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1 Introduction

Symmetry principles play an important role with respect 
to the laws of nature. To put into a symmetrical shape the 
equations, coupling together the electric and magnetic 
fields, Maxwell added an electric displacement current. 
Such an additive, introduced for reasons of symmetry, 
resulted in appearing a unified-field structure: the electro-
magnetic field. The electric displacement current in Max-
well equations allows correct prediction of magnetic fields 
in regions where no free current flows and prediction of 
wave propagation of electromagnetic fields. The dual sym-
metry between electric and magnetic fields underlies the 
conservation of energy and momentum for electromagnetic 
fields [1]. It can be connected also with conservation of 
polarization of the electromagnetic field. In particular, this 
symmetry underlies the conservation of optical (electro-
magnetic) helicity [2–4]. As it is stated in Ref. [4], the dual 
electromagnetic theory inherently contains straightforward 
and physically meaningful descriptions of the helicity, spin 
and orbital characteristics of light.

What kind of the source-free time-varying field structure 
one can expect to see when an electric displacement cur-
rent is neglected and so the electromagnetic-field symme-
try (dual symmetry) of Maxwell equations is broken? As an 
example of such a symmetry breaking, we can refer to the 
field structures studied in non-conductive artificial electro-
magnetic materials that exhibit zero (or near-zero) permit-
tivity [5, 6]. In such materials, one has low-wave-number 
(index near zero) propagation of electromagnetic waves. 
So, the effective material parameters can be characterized 
by zero (or near-zero) permittivity. This clarifies the physi-
cal meaning of the term “zero permittivity.” For these meta-
materials, no Maxwell correction (no electric displacement 
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current) exists and the fields are described by three dif-
ferential equations (instead of the four-Maxwell-equation 
description of electromagnetic fields):

In an assumption that a zero-permittivity medium is 
magnetically isotropic, from Eqs. (2), (3), it follows that 
�∇2 �E = 0. One has the static-like fields. Light passing 
through such a material experiences no phase shift. Evi-
dently, no unified-field retardation effects can be observed 
in structures created by the materials described in Refs. [5, 
6].

It appears, however, that even without the Maxwell’s 
displacement current, certain retardation-effect fields, 
described by Eqs. (1)–(3), can exist. Such fields, lacking a 
dual electric–magnetic symmetry, are exhibited in a small 
sample of a dielectric medium with strong temporal disper-
sion of magnetic susceptibility—a ferromagnetic-resonant 
medium. For harmonic fields in this medium, an aver-
aged density of the electromagnetic energy is expressed as 
Ū = 1

2

[

ε EαE
∗
α + ∂(ωµαβ)

∂ω
HαH

∗
β

]

, where ε is the medium 
scalar permittivity and µαβ are the components of the perme-
ability tensor ↔µ. In a small ferrite sample (with sizes much 
less than the free-space electromagnetic wavelength), one 
has negligibly small variation of electric energy, so that a 
dynamical process in a sample is described by three differ-
ential Eqs. (1)–(3) [7]. Contrary to non-magnetic structures 
with zero permittivity [5, 6], in this case one can observe 
the unified-field (with coupled electric- and magnetic-field 
components) retardation effects. These oscillations in small 
ferrite particles are called magnetostatic-wave (MS-wave) or 
magnetic-dipolar-mode (MDM) oscillations [7–10].

MDM oscillations in small ferrite spheres excited by 
external microwave fields were experimentally observed, 
for the first time, by White and Solt in 1956 [11]. After-
ward, experiments with disk-form ferrite specimens 
revealed unique spectra of oscillations. While in a case of 
a ferrite sphere one observed only a few wide absorption 
peaks of MDM oscillations [11], for a ferrite disk there was 
a multiresonance (atomic-like) spectrum with very sharp 
resonance peaks [12–14]. Analytically, it was shown [15, 
16] that, contrary to spherical geometry of a ferrite parti-
cle analyzed in Ref. [17], the quasi-2D geometry of a fer-
rite disk gives the Hilbert-space energy-state selection rules 
for MDM spectra. MDM oscillations in a quasi-2D ferrite 
disk are macroscopically coherent quantum states, which 
experience broken mirror symmetry and also broken time-
reversal symmetry [18, 19]. There are helical-wavefront 

(1)∇ · �B = 0,

(2)�∇ × �E = −∂ �B
∂t

,

(3)�∇ × �H = 0.

oscillations [20–24]. For an incident electromagnetic 
field, the MDM ferrite disk looks as a trap with focus-
ing to a ring, rather than a point. In vacuum, subwalength 
microwave fields carry orbital angular momentums and are 
characterized by power-flow vortices and nonzero helicity. 
These fields—called magnetoelectric (ME) fields—show 
the nature of electric–magnetic coupling different from the 
nature of the electric–magnetic coupling in a regular-propa-
gating free-space electromagnetic wave [21].

ME-coupling properties, observed in the near-field 
structure, are originated from magnetization dynamics of 
MDMs in a quasi-2D ferrite disk. In general, ME-coupling 
effects manifest in numerous macroscopic phenomena 
in solids. Physics underlying these phenomena becomes 
evident through a symmetry analysis. In isolating crystal 
materials, in which both spatial inversion and time-rever-
sal symmetries are broken, a magnetic field can induce 
electric polarization and, conversely, an electric field can 
induce magnetization [7, 25]. In multiferroics, the dynami-
cal ME effect is mediated by both electric- and magnetic-
dipole active spin excitations. Such a dynamical ME effect 
has been observed as a non-reciprocal directional dichro-
ism (NDD), that is, oppositely propagating microwaves 
exhibit different absorption [26]. In Refs. [27, 28], NDD 
was revealed through microwave transmittance spectros-
copy on the skyrmion-hosting multiferroic crystals. The 
microscopic mechanism of the present NDD is not associ-
ated with the conventional Faraday effect but with the skyr-
mion ME resonance instead, suggesting a conceptually new 
microwave functionality. Without requirements of a special 
kind of a crystal lattice, a ME-coupling term appears in 
magnetic systems with topological structures of magnetiza-
tion. In particular, there can be chiral, toroidal and vortex 
structures of magnetization [29, 30]. Other examples on a 
role of magnetization topology in the ME-coupling effects 
concern orbital magnetization. As it was discussed in Refs. 
[31, 32], an adequate description of magnetism in magnetic 
materials should not only include the spin contribution, but 
also account for effects originating in the orbital magnet-
ism. It was shown that in the two-dimensional case, orbital 
magnetization is exhibited due to exceeding of chiral-edge 
circulations in one direction over chiral-edge circulations 
in opposite direction [32]. Recently, it was shown that ME 
coupling can occur also in isotropic dielectrics due to an 
effect of orbital ME polarizability—topological ME-cou-
pling effect [33–35]. In such a case, one has the contribu-
tion of orbital currents to the ME coupling. The orbital ME 
polarizability is due to the pseudoscalar part of the ME 
coupling and is equivalent to the addition of a term to the 
electromagnetic Lagrangian—the axion electrodynamics 
term [36]. That is why the orbital ME response in isotropic 
dielectrics is referred as the axion orbital ME polarizability 
[33, 34].
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In this paper, we will show how both the problems of 
optical (electromagnetic) helicity [2–4] and the problems 
of ME-coupling effects due to magnetization topology [25–
35] can underlie the helicity properties of microwave ME 
fields originated from quasi-2D ferrite disks with MDM 
oscillations. We analyze conservation laws of the ME-field 
helicity. The paper is organized as follows. Study of helic-
ity of ME fields is preceded by an analysis of helicity in 
Maxwell’s electromagnetism. This analysis is given in Sec-
tion II of the paper. In Section III, we study general prop-
erties of helicity of ME fields. In Section IV, we analyze 
how the helicity density is related to reactive power flows 
originated from MDM ferrite disks. In Sections V and VI, 
we show the numerical studies of complex power flows and 
complex helicity parameters. Quantized topological charac-
teristics of the ME fields arise from the MS-wave spectral-
problem solutions for MDMs in a quasi-2D ferrite disk. In 
Section VII, we make a brief analytical examination of the 
ME-field helicities and power flows based on such MS-
wave spectral-problem solutions. In Section VIII, we dis-
cuss general aspects of the ME-field topology and give a 
conclusion of our studies shown in the paper.

2  Field helicity in Maxwell’s electromagnetism

At the beginning of this section, we should, probably, raise 
the issue: Which term is more relevant for description of 
the light twistness in free space: “chirality” or “helicity”? 
There is evident ambiguity in using these terms in the lit-
erature. Chirality is usually considered as the property 
related to handedness. In condensed matter physics, chi-
rality is to be associated with enantiomorphic pairs which 
induce optical activity. At the same time, the wave helicity, 
related to a Faraday effect, does not require a lack of struc-
tural symmetry. In elementary particle physics, helicity rep-
resents the projection of the particle spin at the direction of 
motion. In this case, chirality is considered as the same as 
the helicity only when the particle mass is zero or it can be 
neglected. On the other hand, one can be faced with misuse 
of the term chirality as a synonym of handedness. Simplest 
examples are a Cartesian coordinate system and a Lorentz 
force. Both structures are handed. However, based on the 
known definition “An object is chiral if no mirror image 
of the object can be superimposed on itself”, one can see 
that a Cartesian coordinate system (three unit polar vectors) 
is chiral, while a Lorentz force (one axial vector and two 
polar vectors) is achiral. This discussion shows that there is 
no definite answer to the above question. We will use both 
terms relating, mainly, to the literature sources.

Helicity admits topological interpretation in relation 
to the linkage of vortex lines of the flow. In plasma phys-
ics, the helicity of a static magnetic field is considered as 

a measure of the screwness of the magnetic line and is 
defined as

where �A is a vector potential related to the magnetic induc-
tion field: �B = ∇ × �A. For the static magnetic field, the 
helicity characterizes to what extent magnetic lines are 
coupled with each other. For a single magnetic line, the 
helicity parameter estimates the screwness of this line. It 
shows the extent to which a magnetic field “wraps around 
itself” [37–39].

Helicity of electromagnetic fields is described by differ-
ent aspects. All these aspects are related, anyway, to sym-
metry properties of Maxwell equations. The relativistic 
generalization of helicity for an arbitrary free-space elec-
tromagnetic field is defined as [40, 41]

where �C is a vector potential related to the electric field: 
�E = ∇ × �C. In such a relativistic generalization, the elec-
tromagnetic (optical) helicity is a measure of the screwness 
of the electromagnetic field. In the quantum electrodynam-
ics representation, it coincides with the difference between 
the number of the right and left circularly polarized pho-
tons composing the electromagnetic field. The electromag-
netic helicity H is a time-even Lorentz pseudoscalar with 
the dimensions of an angular momentum. It is a conserved 
quantity in that: dH

dt
= 0 [2–4, 40].

Maxwell’s equations are invariant when the electric and 
the magnetic fields �E and �B mix via a rotation by an arbi-
trary angle ξ, as

For a real angle ξ, this transformation leaves invariant such 
quadratic forms as the Poynting vector and energy density 
[1]. The duality rotation (6) generates the same rotation of 
the vector potentials:

It means that the electromagnetic helicity density 
h = 1

2

(

�A · ∇ × �A− �C · ∇ × �C
)

 retains its form under 
a duality rotation (7) [3, 4]. The electromagnetic helic-
ity is not the only quantity in electromagnetic theory that 
describes the angular momentum associated with polariza-
tion. Also, one can obtain the spin angular momentum of 
light. The spin density of the field �s = 1

2

(

�E × �A+ �B× �C
)

 
has the dimension of an angular momentum per unite 

(4)M =
∫

�A · ∇ × �A dV ,

(5)H = 1

2

∫

(

�A · ∇ × �A− �C · ∇ × �C
)

dV ,

(6)

( �E′
�B′

)

=
(

cos ξ sin ξ

− sin ξ cos ξ

)( �E
�B

)

.

(7)

( �A′
�C′

)

=
(

cos ξ sin ξ

− sin ξ cos ξ

)( �A
�C

)

.
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volume and retains its form under a duality rotation (7). 
The helicity density h and the spin density �s are related 
by a continuity equation. Similar to electromagnetic helic-
ity, electromagnetic-field spin is a conserved quantity. The 
symmetries underlying these conservation laws are dual 
symmetries for the electric and magnetic fields in Maxwell 
equations [3, 4].

While reference to the vector potentials raises the ques-
tion on gauge dependence, explicit reference to the fields 
is gauge invariant. Recently, considerable interest has been 
aroused by a rediscovered measure of helicity in optical 
radiation—commonly termed optical chirality density—
based on the Lipkin’s “zilch” for the fields [42]. The optical 
chirality density is defined as [42–45]:

The optical chirality density is related to the correspond-
ing chirality flow via the differential conservation law:

where

For time-harmonic fields (with the field time depend-
ence eiωt), the time-averaged optical chirality density is cal-
culated as [42–45]

where vectors �E and �B are complex amplitudes of the elec-
tric and magnetic fields. This is a time-even, parity-odd 
pseudoscalar parameter. Lipkin showed [42] that the chi-
rality density is zero for a linearly polarized plane wave. 
However, for a circularly polarized wave, Eq. (11) gives a 
nonvanishing quantity. Moreover, for right and left circu-
larly polarized waves one has opposite signs of parameter 
χ.

The effect of optical chirality was applied recently for 
experimental detection and characterization of biomol-
ecules [46]. The chiral fields were generated by the optical 
excitation of plasmonic planar chiral structures. Excitation 
of molecules is considered as a product of the parameter 
of optical chirality with the inherent enantiomeric proper-
ties of the material. In experiments [46], the evanescent 
near-field modes of plasmonic oscillations are involved. 
In continuation of these studies, a detailed and systematic 
numerical analysis of the near-field chirality in different 
plasmonic nanostructures was made in Ref [47]. How-
ever, in connection with the results obtained in Refs. [46, 
47], an important question arises: Whether, in general, the 

(8)χ = ε0

2
�E · ∇ × �E + 1

2µ0

�B · ∇ × �B.

(9)
∂χ

∂t
+ �∇ · �f = 0,

(10)�f = ε0c
2

2

[

�E ×
(

∇ × �B
)

− �B×
(

∇ × �E
)]

.

(11)χ = ωε0

2
Im

(

�E∗ · �B
)

,

expressions (8), (11) are applicable for description of the 
chiroptical near-field response? The near-field chiroptical 
properties shown in Refs. [46, 47] are beyond the scope of 
the Lipkin’s analysis, which was made based only on the 
plane wave consideration.

In a case of Eq. (11), the electric field is parallel to the 
magnetic field with a time-phase delay of 90°. In Ref. 
[48], it was shown that in an electromagnetic standing-
wave structure, designed by interference of two counter-
propagating circular polarized plane waves with the same 
amplitudes, there are certain planes where the electric and 
magnetic fields are collinear with each other and are not 
time-phase shifted. Such a field structure results in appear-
ance of the energy density expressed as

The authors in Ref. [48] call this energy as the ME 
energy. Intuitively, it was assumed [48] that this ME-energy 
density of plane monochromatic waves can be related to the 
reactive-power-flow density (or imaginary Poynting vector) 
[1]:

In Refs. [21–24, 49], it was shown that the ME proper-
ties can be observed in the vacuum-region fields originated 
from ferrite-disk particles with MDM oscillations. Contrary 
to Refs. [48], there are not the states of propagating-wave 
fields. There are quantized states of the ME near fields.

3  Helicity of the ME near fields

Differential Eqs. (1)–(3), together with the constitutive 
relation

describe the fields in small ferrite particles at the ferro-
magnetic-resonance frequencies [7–10]. However, formal 
use of these three differential equations, Eqs. (1)–(3), does 
not allow formulation of the spectral problem for MDM 
oscillations. Without Eq. (2), using only Eqs. (1) and (3) 
[and the constitutive relation (14)], one obtains the Walker 
equation for magnetostatic-potential (MS-potential) wave 
function ψ (introduced based on a relation �H = −�∇ψ) 
[17]. For a quasi-2D ferrite disk, the Walker-equation dif-
ferential operator (together with the homogeneous bound-
ary conditions for function ψ and its derivatives) gives the 
energy eigenstate spectrum of MDM oscillations [15, 16, 
18]. There are so-called G-mode spectral solutions. When 
we aim to obtain the MDM spectral solutions taking into 
account also the electric fields in a ferrite disk, we have 

(12)W (me) ∝ 1

2
Re

(

�E∗ · �B
)

.

(13)�S(me) ∝ 1

2
Im

(

�E∗ × �B
)

.

(14)�B = ↔
µ · �H,
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to consider the boundary conditions for a magnetic flux 
density, �B = −↔

µ · �∇ψ. In this case (because of specific 
boundary conditions on a lateral surface of a ferrite disk), 
one has the helical-mode resonances, and the spectral 
solutions are described by double-valued functions [18, 
19]. There are so-called L-mode spectral solutions. For L 
modes, the electric field in a vacuum region near a fer-
rite disk has two parts: the curl-field component �Ec and 
the potential-field component �Ep [21]. While the curl elec-
tric field �Ec in vacuum we define from the Maxwell equa-
tion �∇ × �Ec = −µ0

∂ �H
∂t

, the potential electric field �Ep in 
vacuum is calculated by integration over the ferrite-disk 
region, where the sources (magnetic currents �j(m) = ∂ �m

∂t
) 

are given. Here, �m is dynamical magnetization in a fer-
rite disk. It was shown that in vacuum near a ferrite disk, 
the regions with nonzero scalar product �Ep ·

(

�∇ × �Ec

)

 can 
exist [21].

In a general form, we introduce a notion of the ME-field 
helicity density expressed as [21–23, 49]:

Formally, this parameter can be considered as a param-
eter χ described by Eq. (8), but with an additional condition 
of the magnetostatic (�∇ × �H = 0) description. With such a 
meaning, we represent the ME-field helicity density as

The product �E ·
(

�∇ × �E
)

 is a measure of the screwness 
of the electric field. It is equal to the electric field �E on the 
points lying in the screw axis times the vorticity �∇ × �E. As 
the curl of a vector measures its rotation around a point, 
the product �E ·

(

�∇ × �E
)

 gives how much �E rotates around 
itself times its own modulus. This product evaluates to 
what degree vector �E resembles a helix.

For time-harmonic fields (∝ eiωt), the time-averaged 
helicity density parameter was calculated in a vacuum near-
field region as [21–23, 49]:

The ME-field helicity density is nonzero only at the res-
onance frequencies of MDMs. It arises from double-helix 
resonances of MDM oscillations in a quasi-2D ferrite disk 
[19]. At the MDM frequency ω = ωMDM, we have for mag-
netic induction �B = i

ωMDM

(

�∇ × �E
)

. So, Eq. (17) can be 
rewritten as

(15)F ∝ �E ·
(

�∇ × �E
)

= �Ep ·
(

�∇ × �Ec

)

.

(16)F = ε0

2
�E · ∇ × �E.

(17)F = ε0

4
Im

{

�E ·
(

�∇ × �E
)∗}

.

(18)

F = ωMDMε0

4
Im

{

i�E · �B∗
}

= ωMDMε0

4
Re

{

�E · �B∗
}

= ωMDM

4c2
Re

{

�E · �H∗
}

,

where c = 1/
√
ε0µ0. From this equation, one can see that 

the helicity density F transforms as a pseudo-scalar under 
space reflection ρ and it is odd under time reversal T . This 
is a time-odd, parity-odd pseudoscalar parameter. At the 
MDM resonances, one observes macroscopically coher-
ent vacuum states near a ferrite disk. These vacuum states 
of the field experience broken mirror symmetry and also 
broken time-reversal symmetry. Whenever a pseudo-scalar 
axion-like field is introduced in the theory, the dual symme-
try is spontaneously and explicitly broken [36]. Our studies 
shown in Refs. [21–24, 49] clearly verify the properties of 
helicity for ME fields originated from MDM resonances in 
a ferrite disk. Evidently, for regular electromagnetic fields 
Re

{

�E · �B∗
}

≡ 0.
We represent now the potential electric field as 

�Ep = −�∇φ, where φ is an arbitrary electrostatic-potential 
function. With this representation, we can write:

Here, we took into account that ∇ · �B = 0. Based on this 
equation, one can introduce a quantity of the time-averaged 
ME-energy density:

The quantity φ�B∗ can be considered as the time-averaged 
ME-energy flow. For the helicity density, we can write:

The regions of the positive and negative helicity den-
sity [21–24, 49] can be described, respectively, as the 
regions with positive and negative ME-energy density η.  
Since the helicity factor F shows what is degree of a 
twist between the �E and �H vectors compared to a regu-
lar EM-field configuration (with mutually perpendicular 
�E and �H vectors), the ME energy can be considered as 
energy of a torsion degree of freedom [21–23]. Because 
of time-reversal symmetry breaking, all the regions with 
positive helicity become the regions with negative helic-
ity (and vice versa), when one changes a direction of a 
bias magnetic field:

This equation can be written also as

Let us define the helicity as an integral of the ME-field 
helicity density over the entire near-field vacuum region of 
volume V (which excludes a region of a ferrite disk):

(19)

F = ωMDMε0

4
Re

{

�E · �B∗
}

= −ωMDMε0

4
Re

{

�∇φ · �B∗
}

= −ωMDMε0

4

{

�∇ · Re
(

φ�B∗
)}

.

(20)�∇ · Re
(

φ�B∗
)

≡ −η.

(21)F = ωMDMε0

4
η.

(22)F
�H0↑ = −F

�H0↓.

(23)η(−�H0) = −η( �H0)
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The question arises: Whether do we have the “helicity 
neutrality”, i.e., H = ωMDMε0

4

∫

V

ηdV = 0? To answer this 

question, we can rely on the following simple analysis. 
With use of the transformation

we can conclude that when the normal component of �B 
vanishes at some boundary inside which the fields �B and 
�Ep are confined (i.e., when �B · �n = 0 at the boundary), the 
quantity H is equal to zero. The quantity H is also equal to 
zero when the fields are with finite energy and the quantity 
φ�B∗ decreases sufficiently fast at infinity.

On the other hand, inside the vacuum-region volume V 
there are a region V (+) where the helicity is a nonzero posi-
tive quantity:

and a region V (−) where the helicity is a nonzero negative 
quantity:

For the entire volume V = V (+) + V (−), we have

Also, we should have

Such “helicity neutrality” can be considered as a specific 
conservation law of helicity.The helicity appears only at the 
MDM resonances. This quantized quantity of the helicity is 
represented as

(24)H =
∫

V

FdV = ωMDMε0

4

∫

V

Re
{

�Ep · �B∗
}

dV = ωMDMε0

4

∫

V

ηdV .

(25)

H = −ωMDMε0

4

∫

V

Re

{

�∇ ·
(

φ�B∗
)}

dV = −ωMDMε0

4

∮

S

Re

{

φ�B∗ · �n
}

dS,

(26)H
(+) = ωMDMε0

4

∫

V (+)

η(+)dV > 0

(27)H
(−) = ωMDMε0

4

∫

V (−)

η(−)dV < 0.

(28)H = H
(+) +H

(−) = 0.

(29)
∣

∣

∣
H

(+)
∣

∣

∣
=

∣

∣

∣
H

(−)
∣

∣

∣
.

(30)

∣

∣

∣
H

(+)
∣

∣

∣
=

∣

∣

∣
H

(−)
∣

∣

∣
= ωMDMε0

4

∫

V (+)

∣

∣

∣
η(+)

∣

∣

∣
dV

= ωMDMε0

4

∫

V (−)

∣

∣

∣
η(−)

∣

∣

∣
dV = kn,

where n = 1, 2, 3… is the MDM-resonance number and k is a 
dimensional coefficient proportionality. Equation (30) shows 
also quantization of the positive and negative ME energy.

4  The helicity factor and reactive power flow

For time-variation harmonic electromagnetic fields 
(∝ eiωt), in the absence of losses and electric-current 
sources, the imaginary part of the energy balance equa-
tion shows that the density of the reactive or stored 
energy is related to an imaginary part of the complex 
power-flow density: 2ω(we − wm) = c

8π
�∇ · Im

(

�E × �H∗
)

,  
where the energy densities we = c

16π

(

�E · �D∗
)

 and 
wm = c

16π

(

�B · �H∗
)

 are real quantities [1]. By anal-
ogy with electromagnetic fields, we will call the vector 
Im�E × �H∗ reactive-power-flow density. In our case of the 
MDM ME fields, we have reactive power flows in the 
near-field vacuum regions, which are different from such 
flows of regular electromagnetic fields.

In the near-field vacuum area of a quasi-2D ferrite 
disk with MDM resonances, one has in-plane rotating 
electric- and magnetic-field vectors localized at a center 
of a disk [21]. This field structure, shown schematically 
in Fig. 1, is characterized by the helicity factor. As we 
will show, for the spinning electric- and magnetic-field 
vectors, a time-averaged real part of a scalar product 
is related to a time-averaged imaginary part of a vec-
tor product of the electric and magnetic fields. This will 
allow making a definite conclusion that for ME fields, 
the helicity density is related to the reactive-power-flow 
density Im�E × �H∗. Let us consider the electric- and mag-
netic-field vectors circularly rotating in the xy plane in 
a near-field vacuum region at the disk center. Assuming 
the counterclockwise rotation, we have

where a = |a| and b = |b|eiϑ are complex amplitudes, 
�̂x and �̂y are unit vectors of the corresponding vectors 
along x and y axis, and ϑ is an arbitrary angle within 

(31)�E = a(�̂x + i�̂y) and �H = b(�̂x + i�̂y),

Fig. 1  Spinning electric- and magnetic-field vectors in vacuum 
regions above and below a MDM-resonance ferrite disk
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0 ≤ ϑ < 90
◦
. A scalar product of the electric-field vector 

and the complex conjugate magnetic-field vector gives:

We have 1
2
Re

(

�E · �H∗
)

= 1
2
|a||b| cosϑ. Now consider 

the magnetic-field vector �H ′, which is 90° time-shifted with 
respect to vector �H, that is, �H ′ = i �H = b(−�̂y+ i�̂x). For a 
vector product of the vectors �E and 

(

�H ′
)∗

, we have:

where �̂z is the unit vector along z axis. At the same time, a 
vector product of the electric-field vector and the complex 
conjugate magnetic-field vector �H gives:

Evidently, Im�E × �H∗ = Re�E ×
(

�H ′
)∗

. When one 
changes a direction of a bias magnetic field to an oppo-
site direction, cosϑ changes its sign and so the helicity-
density parameter F changes its sign as well [21–23, 49]. 
Since, in this case, the electric- and magnetic-field vectors 
also change a direction of their rotation, the imaginary 
part of a vector �E × �H∗ is invariant with respect to a direc-
tion of a bias magnetic field. From the above analysis, it 
follows that the vacuum regions above and below a quasi-
2D ferrite disk, where the helicity-density parameter F is 
nonzero, are also the regions where the imaginary part of 
a vector �E × �H∗ exist as well. For the near-field vacuum 
areas, localized at an axis of a quasi-2D ferrite disk, we 
can represent this connection by the following relation:

So, in a region near a ferrite disk, reactive power flow is 
accompanied by the helicity factor or, in other words, by 
the ME-energy density. Our numerical results in the next 
section clearly show that in a vacuum region where the 
reactive power flow is observed, the helicity-density fac-
tor exist as well.

In vacuum regions near a ferrite disk, the helicity den-
sity F appears due to the potential electric and potential 
magnetic fields (�∇ × �E = 0, �∇ × �H = 0). For such a field 
structure, �∇ · (�E × �H∗) = �H∗ · �∇ × �E − �E · �∇ × �H∗ ≡ 0.  
At the same time, in a ferrite-material region, where 
�∇ × �E �= 0 [21], we have �∇ · (�E × �H∗) = �H∗ · �∇ × �E �= 0.  
Inside a ferrite disk, one has a localized twist of the 
field vectors due to the MDM-resonance magnetization 
motion [19, 21]. It means that a ferrite-material region 

(32)�E · �H∗ = 1

2
|a||b|e−iϑ (�̂x + i�̂y) · (�̂x − i�̂y) = |a||b|[cosϑ − i sin ϑ].

(33)

�E ×
(

�H ′
)∗

= 1

2
|a||b|e−iϑ(�̂x + i�̂y)× (−�̂y− i�̂x)

= −|a||b|�̂z[cosϑ − i sin ϑ],

(34)

�E × �H∗ = 1

2
|a||b|e−iϑ)(�̂x + i�̂y)× (�̂x − i�̂y)

= −i|a||b|�̂z[cosϑ − i sin ϑ] = −|a||b|�̂z[sin ϑ + i cosϑ].

(35)
1

2
Re

∣

∣

∣

�E · �H∗
∣

∣

∣
= 1

2
Im

∣

∣

∣

∣

[

�E ×
(

�H
)∗]

z

∣

∣

∣

∣

.

can be considered as a source region for the vector 
Im�E × �H∗ observed in a vacuum area. Integration over 
the disk surfaces and over the ferrite-material-region 
volume gives

where Qdisk can be considered as a certain “charge”—a 
local source of the Im�E × �H∗ vector field in vacuum. We 
can also conclude that the helicity H should be related to 
Qdisk by the following integral-form expression:

5  Numerical results: ME‑field active and reactive 
power flows and helicity density

Our numerical studies are based on a commercial finite-ele-
ment electromagnetic solver (HFSS, Ansoft). In the previous 
publications [20–23, 49, 50], we analyzed numerically the 
active power flows Re�E × �H∗ and the helicity density F for 
ME fields originated from a ferrite disk with MDM oscilla-
tions. A numerical analysis in the present paper is aimed to 
study the reactive power flows Im�E × �H∗ in relation with the 
active power flows and the helicity density. In the analysis, 
we use the same disk parameters as in Refs. [20, 21]: The 
yttrium iron garnet (YIG) disk has a diameter of D = 3 mm 
and the disk thickness is t = 0.05 mm; the disk is normally 
magnetized by a bias magnetic field H0 = 4900 Oe; the satu-
ration magnetization of the ferrite is 4π Ms = 1880G. A fer-
rite disk is placed inside a TE10-mode rectangular X-band 
waveguide symmetrically to its walls so that the disk axis is 
perpendicular to a wide wall of a waveguide. The waveguide 
walls are made of a perfect electric conductor (PEC). For 
better understanding the field structures, we assume in our 
studies that a ferrite disk has very small losses: The linewidth 
of a ferrite is �H = 0.1 Oe. Figure 2 shows the module of 
the reflection (the S11 scattering-matrix parameter) coeffi-
cient. The resonance modes are designated in succession by 
numbers n = 1, 2, 3… An insert in Fig. 2 shows geometry 
of the structure. One can see that, starting from the second 
mode, we have Fano resonances. For every mode number, 
these coalescent resonances are denoted by single and dou-
ble primes.

Figures 3 and 4 show the active and reactive power flows of 
the ME field near a ferrite disk for the first MDM, at the reso-
nance frequency fres = 8.523GHz. We can see that while the 
active power flow is characterized by the vortex topology, the 
reactive power flow has a source which is originated from a 
ferrite disk. The regions of localization of the active and reac-
tive power flows are different. While the active power flow 
is localized at the disk periphery, the reactive power flow is 

(36)
∮

Sdisk

(

Im�E × �H∗
)

d�Sdisk =
∫

Vdisk

(

�∇ · Im�E × �H∗
)

dVdisk ≡ Qdisk,

(37)
∣

∣

∣
H

(+)
∣

∣

∣
+

∣

∣

∣
H

(−)
∣

∣

∣
∝ Qdisk.
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localized at a central part of the disk. This is well illustrated 
in Figs. 5 and 6 where intensities of the power flows near a 
ferrite disk are shown. The helicity density near a ferrite disk 
for the first MDM is shown in Fig. 7. When one compares 
Fig. 7a with Figs. 6b and 7b with 5b, one finds good coinci-
dence between the regions of the reactive-power-flow locali-
zation and the helicity-density localization. We have predicted 

theoretically such a coincidence in the above analysis. It is 
worth also noting here the regions of localization of the reac-
tive power flow and the helicity density correspond to the 
region of localization of the potential electric field [21–23, 50].

When one changes a direction of a bias field, the active 
power flow changes its direction as well. Also, the helicity-
density factor F changes its sign in this case. At the same 

Fig. 2  Frequency characteris-
tics of a module of the reflection 
coefficient for a rectangular 
waveguide with an enclosed 
thin film ferrite disk. The reso-
nance modes are designated in 
succession by numbers n = 1, 
2, 3… The coalescent (Fano 
type) resonances are denoted 
by single and double primes. 
An insert shows geometry of a 
structure

Fig. 3  Active-power-flow density near a ferrite disk for the first 
MDM ( fres = 8.523 GHz). A bias magnetic field is upward directed 
along z axis. a A view on a vacuum plane parallel to the ferrite-disk 

plane and at distance 50 µm above a disk, b a view on a cross-sec-
tional plane perpendicular to the ferrite-disk plane

Fig. 4  Reactive-power-flow density near a ferrite disk for the first MDM ( fres = 8.523 GHz). a A view on a vacuum plane parallel to the ferrite-
disk plane and at distance 50 µm above a disk, b a view on a cross-sectional plane perpendicular to the ferrite-disk plane
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time, the reactive power flow does not change its direction 
when the direction of a bias field is changed. The active and 
reactive power flows are mutually perpendicular. These flows 
constitute surfaces, which can be considered as deformed ver-
sions of the complex planes, i.e., as Riemann surfaces. These 
behaviors are illustrated in Fig. 8. The helicity-density distri-
bution is related to the angle ϑ between the spinning electric 

and magnetic fields. When one moves from the ferrite sur-
faces, above or below a ferrite disk, one observes reduction of 
the field amplitudes and also variation of the angle ϑ between 
spinning electric and magnetic fields. This angle varies from 
0° or 180° (near the disk surfaces) to +90° (sufficiently far 
from a ferrite disk). Figure 9 shows variation of the angle 
between spinning electric and magnetic fields along the disk 

Fig. 5  Intensity of the power flows near a ferrite disk for the first MDM on a cross-sectional plane perpendicular to the ferrite-disk plane. a 
Active power flow; b reactive power flow

Fig. 6  Intensity of the power flows near a ferrite disk for the first MDM) on a vacuum plane parallel to the ferrite-disk plane and at distance 
50 µm above a disk. a Active power flow; b reactive power flow

Fig. 7  Helicity density near a ferrite disk for the first MDM. A bias magnetic field is upward directed along z axis. a A view on a vacuum plane 
parallel to the ferrite-disk plane and at distance 50 µm above a disk, b a view on a cross-sectional plane perpendicular to the ferrite-disk plane
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axis at different directions of a bias magnetic field. The angle 
ϑ gives evidence for a torsion structure of the ME field above 
and below a ferrite disk. The ME-energy density η appears due 
to such a torsion degree of freedom of the field.

Topological characteristics of the ME fields are quantized 
quantities. The ME-field topologies appear only at the MDM-
resonance frequencies. The ME-field pictures for the second 
MDM (the peak 2″ in Fig. 2) are shown in Figs. 10, 11, 12, 

13 and 14. The main conclusions regarding the power-flow-
density and helicity-density distributions expressed for the first 
MDM are also applicable for the second MDM.

In the shown pictures of the power flows and helicity densi-
ties, we can observe some small non-symmetry, especially for 
the second MDM. This non-symmetry is due to influence of 
the external microwave radiation which propagates in a wave-
guide from port 1 to port 2 (see an insert in Fig. 2).

Fig. 8  Helicity density and active and reactive power flows for the 
first MDM ( fres = 8.523 GHz). a An upward directed bias magnetic 
field; b a downward directed bias magnetic field. The active and reac-
tive power flows are mutually perpendicular. These flows constitute 
surfaces, which can be considered as deformed versions of the com-

plex planes, i.e., as Riemann surfaces. When one changes a direction 
of a bias field, the active power flow changes its direction as well. 
Also, the helicity-density factor F changes its sign in this case. At 
the same time, the reactive power flow does not change its direction 
when the direction of a bias field is changed

Fig. 9  Variation of the angle between spinning electric and magnetic 
fields along the disk axis for the first MDM. This angle gives evi-
dence for a torsion structure of the ME field above and below a ferrite 

disk. The ME-energy density η appears due to the torsion degree of 
freedom of the field. a Angle ϑ for an upward directed bias magnetic 
field; b angle ϑ for a downward directed bias magnetic field
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6  The real and imaginary helicity densities of the 
ME fields

As we discussed above, near a ferrite disk with MDM reso-
nances there exist the vacuum regions where the electric 
and magnetic fields are collinear with each other and are 

not time-phase shifted. These regions are described by the 
helicity factor defined by Eq. (18). Now the question arises: 
Whether there exist also the vacuum near-field regions with 
collinear the electric and magnetic fields which are time-
phase shifted at 90°? In a case of a positive answer, we 
should classify the helicity-density factor defined by Eq. (18) 

Fig. 10  Active-power-flow density near a ferrite disk for the second 
MDM ( fres = 8.653 GHz). A bias magnetic field is upward directed 
along z axis. a A view on a vacuum plane parallel to the ferrite-disk 

plane and at distance 50 µm above a disk, b a view on a cross-sec-
tional plane perpendicular to the ferrite-disk plane

Fig. 11  Reactive-power-flow density near a ferrite disk for the second MDM ( fres = 8.653 GHz). a A view on a vacuum plane parallel to the 
ferrite-disk plane and at distance 50 µm above a disk, b a view on a cross-sectional plane perpendicular to the ferrite-disk plane

Fig. 12  Intensity of the power flows near a ferrite disk for the second MDM on a cross-sectional plane perpendicular to the ferrite-disk plane. a 
Active power flow; b reactive power flow
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(and analyzed in the above study) as a real-helicity-density 
factor:

and introduce also the notion of an imaginary helicity-den-
sity factor:

While the regions of Freal are characterized by the 
presence of both the potential and curl electric fields, 
the regions of F imag have only the curl-field component. 
Based on our numerical analysis, we can show that at 
the MDM resonances, the near-field regions with imagi-
nary helicity factor exist. The results are represented in 
Figs. 15 and 16 for the first and second MDMs. There 

(38)
Freal =

ωMDMε0

4
Im

{

i�E · �B∗
}

= ωMDMε0

4
Re

{

�E · �B∗
}

= ωMDM

4c2
Re

{

�E · �H∗
}

(39)
Fimag =

ωMDMε0

4
Re

{

i�E · �B∗
}

= ωMDMε0

4
Im

{

�E · �B∗
}

= ωMDM

4c2
Im

{

�E · �H∗
}

.

is strong difference between the regions of localization 
of the real and imaginary helicity-density factors. For-
mally, the imaginary helicity-density factor, expressed 
by Eq. (39), resembles the optical chirality density [see 
Eq. (11)]. In our case, however, we do not consider reg-
ular electromagnetic fields. Nevertheless, a role of the 
external electromagnetic fields is evident in Figs. 15 and 
16. The pictures are azimuthally non-homogeneous. Due 
to the waves propagating in a waveguide, one can see 
deviation of the topological pictures. Importantly, when 
one changes a direction of propagation of microwave 
radiation in a waveguide, the pictures azimuthally turn at 
angle 180°.

Could the imaginary helicity-density factor F imag be 
also related to an imaginary part of the power-flow density, 
as it takes place for a real-helicity-density factor Freal?  
And, if it is so, what kind of an imaginary part of the 
power-flow density we will have in a case of the imagi-
nary helicity factor F imag? To a certain extent, as a pre-
liminary analytical study, we will clarify these questions 
in the next section.

Fig. 13  Intensity of the power flows near a ferrite disk for the second MDM on a vacuum plane parallel to the ferrite-disk plane and at distance 
50 µm above a disk. a Active power flow; b reactive power flow

Fig. 14  Helicity density near a ferrite disk for the second MDM. A bias magnetic field is upward directed along z axis. a A view on a plane par-
allel to the ferrite-disk plane and at distance 50 µm above a disk; b a view on a cross-sectional plane perpendicular to the ferrite-disk plane
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7  The ME‑field helicities and power flows: a view 
from the MS‑wave spectral problems

Quantized topological characteristics of the ME fields arise 
from the MS-wave spectral-problem solutions for MDMs 
in a quasi-2D ferrite disk [15, 16, 18–21]. Detailed analyti-
cal studies of the ME-field helicities and power flows based 
on such MS-wave spectral-problem solutions (being impor-
tant for our future investigations) are beyond the frames of 
this work. Nevertheless, a brief examination of this prob-
lem is relevant and useful here.

It is worth noting, once again, that the main difference 
between the active and reactive power flows, as well as 
between the real and imaginary helicities, appears due to 
difference of a character of electric fields in the ME-field 
structure. There are or potential or curl electric fields. In a 
case of a potential electric field �Ep (and a potential mag-
netic field �H = −�∇ψ), we have to solve an integro-differ-
ential MS-wave problem. The MS-potential eigenfunction 
ψ of a certain MDM gives us a potential magnetic field 
and a dynamical magnetization �m = −↔

χ ·
(

�∇ψ

)

, where ↔χ 

is a magnetic susceptibility tensor [10]. The potential elec-
tric field �Ep in vacuum is calculated by integration over 
the ferrite-disk region, where the sources—magnetic cur-
rents (�j(m) = iω �m)—are given [21]. For a potential electric 
field �Ep and a potential magnetic field, one has a reactive 
power flow and a real helicity density. In the present paper, 
we obtained these quantities only numerically. Finding of 
these parameters analytically, based on the integro-differ-
ential-problem solutions, is a goal of our future studies.

For a curl electric field �Ec (and a potential magnetic field 
�H = −�∇ψ), one has an active-power-flow and an imaginary 
helicity density. In this case, the differential-problem ana-
lytical solutions for MS waves in a ferrite disk can be easily 
correlated with our numerical results. A simple manipula-
tion (taking into account that �∇ · �B = 0 and �H = −�∇ψ) 
shows that in this case inside a ferrite region there is:

With use of the homogeneous boundary conditions, one 
has the same relation also in a vacuum region near a ferrite 

(40)�∇ · (�E × �H∗) = �H∗ · �∇ × �E = iω �∇ψ∗ · �B = iω �∇ ·
(

ψ∗ �B
)

.

Fig. 15  Imaginary helicity density near a ferrite disk for the first [(a) 
and (b)] and the second [(c) and (d)] MDMs. A bias magnetic field 
is upward directed along z axis. Microwave radiation propagates in a 
waveguide from port 1 to port 2 (see an insert in Fig. 2). a, c A view 

on a vacuum plane parallel to the ferrite-disk plane and at distance 
50 µm above a disk; b, d a view on a cross-sectional A–A perpen-
dicular to the ferrite-disk plane
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disk. Following Ref. [51], one can conclude that this equa-
tion gives

A simple analysis of the energy balance equation for 
monochromatic MS waves in a magnetic medium with 
small losses [18] shows that, definitely, Re

(

iωψ∗ �B
)

 is 
a real-power-flow density. So, for MS waves the quan-
tity Re

(

�E × �H∗
)

 appears as real-power-flow density 
as well. Importantly, despite the fact that expression 
Re

(

�E × �H∗
)

 looks like the Poynting vector, the MS-
wave real-power-flow density cannot be interpreted as 
the EM-wave real-power-flow density. The Poynting vec-
tor is obtained for EM radiation which is described by 
the two curl operator Maxwell equations for the elec-
tric and magnetic fields. This is not the case of the MS 
waves, where we have potential magnetic and curl elec-
tric fields. Since Eqs. (40) and (41) are relevant only for 
a curl electric field in a vacuum region near a ferrite disk, 
there is no connection of these equations to the quantity 
Im

(

�E × �H∗
)

 which is related to a potential electric field 
in vacuum.

(41)�E × �H∗ = iωψ∗ �B.

We consider now the spectral problem of MDM oscil-
lations in a quasi-2D ferrite disk. For a coordinate system 
shown in Fig. 1, the MS-potential wave function ψ for a 
certain mode n can be represented as [16, 18, 19, 50] 

where ξn(z) is an amplitude factor, Cn is a dimensional 
coefficient, and ϕ̃n(r, θ) is a dimensionless membrane func-
tion. The function ξn(z) describes a standing wave along z  
axis. For membrane function, we have ϕ̃n = ϕ̃n(r)ϕ̃n(θ),  
where ϕ̃n(r) is a Bessel function and ϕ̃n(θ) ∼ e−iνnθ.  
Here, νn is an integer (n is a number of radial variations 
for a given azimuth number ν). For magnetic flux density 
(�Bn = −↔

µ · �∇ψn), we have

where

and

(42)ψn = Cnξn(z)ϕ̃n(r, θ),

(43)�Bn = (Bn)z�ez + B̃n �e⊥,

(44)(Bn)z = −Cn

∂ξn(z)

∂ z
ϕ̃n(r, θ)

Fig. 16  Imaginary helicity density near a ferrite disk for the first [(a) 
and (b)] and the second [(c) and (d)] MDMs. A bias magnetic field 
is upward directed along z axis. Microwave radiation propagates in a 
waveguide from port 2 to port 1 (see an insert in Fig. 2). a, c A view 

on a vacuum plane parallel to the ferrite-disk plane and at distance 
50 µm above a disk; b, d a view on a cross-sectional A–A perpen-
dicular to the ferrite-disk plane
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Here, subscript ⊥ corresponds to the transversal (with 
respect to z axis) vector and tensor components.

The real-power-flow density for a MDM n is expressed 
as

It is easily to show [50] that (pn)r = (pn)z = 0. The only 
nonzero component of the real-power-flow density is the 
azimuth component, which is expressed as [50]:

where µ and µa are, respectively, the diagonal and off-diag-
onal components of the tensor ↔µ.

The quantities (pn(r, z))θ, circulating around a circle2πr,  
are the MDM power-flow-density vortices with cores at 
the disk center. At a vortex center, the amplitude of (pn)θ 
is equal to zero. It follows from Eq. (47) that for a given 
mode number n, characterizing by a certain function ϕ̃n(r),  
there are oppositely directed power-flow vortices for differ-
ent signs of the azimuth number νn. In a vacuum region, 
outside a ferrite disk we have from Eq. (47)

It is clear that �∇ · �pn = 0, both inside and outside a ferrite 
disk. The analytical results for MDM power-flow-density 
vortices, obtained based on Eqs. (47), (48), are in good cor-
relation with the numerical results. It is worth noting, once 
again, that following Eqs. (40), (41), analytical solutions for 
(pn)θ in vacuum are obtained for the curl electric fields.

Let us extend our analysis by introduction also an imagi-
nary MS-wave power flow. It means that we will consider 
now the complex quantity

where �p = Re
(

iωψ∗ �B
)

= iω
2

(

ψ∗ �B− ψ �B∗
)

 and 

�q = Im
(

iωψ∗ �B
)

= ω
2

(

ψ∗ �B+ ψ �B∗
)

. The physical mean-

ing of the quantity Re
(

iωψ∗ �B
)

 is clear from the above 
analysis. Now the question arises: What does it mean the 
quantity Im

(

iωψ∗ �B
)

?

(45)B̃n = −Cnξn(z)
[

↔
µ⊥ · �∇⊥ϕ̃n(r, θ)

]

· �e⊥.
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n
�Bn

)

= iω

2
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.
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,

(48)(pn(r, z))θ = −ωC2
n

1

r
νn(ξn(z))

2|ϕ̃n(r, θ)|2.

(49)�s = �p+ i�q,

For the imaginary-power-flow density of a MDM n, one 
has

In this case, we have (qn)θ = 0, while (qn)r �= 0 and 
(qn)z �= 0. For (qn)r, we obtain:

Outside a ferrite disk, we have

For (qn)z, we obtain:

Since the quantity qn is related to a curl electric field 
in a vacuum region, it does not describe analytically the 
obtained above quantity Im

(

�E × �H∗
)

, which is related to 
a potential electric field in vacuum. We can suppose, how-
ever, that the analytical quantity qn is related to the imagi-
nary helicity-density factor F imag, which corresponds to a 
curl electric field in vacuum. Study of this relationship is 
a goal for our future analysis. In solving this problem, we 
should take into account also a role of the external micro-
wave radiation. The azimuth non-homogeneity of F imag, 
shown in Figs. 15 and 16, is due to these external RF fields.

8  Discussion and conclusion

The dual symmetry between electric and magnetic fields 
underlies the conservation of energy and momentum for 
electromagnetic fields and also the conservation of optical 
(electromagnetic) helicity.

Symmetry properties of the ME fields are different 
from symmetry properties of free-space electromagnetic 
fields. The near fields originated from small ferrite parti-
cles with MDM oscillations are the fields with the electric 
and magnetic components, but with broken dual (electric–
magnetic) symmetry. These fields—the ME fields—have 
topological properties different from such properties of 
electromagnetic fields. In this paper, we showed that top-
ological properties of ME fields are presented by a very 
complicated picture. There are real and imaginary ME 
power flows and real and imaginary helicity densities. 

(50)�qn =
ω

2

(

ψ∗
n
�Bn + ψn

�B∗
n

)

.

(51)

(qn(z))r = −ω

2

C
2

n
(ξ(z))2

[

µ

(

ϕ̃∗
n

∂ϕ̃n

∂r
+ ϕ̃n

∂ϕ̃∗
n

∂r

)

+iµa

1

r

(

ϕ̃∗
n

∂ϕ̃n

∂θ
− ϕ̃n

∂ϕ̃∗
n

∂θ

)]

= −ωC2

n
(ξ(z))2

[

1

2

µ
∂|ϕ̃n(r)|2

∂r
− µa

νn

r
|ϕ̃n(r)|2

]

.

(52)(qn(θ , z))r = −ω

2
C2
n(ξ(z))

2 ∂|ϕ̃n(r)|2
∂r

.

(53)(qn)z = −ωC2
nξn(z)

∂ξn(z)

∂ z
|ϕ̃n(r, θ)|2.
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These quantities are related to the analytically derived 
MS-potential quadratic relations.

In classical electrodynamics, the imaginary part of the 
Poynting vector gives information about evanescent (i.e., 
non-propagating) fields. For a plane wave, the imagi-
nary part of the Poynting vector is zero. When, however, 
the Poynting vector is calculated from the fields in some 
below-cut-off waveguiding structures, a nonzero imaginary 
part of the Poynting vector can be found. This indicates that 
there are resonant, non-propagating fields at that location. 
In regular, lossless structures, or real or imaginary Poynting 
vector exists. In a case of the ME-field structure, situation 
with the power flows is completely different. In this paper, 
we showed that in the vacuum area near a ferrite disk with 
MDM resonances, one can observe both active (Re�E × �H∗

) and reactive (Im�E × �H∗) power flows. While active 
power flows are characterized by the vortex topology, reac-
tive power flows are source originated from a ferrite disk. 
These flows constitute surfaces, which can be considered 
as deformed versions of the complex planes, i.e., as Rie-
mann surfaces. The regions of localization of the active and 
reactive power flows are different. When the active power 
flow is localized at the disk periphery, the reactive power 
flow is localized at a central part of the disk. There is also 
an evident coincidence between the regions of the reactive-
power-flow localization and the real-helicity-density local-
ization. We showed that in an area of these localizations, 
there is variation of the angle between spinning electric 
and magnetic fields along the disk axis. This angle gives 
evidence for a torsion structure of the ME field above and 
below a ferrite disk. The ME-energy density η appears due 
to the torsion degree of freedom of the field. The near-field 
vacuum regions where the electric and magnetic fields are 
collinear with each other and are not time-phase shifted are 
the regions with the real-helicity-density factor. We showed 
that together with such regions there are also the vacuum 
near-field regions where the electric and magnetic fields 
are collinear with each other but are time-phase shifted at 
90°. In the last case, we are talking about the imaginary 
helicity-density factor. The observed quantized topologi-
cal characteristics of the ME fields arise from the MS-wave 
spectral-problem solutions for MDMs in a quasi-2D ferrite 
disk. A preliminary analytical examination of the ME-field 
helicities and power flows based on such MS-wave spec-
tral-problem solutions, made in the paper, shows important 
relationship between the numerical and analytical results.

The shown topological properties of the ME fields can 
be useful for novel near- and far-field microwave applica-
tions. Strongly localized ME fields, having both the real 
and imaginary helicity parameters, open unique perspective 
for sensitive microwave probing of structural character-
istics of chemical and biological objects. The presence of 
a biological sample with chiral properties will necessarily 

alter the near-field distribution which in turn will change 
the spectral characteristics of a MDM ferrite disk. Regard-
ing the far-field applications, some interesting questions 
can be expressed here. The active (Re�E × �H∗) and reac-
tive (Im�E × �H∗) power flows exist together and are mutu-
ally perpendicular one to another. We can also see that the 
sources of the reactive power flows are at the centers of 
active-power-flow vortices. With these topological prop-
erties, the following question arises: Can we observe free 
space transportation of reactive energy by an active power 
flow? In Ref. [22], we showed the effect of long-distance 
interaction between two MDM ferrite disks. We have found 
that the split-resonance response for coupled MDM parti-
cles is weakly dependent on distances between disks. Such 
coupling was clearly observed even at extremely long dis-
tances between the disks. One of the proper explanations of 
the effect in Ref. [22] can, probably, appear based on our 
studies in the present paper. Because of a joint structure 
of the reactive and active power flows and transportation 
of reactive energy by an active power flow, we may have 
a long-distance (reactive) coupling between two MDM 
ferrite disks. This is a quasistatic phase coupling between 
two MDM disks, which very weakly depends on a distance 
between the disks. It can be supposed that in Ref. [22], we 
observed such an effect of a quasistatic MDM coupling.
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