intensity oscillates with a period that corresponds to 
the second harmonic wavelength, as in Fig. 10. In order 
to quantify the influence of interference on the transmis-
sion measurements, the oscillation amplitude of the inten-
sity is exemplarily calculated for the measurement shown 
in Fig. 10. The corresponding transmitted beam power 
I2ω,probe is in the order of 200µW. As mentioned above, 
I2ω,SHG ≈ 0.3 nW. If normalized to the total transmission 
which is dominated by I2ω,probe, the relative oscillation 
amplitude is given by 2

√

I2ω,SHG/I2ω,probe. Inserting the 
above-mentioned intensities yields a relative interference 
amplitude of 2 · 10−3. This value exceeds the observed 
oscillation in Fig. 10a by a factor of 4. However, it must 
be taken into account that the calculation assumes opti-
mum coherence of both beams which is not fulfilled in 
practice. As an example, the polarizations of both beams 
do not coincide but form an angle of about 45◦. As a con-
sequence, the intensity interference is reduced compared 
to the calculation. Overall, it is therefore reasonable to 
attribute the voltage-independent oscillation in Fig. 10a to 
interference, caused by SHG in the sample. In the follow-
ing, we further argue that it is also reasonable to attribute 
the voltage-dependent oscillation component in Fig. 10b 
to interference. In particular, the application of a voltage 
influences the second harmonic generation in the sam-
ple due to EFISH (electric-field-induced second harmonic 
generation).

EFISH refers to frequency doubling in a material by 
coupling of the incident beam’s electric field amplitude Eω 
with the amplitude of a static electric field EDC [26–28]. 
In terms of nonlinear optics, this effect is described by the 
fourth-rank tensor χ(3)(−2ω;ω,ω, 0). Omitting the optical 
polarizations for clarity, the material’s polarization P fol-
lows the relation

Since the electric field amplitude of the emitted second har-
monic beam scales linearly with the polarization P, the sec-
ond harmonic intensity is proportional to the square of the 
fundamental beam intensity, as for regular SHG. Addition-
ally, the second harmonic field amplitude is proportional 
to the static field amplitude EDC. As a consequence, the 
phase is shifted by π upon a reversal of the constant field’s 
polarity [29].

Coming back to Fig. 11, the voltage-induced difference 
of the detected second harmonic intensity can be attributed 
to EFISH. Both conventional SHG and EFISH cause fre-
quency doubling of the incident fundamental beam. As evi-
dent from the good agreement with the parabolic fits, the 
voltage-induced difference in amplitude follows the quad-
ratic intensity dependence of EFISH. On the basis of refer-
ence transmission measurements with the second harmonic 
pulse pair component, it can be ruled out that the difference 

(16)PEFISH ∝ χ(3)(−2ω;ω,ω, 0)E2
ω EDC.
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is simply caused by a voltage-dependent absorption in the 
sample. The fact that depending on the voltage polarity the 
intensity is either increased or decreased can be explained 
by interference. The spectrometer detects a superposition 
of two second harmonic components generated by conven-
tional SHG as well as EFISH. Depending on their relative 
optical phase, these interfere constructively or destruc-
tively. While the optical phase of the conventional SHG 
component is fixed, the EFISH component depends on the 
orientation of the static field. As a result, the total intensity 
may be decreased upon application of a negative voltage. A 
simultaneous generation of an EFISH component as well as 
a field-independent SHG component in the sample is also 
consistent with the oscillations in Fig. 10a. As mentioned 
above, the voltage-induced phase shift can be interpreted as 
a superposition of two oscillations, a voltage-independent 
component as well as a voltage-induced component. The 
former can be explained by interference of the second har-
monic pulse pair component with SHG in the sample. The 
voltage-induced oscillation can be attributed to interfer-
ence with an EFISH component. Consistent with the field 
dependence of EFISH, the voltage-induced oscillation in 
Fig. 10b is shifted by π if the polarity is inverted.

We note that QUIC and the interference by second har-
monic generation even exhibit the same intensity depend-
ence such that a variation in the irradiances promises no 
further insight. As evident from Eq. (15), intensity inter-
ference is proportional to the square root of the intensity 
of both interfering second harmonic components. The 
intensity of second harmonic generation in the sample, in 
turn, is proportional to the squared intensity of the incident 
fundamental beam. Consequently, the oscillation ampli-
tude scales with 

√
I2ω Iω, similar to QUIC. As already 

mentioned, such a scaling is also observed for the ampli-
tude of the voltage-induced oscillations of the transmission 
measurements.

In summary, it can be concluded that the presented 
transmission measurements are dominated, if not fully 
determined, by interference of second harmonic compo-
nents generated by SHG and EFISH.

4.5  Conclusion

An experimental implementation of the optical current 
detection scheme proposed by Liu et al. [9] is presented 
as well as evaluated. The detection scheme is based on 
quantum interference control of electrical currents (QUIC) 
by a two-color pulse pair incident on the sample to be 
probed. Via the relative phase and polarization of the pulse 
pair components, the crystal momentum of the optically 
addressed electronic states can be controlled. If these elec-
tronic states are already occupied, the pulse pair’s trans-
mission is expected to be increased due to absorption 

saturation. Such a selective absorption saturation would 
allow to sense an anisotropic carrier distribution which cor-
responds to the presence of a current. In particular, the cur-
rent should manifest a dependence of the transmission on 
the pulse pair’s relative phase.

The presented implementation of the detection technique 
is designed for an exemplary analysis of a voltage-induced 
current in a thin GaAs sample. Via frequency doubling of 
ultrashort laser pulses in a nonlinear crystal and a subse-
quent interferometer, collinear coherent pulse pairs are 
provided; their components can be individually adjusted 
in intensity, relative delay, and polarization. In essence, 
the sample to be probed consists of a thin layer of GaAs 
with metallic contacts on top to apply a voltage. In order to 
increase the amplitude of the induced current, the sample is 
further excited by an additional laser beam. On the basis of 
independent control measurements, it can be demonstrated 
that the setup fulfills the fundamental requirements of the 
proposed detection technique. Measurements of QUIC in 
the sample confirm a precise and coherent superposition 
of the pulse pair components. Therefore, the pulse pairs 
allow for a selective optical excitation of electronic states. 
The calculated excitation density corresponds to a massive 
population of the electronic bands that should result in a 
significant influence on the pulse pairs’ transmission.

Despite careful design and optimization of the setup, 
the transmission measurements do not allow to deduce an 
influence by current-dependent saturation absorption. The 
central problem is that the measurements are affected by 
interference which can be attributed to second harmonic 
generation in the sample. The focused illumination of the 
GaAs sample by the fundamental beam results in frequency 
doubling which is verified by spectrally resolved measure-
ments. An additional voltage application influences the 
frequency doubling in the sample by electric-field-induced 
second harmonic generation (EFISH). As a consequence, 
the transmitted second harmonic pulse pair component 
interferes with the additionally generated second harmonic 
beam. The resulting intensity interference on the detector 
features a similar phase- and voltage dependence as the 
predicted absorption saturation. Furthermore, QUIC as well 
as interference of the second harmonic beams follows the 
same intensity dependence. Therefore, a potential influence 
by current-dependent saturation absorption cannot simply 
be separated from the pronounced intensity interference.
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